3cmm Citations

Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes.

Cell 134 268-78 (2008)
Cited: 167 times
EuropePMC logo PMID: 18662542

Abstract

Ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are conjugated to their targets by specific cascades involving three classes of enzymes, E1, E2, and E3. Each E1 adenylates the C terminus of its cognate Ubl, forms a E1 approximately Ubl thioester intermediate, and ultimately generates a thioester-linked E2 approximately Ubl product. We have determined the crystal structure of yeast Uba1, revealing a modular architecture with individual domains primarily mediating these specific activities. The negatively charged C-terminal ubiquitin-fold domain (UFD) is primed for binding of E2s and recognizes their positively charged first alpha helix via electrostatic interactions. In addition, a mobile loop from the domain harboring the E1 catalytic cysteine contributes to E2 binding. Significant, experimentally observed motions in the UFD around a hinge in the linker connecting this domain to the rest of the enzyme suggest a conformation-dependent mechanism for the transthioesterification function of Uba1; however, this mechanism clearly differs from that of other E1 enzymes.

Reviews - 3cmm mentioned but not cited (4)

  1. Building ubiquitin chains: E2 enzymes at work. Ye Y, Rape M. Nat. Rev. Mol. Cell Biol. 10 755-764 (2009)
  2. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Schulman BA, Harper JW. Nat. Rev. Mol. Cell Biol. 10 319-331 (2009)
  3. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Burslem GM, Crews CM. Cell 181 102-114 (2020)
  4. Urm1: A Non-Canonical UBL. Termathe M, Leidel SA. Biomolecules 11 139 (2021)

Articles - 3cmm mentioned but not cited (25)

  1. Crystal structure of the human ubiquitin-activating enzyme 5 (UBA5) bound to ATP: mechanistic insights into a minimalistic E1 enzyme. Bacik JP, Walker JR, Ali M, Schimmer AD, Dhe-Paganon S. J. Biol. Chem. 285 20273-20280 (2010)
  2. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS ONE 5 e15805 (2010)
  3. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade. Papaleo E, Casiraghi N, Arrigoni A, Vanoni M, Coccetti P, De Gioia L. PLoS ONE 7 e40786 (2012)
  4. Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Yao Q, Cui J, Wang J, Li T, Wan X, Luo T, Gong YN, Xu Y, Huang N, Shao F. Proc. Natl. Acad. Sci. U.S.A. 109 20395-20400 (2012)
  5. An acidic loop and cognate phosphorylation sites define a molecular switch that modulates ubiquitin charging activity in Cdc34-like enzymes. Papaleo E, Ranzani V, Tripodi F, Vitriolo A, Cirulli C, Fantucci P, Alberghina L, Vanoni M, De Gioia L, Coccetti P. PLoS Comput. Biol. 7 e1002056 (2011)
  6. Specificity of the E1-E2-E3 enzymatic cascade for ubiquitin C-terminal sequences identified by phage display. Zhao B, Bhuripanyo K, Schneider J, Zhang K, Schindelin H, Boone D, Yin J. ACS Chem. Biol. 7 2027-2035 (2012)
  7. Electrophilic adduction of ubiquitin activating enzyme E1 by N,N-diethyldithiocarbamate inhibits ubiquitin activation and is accompanied by striatal injury in the rat. Viquez OM, Caito SW, McDonald WH, Friedman DB, Valentine WM. Chem. Res. Toxicol. 25 2310-2321 (2012)
  8. Label-Free and Real-Time Detection of Protein Ubiquitination with a Biological Nanopore. Wloka C, Van Meervelt V, van Gelder D, Danda N, Jager N, Williams CP, Maglia G. ACS Nano 11 4387-4394 (2017)
  9. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Liwocha J, Krist DT, van der Heden van Noort GJ, Hansen FM, Truong VH, Karayel O, Purser N, Houston D, Burton N, Bostock MJ, Sattler M, Mann M, Harrison JS, Kleiger G, Ovaa H, Schulman BA. Nat Chem Biol 17 272-279 (2021)
  10. Structural determinants of ubiquitin conjugation in Entamoeba histolytica. Bosch DE, Siderovski DP. J. Biol. Chem. 288 2290-2302 (2013)
  11. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics. Chung WJ, Goeckeler-Fried JL, Havasi V, Chiang A, Rowe SM, Plyler ZE, Hong JS, Mazur M, Piazza GA, Keeton AB, White EL, Rasmussen L, Weissman AM, Denny RA, Brodsky JL, Sorscher EJ. PLoS ONE 11 e0163615 (2016)
  12. Crystal structure of a human ubiquitin E1-ubiquitin complex reveals conserved functional elements essential for activity. Lv Z, Williams KM, Yuan L, Atkison JH, Olsen SK. J. Biol. Chem. 293 18337-18352 (2018)
  13. Homology Modelling of Human E1 Ubiquitin Activating Enzyme. Brahemi G, Burger AM, Westwell AD, Brancale A. Lett Drug Des Discov 7 57-62 (2010)
  14. Protein complex prediction via dense subgraphs and false positive analysis. Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J. PLoS ONE 12 e0183460 (2017)
  15. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin. Correale S, de Paola I, Morgillo CM, Federico A, Zaccaro L, Pallante P, Galeone A, Fusco A, Pedone E, Luque FJ, Catalanotti B. PLoS ONE 9 e112082 (2014)
  16. All change: protein conformation and the ubiquitination reaction cascade. Riedinger C, Endicott JA. F1000 Biol Rep 1 19 (2009)
  17. Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Yuan L, Lv Z, Adams MJ, Olsen SK. Nat Commun 12 2370 (2021)
  18. Profiling the cross reactivity of ubiquitin with the Nedd8 activating enzyme by phage display. Zhao B, Zhang K, Bhuripanyo K, Choi CH, Villhauer EB, Li H, Zheng N, Kiyokawa H, Schindelin H, Yin J. PLoS ONE 8 e70312 (2013)
  19. The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Aichem A, Anders S, Catone N, Rößler P, Stotz S, Berg A, Schwab R, Scheuermann S, Bialas J, Schütz-Stoffregen MC, Schmidtke G, Peter C, Groettrup M, Wiesner S. Nat Commun 9 3321 (2018)
  20. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y, Zhang M, Wang M, Lin H, Tong Q, Duan Y, Du G. J Transl Med 17 90 (2019)
  21. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Hann ZS, Ji C, Olsen SK, Lu X, Lux MC, Tan DS, Lima CD. Proc. Natl. Acad. Sci. U.S.A. 116 15475-15484 (2019)
  22. Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Williams KM, Qie S, Atkison JH, Salazar-Arango S, Alan Diehl J, Olsen SK. Nat Commun 10 3296 (2019)
  23. Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Truongvan N, Li S, Misra M, Kuhn M, Schindelin H. Nat Commun 13 4789 (2022)
  24. Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer. Cathcart AM, Bird GH, Wales TE, Herce HD, Harvey EP, Hauseman ZJ, Newman CE, Adhikary U, Prew MS, Oo T, Lee S, Engen JR, Walensky LD. Nat Chem Biol 16 1218-1226 (2020)
  25. Three-Component Mixture Model-Based Adverse Drug Event Signal Detection for the Adverse Event Reporting System. Zhang P, Li M, Chiang CW, Wang L, Xiang Y, Cheng L, Feng W, Schleyer TK, Quinney SK, Wu HY, Zeng D, Li L. CPT Pharmacometrics Syst Pharmacol 7 499-506 (2018)


Reviews citing this publication (35)

  1. Origin and function of ubiquitin-like proteins. Hochstrasser M. Nature 458 422-429 (2009)
  2. Molybdenum cofactors, enzymes and pathways. Schwarz G, Mendel RR, Ribbe MW. Nature 460 839-847 (2009)
  3. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. Gulick AM. ACS Chem. Biol. 4 811-827 (2009)
  4. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. van Wijk SJ, Timmers HT. FASEB J. 24 981-993 (2010)
  5. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. Rabut G, Peter M. EMBO Rep. 9 969-976 (2008)
  6. Glutathione--a review on its role and significance in Parkinson's disease. Martin HL, Teismann P. FASEB J. 23 3263-3272 (2009)
  7. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Klionsky DJ, Schulman BA. Nat. Struct. Mol. Biol. 21 336-345 (2014)
  8. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Bendotti C, Marino M, Cheroni C, Fontana E, Crippa V, Poletti A, De Biasi S. Prog. Neurobiol. 97 101-126 (2012)
  9. Perilous journey: a tour of the ubiquitin-proteasome system. Kleiger G, Mayor T. Trends Cell Biol. 24 352-359 (2014)
  10. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  11. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem. Rev. 118 889-918 (2018)
  12. Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Sasaki K, Iwai K. Immunol. Rev. 266 175-189 (2015)
  13. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol. 11 65 (2013)
  14. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci. 20 1941-1954 (2011)
  15. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Alonso V, Friedman PA. Mol. Endocrinol. 27 558-572 (2013)
  16. UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Groen EJN, Gillingwater TH. Trends Mol Med 21 622-632 (2015)
  17. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem. Soc. Trans. 44 212-227 (2016)
  18. Systematic approaches to identify E3 ligase substrates. Iconomou M, Saunders DN. Biochem. J. 473 4083-4101 (2016)
  19. Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Rolando M, Buchrieser C. Future Microbiol 7 369-381 (2012)
  20. Trial Watch: Proteasomal inhibitors for anticancer therapy. Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Mol Cell Oncol 2 e974463 (2015)
  21. Applied techniques for mining natural proteasome inhibitors. Stein ML, Groll M. Biochim. Biophys. Acta 1843 26-38 (2014)
  22. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. Helzer KT, Hooper C, Miyamoto S, Alarid ET. J. Mol. Endocrinol. 54 R151-67 (2015)
  23. Assessing the Role of Muscle Protein Breakdown in Response to Nutrition and Exercise in Humans. Tipton KD, Hamilton DL, Gallagher IJ. Sports Med 48 53-64 (2018)
  24. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Int J Mol Sci 22 11971 (2021)
  25. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Chembiochem 22 2011-2031 (2021)
  26. Anticancer drug discovery by targeting cullin neddylation. Yu Q, Jiang Y, Sun Y. Acta Pharm Sin B 10 746-765 (2020)
  27. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Kang JA, Jeon YJ. Int J Mol Sci 22 2078 (2021)
  28. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Pharmacol Rev 72 380-413 (2020)
  29. Ubiquitin-Conjugating Enzymes in Cancer. Bui QT, Hong JH, Kwak M, Lee JY, Lee PC. Cells 10 1383 (2021)
  30. Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. Pisano A, Albano F, Vecchio E, Renna M, Scala G, Quinto I, Fiume G. Int J Mol Sci 19 (2018)
  31. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J. Antibiot. 72 325-349 (2019)
  32. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Lacoursiere RE, Hadi D, Shaw GS. Biomolecules 12 467 (2022)
  33. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Kumar S, Basu M, Ghosh MK. Genes Dis 9 1521-1555 (2022)
  34. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Cheng X, Yang W, Lin W, Mei F. Pharmacol Rev 75 979-1006 (2023)
  35. Structural Diversity of Ubiquitin E3 Ligase. Toma-Fukai S, Shimizu T. Molecules 26 6682 (2021)

Articles citing this publication (103)

  1. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, Ma J, Loke HK, Lingaraj T, Wu D, Hamman KB, Spelman JJ, Cullis CA, Langston SP, Vyskocil S, Sells TB, Mallender WD, Visiers I, Li P, Claiborne CF, Rolfe M, Bolen JB, Dick LR. Mol. Cell 37 102-111 (2010)
  2. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H. Nucleic Acids Res. 39 3204-3223 (2011)
  3. Site-specific analysis of protein S-acylation by resin-assisted capture. Forrester MT, Hess DT, Thompson JW, Hultman R, Moseley MA, Stamler JS, Casey PJ. J. Lipid Res. 52 393-398 (2011)
  4. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA. Mol. Cell 33 483-495 (2009)
  5. Active site remodelling accompanies thioester bond formation in the SUMO E1. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Nature 463 906-912 (2010)
  6. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. J. Mol. Biol. 425 1363-1377 (2013)
  7. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, Nourse A, Hammel M, Kurinov I, Rock CO, Green DR, Schulman BA. Mol. Cell 44 451-461 (2011)
  8. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F. Mol. Cell 44 462-475 (2011)
  9. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H, Kim J, Song HK. Nat. Struct. Mol. Biol. 18 1323-1330 (2011)
  10. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Olsen SK, Lima CD. Mol. Cell 49 884-896 (2013)
  11. Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I. Cell 167 1636-1649.e13 (2016)
  12. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL, Duda DM, Kurinov I, Deng A, Fenn TD, Klionsky DJ, Schulman BA. Nat. Struct. Mol. Biol. 19 1242-1249 (2012)
  13. Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. Lin DY, Diao J, Zhou D, Chen J. J. Biol. Chem. 286 441-449 (2011)
  14. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. Regni CA, Roush RF, Miller DJ, Nourse A, Walsh CT, Schulman BA. EMBO J. 28 1953-1964 (2009)
  15. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. Lu X, Olsen SK, Capili AD, Cisar JS, Lima CD, Tan DS. J. Am. Chem. Soc. 132 1748-1749 (2010)
  16. Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. Chen JJ, Tsu CA, Gavin JM, Milhollen MA, Bruzzese FJ, Mallender WD, Sintchak MD, Bump NJ, Yang X, Ma J, Loke HK, Xu Q, Li P, Bence NF, Brownell JE, Dick LR. J. Biol. Chem. 286 40867-40877 (2011)
  17. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Toth JI, Yang L, Dahl R, Petroski MD. Cell Rep 1 309-316 (2012)
  18. Comparative Genomics and Evolution of Molybdenum Utilization. Zhang Y, Rump S, Gladyshev VN. Coord Chem Rev 255 1206-1217 (2011)
  19. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like modifier activating enzyme 6, Uba6. Gavin JM, Chen JJ, Liao H, Rollins N, Yang X, Xu Q, Ma J, Loke HK, Lingaraj T, Brownell JE, Mallender WD, Gould AE, Amidon BS, Dick LR. J. Biol. Chem. 287 15512-15522 (2012)
  20. Conformational transition associated with E1-E2 interaction in small ubiquitin-like modifications. Wang J, Lee B, Cai S, Fukui L, Hu W, Chen Y. J. Biol. Chem. 284 20340-20348 (2009)
  21. The neddylation-cullin 2-RBX1 E3 ligase axis targets tumor suppressor RhoB for degradation in liver cancer. Xu J, Li L, Yu G, Ying W, Gao Q, Zhang W, Li X, Ding C, Jiang Y, Wei D, Duan S, Lei Q, Li P, Shi T, Qian X, Qin J, Jia L. Mol. Cell Proteomics 14 499-509 (2015)
  22. Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules. Schäfer A, Kuhn M, Schindelin H. Acta Crystallogr. D Biol. Crystallogr. 70 1311-1320 (2014)
  23. Arabidopsis membrane-anchored ubiquitin-fold (MUB) proteins localize a specific subset of ubiquitin-conjugating (E2) enzymes to the plasma membrane. Dowil RT, Lu X, Saracco SA, Vierstra RD, Downes BP. J. Biol. Chem. 286 14913-14921 (2011)
  24. Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. Ungermannova D, Parker SJ, Nasveschuk CG, Chapnick DA, Phillips AJ, Kuchta RD, Liu X. J Biomol Screen 17 421-434 (2012)
  25. Mechanism of E1-E2 interaction for the inhibition of Ubl adenylation. Wang J, Cai S, Chen Y. J. Biol. Chem. 285 33457-33462 (2010)
  26. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Castaño-Miquel L, Seguí J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM. Mol Plant 6 1646-1660 (2013)
  27. Liganding Functional Tyrosine Sites on Proteins Using Sulfur-Triazole Exchange Chemistry. Brulet JW, Borne AL, Yuan K, Libby AH, Hsu KL. J Am Chem Soc 142 8270-8280 (2020)
  28. Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Liu X, Zhao B, Sun L, Bhuripanyo K, Wang Y, Bi Y, Davuluri RV, Duong DM, Nanavati D, Yin J, Kiyokawa H. Nat Commun 8 14286 (2017)
  29. Orthogonal ubiquitin transfer through engineered E1-E2 cascades for protein ubiquitination. Zhao B, Bhuripanyo K, Zhang K, Kiyokawa H, Schindelin H, Yin J. Chem. Biol. 19 1265-1277 (2012)
  30. Two mutations impair the stability and function of ubiquitin-activating enzyme (E1). Lao T, Chen S, Sang N. J. Cell. Physiol. 227 1561-1568 (2012)
  31. Systematic exploration of ubiquitin sequence, E1 activation efficiency, and experimental fitness in yeast. Roscoe BP, Bolon DN. J. Mol. Biol. 426 2854-2870 (2014)
  32. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex. Oweis W, Padala P, Hassouna F, Cohen-Kfir E, Gibbs DR, Todd EA, Berndsen CE, Wiener R. Cell Rep 16 3113-3120 (2016)
  33. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Soave CL, Guerin T, Liu J, Dou QP. Cancer Metastasis Rev. 36 717-736 (2017)
  34. Dissecting the Specificity of Adenosyl Sulfamate Inhibitors Targeting the Ubiquitin-Activating Enzyme. Misra M, Kuhn M, Löbel M, An H, Statsyuk AV, Sotriffer C, Schindelin H. Structure 25 1120-1129.e3 (2017)
  35. Conjugation of the ubiquitin activating enzyme UBE1 with the ubiquitin-like modifier FAT10 targets it for proteasomal degradation. Bialas J, Groettrup M, Aichem A. PLoS ONE 10 e0120329 (2015)
  36. Inhibiting the protein ubiquitination cascade by ubiquitin-mimicking short peptides. Zhao B, Choi CH, Bhuripanyo K, Villhauer EB, Zhang K, Schindelin H, Yin J. Org. Lett. 14 5760-5763 (2012)
  37. Role of the Zn(2+) motif of E1 in SUMO adenylation. Wang J, Chen Y. J. Biol. Chem. 285 23732-23738 (2010)
  38. S. pombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity. Lv Z, Rickman KA, Yuan L, Williams K, Selvam SP, Woosley AN, Howe PH, Ogretmen B, Smogorzewska A, Olsen SK. Mol. Cell 65 699-714.e6 (2017)
  39. SUMOylation Inhibition Mediated by Disruption of SUMO E1-E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens. Castaño-Miquel L, Mas A, Teixeira I, Seguí J, Perearnau A, Thampi BN, Schapire AL, Rodrigo N, La Verde G, Manrique S, Coca M, Lois LM. Mol Plant 10 709-720 (2017)
  40. The insulin degrading enzyme activates ubiquitin and promotes the formation of K48 and K63 diubiquitin. Grasso G, Lanza V, Malgieri G, Fattorusso R, Pietropaolo A, Rizzarelli E, Milardi D. Chem. Commun. (Camb.) 51 15724-15727 (2015)
  41. The molecular determinants of NEDD8 specific recognition by human SENP8. Shin YC, Tang SJ, Chen JH, Liao PH, Chang SC. PLoS ONE 6 e27742 (2011)
  42. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Meng J, Fu L, Liu K, Tian C, Wu Z, Jung Y, Ferreira RB, Carroll KS, Blackwell TK, Yang J. Nat Commun 12 1415 (2021)
  43. Mechanistic study of Uba5 enzyme and the Ufm1 conjugation pathway. Gavin JM, Hoar K, Xu Q, Ma J, Lin Y, Chen J, Chen W, Bruzzese FJ, Harrison S, Mallender WD, Bump NJ, Sintchak MD, Bence NF, Li P, Dick LR, Gould AE, Chen JJ. J. Biol. Chem. 289 22648-22658 (2014)
  44. Allosteric Inhibition of Ubiquitin-like Modifications by a Class of Inhibitor of SUMO-Activating Enzyme. Li YJ, Du L, Wang J, Vega R, Lee TD, Miao Y, Aldana-Masangkay G, Samuels ER, Li B, Ouyang SX, Colayco SA, Bobkova EV, Divlianska DB, Sergienko E, Chung TDY, Fakih M, Chen Y. Cell Chem Biol 26 278-288.e6 (2019)
  45. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. Lv Z, Yuan L, Atkison JH, Aldana-Masangkay G, Chen Y, Olsen SK. J. Biol. Chem. 292 12089-12099 (2017)
  46. Molecular basis for the bifunctional Uba4-Urm1 sulfur-relay system in tRNA thiolation and ubiquitin-like conjugation. Pabis M, Termathe M, Ravichandran KE, Kienast SD, Krutyhołowa R, Sokołowski M, Jankowska U, Grudnik P, Leidel SA, Glatt S. EMBO J 39 e105087 (2020)
  47. Phage display to identify Nedd8-mimicking peptides as inhibitors of the Nedd8 transfer cascade. Zhao B, Zhang K, Villhauer EB, Bhuripanyo K, Kiyokawa H, Schindelin H, Yin J. Chembiochem 14 1323-1330 (2013)
  48. The ubiquitin-associated domain of cellular inhibitor of apoptosis proteins facilitates ubiquitylation. Budhidarmo R, Day CL. J. Biol. Chem. 289 25721-25736 (2014)
  49. Functional reconstruction of a eukaryotic-like E1/E2/(RING) E3 ubiquitylation cascade from an uncultured archaeon. Hennell James R, Caceres EF, Escasinas A, Alhasan H, Howard JA, Deery MJ, Ettema TJG, Robinson NP. Nat Commun 8 1120 (2017)
  50. Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Wang Y, Liu X, Zhou L, Duong D, Bhuripanyo K, Zhao B, Zhou H, Liu R, Bi Y, Kiyokawa H, Yin J. Nat Commun 8 2232 (2017)
  51. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Lv Z, Yuan L, Atkison JH, Williams KM, Vega R, Sessions EH, Divlianska DB, Davies C, Chen Y, Olsen SK. Nat Commun 9 5145 (2018)
  52. Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems. Reiter KH, Ramachandran A, Xia X, Boucher LE, Bosch J, Matunis MJ. J. Biol. Chem. 291 3860-3870 (2016)
  53. Different Enzymatic Processing of γ-Phosphoramidate and γ-Phosphoester-Modified ATP Analogues. Ermert S, Hacker SM, Buntru A, Scheffner M, Hauck CR, Marx A. Chembiochem 18 378-381 (2017)
  54. E2-binding surface on Uba3 β-grasp domain undergoes a conformational transition. Elgin ES, Sökmen N, Peterson FC, Volkman BF, Dağ C, Haas AL. Proteins 80 2482-2487 (2012)
  55. Expression, purification and characterization of human ubiquitin-activating enzyme, UBE1. Zheng M, Liu J, Yang Z, Gu X, Li F, Lou T, Ji C, Mao Y. Mol. Biol. Rep. 37 1413-1419 (2010)
  56. HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice. Wang G, Yuan J, Cai X, Xu Z, Wang J, Ocansey DKW, Yan Y, Qian H, Zhang X, Xu W, Mao F. Clin Transl Med 10 e113 (2020)
  57. Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1. Singh RK, Kazansky Y, Wathieu D, Fushman D. Anal. Chem. 89 7852-7860 (2017)
  58. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer. Bhuripanyo K, Wang Y, Liu X, Zhou L, Liu R, Duong D, Zhao B, Bi Y, Zhou H, Chen G, Seyfried NT, Chazin WJ, Kiyokawa H, Yin J. Sci Adv 4 e1701393 (2018)
  59. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. BMC Syst Biol 7 24 (2013)
  60. NMR structural studies of the first catalytic half-domain of ubiquitin activating enzyme. Jaremko M, Jaremko Ł, Nowakowski M, Wojciechowski M, Szczepanowski RH, Panecka R, Zhukov I, Bochtler M, Ejchart A. J. Struct. Biol. 185 69-78 (2014)
  61. Revised annotation and extended characterizations of components of the Chlamydomonas reinhardtii SUMOylation system. Lin YL, Chung CL, Huang PJ, Chen CH, Fang SC. Plant Direct 4 e00266 (2020)
  62. Structural analysis and evolution of specificity of the SUMO UFD E1-E2 interactions. Liu B, Lois LM, Reverter D. Sci Rep 7 41998 (2017)
  63. The ubiquitin-activating enzyme (E1) of the early-branching eukaryote Giardia intestinalis shows unusual proteolytic modifications and play important roles during encystation. Niño CA, Prucca CG, Chaparro J, Luján HD, Wasserman M. Acta Trop. 123 39-46 (2012)
  64. And yet it moves: active site remodeling in the SUMO E1. Völler D, Schindelin H. Structure 18 419-421 (2010)
  65. Biosynthesis of the RiPP trojan horse nucleotide antibiotic microcin C is directed by the N-formyl of the peptide precursor. Dong SH, Kulikovsky A, Zukher I, Estrada P, Dubiley S, Severinov K, Nair SK. Chem Sci 10 2391-2395 (2019)
  66. Development of ADPribosyl Ubiquitin Analogues to Study Enzymes Involved in Legionella Infection. Kim RQ, Misra M, Gonzalez A, Tomašković I, Shin D, Schindelin H, Filippov DV, Ovaa H, Đikić I, van der Heden van Noort GJ. Chemistry 27 2506-2512 (2021)
  67. Functional characterizations of rare UBA1 variants in X-linked Spinal Muscular Atrophy. Balak CD, Hunter JM, Ahearn ME, Wiley D, D'urso G, Baumbach-Reardon L. F1000Res 6 1636 (2017)
  68. NMR assignments of ubiquitin fold domain (UFD) in SUMO-activating enzyme subunit 2 from rice. Suzuki R, Tsuchiya W, Shindo H, Yamazaki T. Biomol NMR Assign 5 245-248 (2011)
  69. Novel insights into the interaction of UBA5 with UFM1 via a UFM1-interacting sequence. Padala P, Oweis W, Mashahreh B, Soudah N, Cohen-Kfir E, Todd EA, Berndsen CE, Wiener R. Sci Rep 7 508 (2017)
  70. Phage selection assisted by Sfp phosphopantetheinyl transferase-catalyzed site-specific protein labeling. Zhao B, Zhang K, Bhuripanyo K, Wang Y, Zhou H, Zhang M, Yin J. Methods Mol. Biol. 1266 161-170 (2015)
  71. SAK-HV Decreases the Self-Ubiquitination of MEKK1 to Promote Macrophage Proliferation via MAPK/ERK and JNK Pathways. Zhang C, Chen Y, Gan X, Huang Z, Zou M, Fu W, Xing W, Xu D. Int J Mol Sci 18 (2017)
  72. Structural basis for the Rad6 activation by the Bre1 N-terminal domain. Shi M, Zhao J, Zhang S, Huang W, Li M, Bai X, Zhang W, Zhang K, Chen X, Xiang S. Elife 12 e84157 (2023)
  73. Comment Structural biology: Transformative encounters. Schulman BA, Haas AL. Nature 463 889-890 (2010)
  74. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Nat Chem Biol (2023)
  75. Structural study of UFL1-UFC1 interaction uncovers the role of UFL1 N-terminal helix in ufmylation. Banerjee S, Varga JK, Kumar M, Zoltsman G, Rotem-Bamberger S, Cohen-Kfir E, Isupov MN, Rosenzweig R, Schueler-Furman O, Wiener R. EMBO Rep 24 e56920 (2023)
  76. The CRL3BTBD9 E3 ubiquitin ligase complex targets TNFAIP1 for degradation to suppress cancer cell migration. Li L, Zhang W, Liu Y, Liu X, Cai L, Kang J, Zhang Y, Chen W, Dong C, Zhang Y, Wang M, Wei W, Jia L. Signal Transduct Target Ther 5 42 (2020)
  77. The unique Morgue ubiquitination protein is conserved in a diverse but restricted set of invertebrates. Zhou Y, Carpenter ZW, Brennan G, Nambu JR. Mol. Biol. Evol. 26 2245-2259 (2009)
  78. Case Reports A Pathogenic Missense Variant (c.1617G>A, p.Met539Ile) in UBA1 Causing Infantile X-Linked Spinal Muscular Atrophy (SMAX2). Wang XH, Zhang LM, Yang X, Zhou SZ. Front Pediatr 8 64 (2020)
  79. A five-residue motif for the design of domain swapping in proteins. Nandwani N, Surana P, Negi H, Mascarenhas NM, Udgaonkar JB, Das R, Gosavi S. Nat Commun 10 452 (2019)
  80. A ubiquitin shuttle DC-UbP/UBTD2 reconciles protein ubiquitination and deubiquitination via linking UbE1 and USP5 enzymes. Song AX, Yang H, Gao YG, Zhou CJ, Zhang YH, Hu HY. PLoS ONE 9 e107509 (2014)
  81. Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes. Yan W, Zhong Y, Hu X, Xu T, Zhang Y, Kales S, Qu Y, Talley DC, Baljinnyam B, LeClair CA, Simeonov A, Polster BM, Huang R, Ye Y, Rai G, Henderson MJ, Tao D, Fang S. Nat Commun 14 4798 (2023)
  82. Cell-Permeable Stimuli-Responsive Ubiquitin Probe for Time-Resolved Monitoring of Substrate Ubiquitination in Live Cells. Liang LJ, Wang Y, Hua X, Yuan R, Xia Q, Wang R, Li C, Chu GC, Liu L, Li YM. JACS Au 3 2873-2882 (2023)
  83. Cryo-EM structures of Uba7 reveal the molecular basis for ISG15 activation and E1-E2 thioester transfer. Afsar M, Liu G, Jia L, Ruben EA, Nayak D, Sayyad Z, Bury PDS, Cano KE, Nayak A, Zhao XR, Shukla A, Sung P, Wasmuth EV, Gack MU, Olsen SK. Nat Commun 14 4786 (2023)
  84. Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Yuan L, Gao F, Lv Z, Nayak D, Nayak A, Santos Bury PD, Cano KE, Jia L, Oleinik N, Atilgan FC, Ogretmen B, Williams KM, Davies C, El Oualid F, Wasmuth EV, Olsen SK. Nat Commun 13 4880 (2022)
  85. Differential Inhibition of Human and Trypanosome Ubiquitin E1S by TAK-243 Offers Possibilities for Parasite Selective Inhibitors. Boer DR, Bijlmakers MJ. Sci Rep 9 16195 (2019)
  86. Disease-associated polyalanine expansion mutations impair UBA6-dependent ubiquitination. Amer-Sarsour F, Falik D, Berdichevsky Y, Kordonsky A, Eid S, Rabinski T, Ishtayeh H, Cohen-Adiv S, Braverman I, Blumen SC, Laviv T, Prag G, Vatine GD, Ashkenazi A. EMBO J 43 250-276 (2024)
  87. E1-catalyzed ubiquitin C-terminal amidation for the facile synthesis of deubiquitinase substrates. Wang XA, Kurra Y, Huang Y, Lee YJ, Liu WR. Chembiochem 15 37-41 (2014)
  88. Expression, purification, and crystal structure of N-terminal domains of human ubiquitin-activating enzyme (E1). Xie ST. Biosci. Biotechnol. Biochem. 78 1542-1549 (2014)
  89. Family-Specific Gains and Losses of Protein Domains in the Legume and Grass Plant Families. Yadav A, Fernández-Baca D, Cannon SB. Evol Bioinform Online 16 1176934320939943 (2020)
  90. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode. Zhang C, Song L, Choudhary MK, Zhou B, Sun G, Broderick K, Giesler L, Zeng L. BMC Plant Biol. 18 149 (2018)
  91. Insights into the ISG15 transfer cascade by the UBE1L activating enzyme. Wallace I, Baek K, Prabu JR, Vollrath R, von Gronau S, Schulman BA, Swatek KN. Nat Commun 14 7970 (2023)
  92. Kinetic Analysis of Plant SUMO Conjugation Machinery. Castaño-Miquel L, Lois LM. Methods Mol Biol 2581 93-108 (2023)
  93. Mode of inhibitory binding of epigallocatechin gallate to the ubiquitin-activating enzyme Uba1 via accelerated molecular dynamics. Gaur P, Fenteany G, Tyagi C. RSC Adv 11 8264-8276 (2021)
  94. New ubiquitin-dependent mechanisms regulating the Aurora B-protein phosphatase 1 balance in Saccharomyces cerevisiae. Ravindran R, Polk P, Robinson LC, Tatchell K. J. Cell. Sci. 131 (2018)
  95. Novel causative variants of VEXAS in UBA1 detected through whole genome transcriptome sequencing in a large cohort of hematological malignancies. Sakuma M, Blombery P, Meggendorfer M, Haferlach C, Lindauer M, Martens UM, Kern W, Haferlach T, Walter W. Leukemia 37 1080-1091 (2023)
  96. Quantitative ubiquitylomics reveals the ubiquitination regulation landscape in oral adenoid cystic carcinoma. Li W, Wang X, Zhang Q, Wang H, Zuo W, Xie H, Tang J, Wang M, Zeng Z, Cai W, Tang D, Dai Y. Biosci Rep 41 BSR20211532 (2021)
  97. Site-Specific Protein Ubiquitylation Using an Engineered, Chimeric E1 Activating Enzyme and E2 SUMO Conjugating Enzyme Ubc9. Akimoto G, Fernandes AP, Bode JW. ACS Cent Sci 8 275-281 (2022)
  98. Spatio-temporal coordination among functional residues in protein. Dutta S, Ghosh M, Chakrabarti J. Sci Rep 7 40439 (2017)
  99. Structural and Functional Characterisation of the Domains of Ubiquitin-Activating Enzyme (E1) of Saccharomyces cerevisiae. Panchamia B, Raimalani V, Prashar V, Kumar M, Ratna Prabha C. Cell Biochem Biophys 78 309-319 (2020)
  100. Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Shen M, Dhingra N, Wang Q, Cheng C, Zhu S, Tian X, Yu J, Gong X, Li X, Zhang H, Xu X, Zhai L, Xie M, Gao Y, Deng H, He Y, Niu H, Zhao X, Xiang S. Nat Commun 12 321 (2021)
  101. Synthesis and screening of peptide libraries with free C-termini. Wang YC, Distefano MD. Curr Top Pept Protein Res 15 1-23 (2014)
  102. UFM1-Activating Enzyme 5 (Uba5) Requires an Extension to Get the Job Done Right. Lv Z, Olsen SK. J. Mol. Biol. 431 479-482 (2019)
  103. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Biomolecules 10 (2020)