2zjq Citations

Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin.

Mol Cell 30 26-38 (2008)
Related entries: 2zjp, 2zjr, 3cf5

Cited: 175 times
EuropePMC logo PMID: 18406324

Abstract

The thiopeptide class of antibiotics targets the GTPase-associated center (GAC) of the ribosome to inhibit translation factor function. Using X-ray crystallography, we have determined the binding sites of thiostrepton (Thio), nosiheptide (Nosi), and micrococcin (Micro), on the Deinococcus radiodurans large ribosomal subunit. The thiopeptides, by binding within a cleft located between the ribosomal protein L11 and helices 43 and 44 of the 23S rRNA, overlap with the position of domain V of EF-G, thus explaining how this class of drugs perturbs translation factor binding to the ribosome. The presence of Micro leads to additional density for the C-terminal domain (CTD) of L7, adjacent to and interacting with L11. The results suggest that L11 acts as a molecular switch to control L7 binding and plays a pivotal role in positioning one L7-CTD monomer on the G' subdomain of EF-G to regulate EF-G turnover during protein synthesis.

Articles - 2zjq mentioned but not cited (2)

  1. Charge segregation and low hydrophobicity are key features of ribosomal proteins from different organisms. Fedyukina DV, Jennaro TS, Cavagnero S. J Biol Chem 289 6740-6750 (2014)
  2. RNA-binding residues prediction using structural features. Ren H, Shen Y. BMC Bioinformatics 16 249 (2015)


Reviews citing this publication (42)

  1. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Nat Prod Rep 30 108-160 (2013)
  2. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Wilson DN. Nat Rev Microbiol 12 35-48 (2014)
  3. What recent ribosome structures have revealed about the mechanism of translation. Schmeing TM, Ramakrishnan V. Nature 461 1234-1242 (2009)
  4. Cyclic di-AMP: another second messenger enters the fray. Corrigan RM, Gründling A. Nat Rev Microbiol 11 513-524 (2013)
  5. The A-Z of bacterial translation inhibitors. Wilson DN. Crit Rev Biochem Mol Biol 44 393-433 (2009)
  6. Targeting Antibiotic Resistance. Chellat MF, Raguž L, Riedl R. Angew Chem Int Ed Engl 55 6600-6626 (2016)
  7. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu Rev Biochem 87 451-478 (2018)
  8. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. Chem Rev 117 5389-5456 (2017)
  9. Thiopeptide antibiotics: retrospective and recent advances. Just-Baringo X, Albericio F, Álvarez M. Mar Drugs 12 317-351 (2014)
  10. Muscarine, imidazole, oxazole, and thiazole alkaloids. Jin Z. Nat Prod Rep 28 1143-1191 (2011)
  11. Antibiotics that target protein synthesis. McCoy LS, Xie Y, Tor Y. Wiley Interdiscip Rev RNA 2 209-232 (2011)
  12. Recent advances in thiopeptide antibiotic biosynthesis. Li C, Kelly WL. Nat Prod Rep 27 153-164 (2010)
  13. The expanding structural variety among bacteriocins from Gram-positive bacteria. Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. FEMS Microbiol Rev 42 805-828 (2018)
  14. Thiazolyl peptide antibiotic biosynthesis: a cascade of post-translational modifications on ribosomal nascent proteins. Walsh CT, Acker MG, Bowers AA. J Biol Chem 285 27525-27531 (2010)
  15. Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold. de la Peña M, Dufour D, Gallego J. RNA 15 1949-1964 (2009)
  16. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 a025361 (2016)
  17. Biosynthesis of thiopeptide antibiotics and their pathway engineering. Zhang Q, Liu W. Nat Prod Rep 30 218-226 (2013)
  18. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention? Aminake MN, Arndt HD, Pradel G. Int J Parasitol Drugs Drug Resist 2 1-10 (2012)
  19. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. Front Mol Biosci 5 48 (2018)
  20. On the specificity of antibiotics targeting the large ribosomal subunit. Wilson DN. Ann N Y Acad Sci 1241 1-16 (2011)
  21. Recent developments in self-resistance gene directed natural product discovery. Yan Y, Liu N, Tang Y. Nat Prod Rep 37 879-892 (2020)
  22. Antibiotics from microbes: converging to kill. Fischbach MA. Curr Opin Microbiol 12 520-527 (2009)
  23. New antibiotics from Nature's chemical inventory. Wencewicz TA. Bioorg Med Chem 24 6227-6252 (2016)
  24. Probing translation with small-molecule inhibitors. Blanchard SC, Cooperman BS, Wilson DN. Chem Biol 17 633-645 (2010)
  25. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis. Dunbar KL, Mitchell DA. ACS Chem Biol 8 473-487 (2013)
  26. Interfacial inhibitors. Pommier Y, Kiselev E, Marchand C. Bioorg Med Chem Lett 25 3961-3965 (2015)
  27. Micrococcin P1: structure, biology and synthesis. Ciufolini MA, Lefranc D. Nat Prod Rep 27 330-342 (2010)
  28. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Cao L, Do T, Link AJ. J Ind Microbiol Biotechnol 48 kuab005 (2021)
  29. Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics. Wang S, Zhou S, Liu W. Curr Opin Chem Biol 17 626-634 (2013)
  30. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Zheng Q, Fang H, Liu W. Org Biomol Chem 15 3376-3390 (2017)
  31. Non-coding RNAs as antibiotic targets. Colameco S, Elliot MA. Biochem Pharmacol 133 29-42 (2017)
  32. Thiopeptides: antibiotics with unique chemical structures and diverse biological activities. Chan DCK, Burrows LL. J Antibiot (Tokyo) 74 161-175 (2021)
  33. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Chem Rev 122 14722-14814 (2022)
  34. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Crit Rev Microbiol 45 255-277 (2019)
  35. The enigmatic ribosomal stalk. Liljas A, Sanyal S. Q Rev Biophys 51 e12 (2018)
  36. A Bright Future for Antibiotics? Matzov D, Bashan A, Yonath A. Annu Rev Biochem 86 567-583 (2017)
  37. Fixing the Unfixable: The Art of Optimizing Natural Products for Human Medicine. Yñigez-Gutierrez AE, Bachmann BO. J Med Chem 62 8412-8428 (2019)
  38. Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility. Lin Z, He Q, Liu W. Curr Opin Biotechnol 48 210-219 (2017)
  39. Translation-Targeting RiPPs and Where to Find Them. Travin DY, Bikmetov D, Severinov K. Front Genet 11 226 (2020)
  40. Elucidating and engineering thiopeptide biosynthesis. Bennallack PR, Griffitts JS. World J Microbiol Biotechnol 33 119 (2017)
  41. RNA-Binding Macrocyclic Peptides. Pal S, 't Hart P. Front Mol Biosci 9 883060 (2022)
  42. Therapies from Thiopeptides. Hwang HJ, Ciufolini MA. Molecules 28 7579 (2023)

Articles citing this publication (131)

  1. Structures of the human and Drosophila 80S ribosome. Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R. Nature 497 80-85 (2013)
  2. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. Science 326 694-699 (2009)
  3. Natural products version 2.0: connecting genes to molecules. Walsh CT, Fischbach MA. J Am Chem Soc 132 2469-2493 (2010)
  4. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Wieland Brown LC, Acker MG, Clardy J, Walsh CT, Fischbach MA. Proc Natl Acad Sci U S A 106 2549-2553 (2009)
  5. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Plouffe DM, Wree M, Du AY, Meister S, Li F, Patra K, Lubar A, Okitsu SL, Flannery EL, Kato N, Tanaseichuk O, Comer E, Zhou B, Kuhen K, Zhou Y, Leroy D, Schreiber SL, Scherer CA, Vinetz J, Winzeler EA. Cell Host Microbe 19 114-126 (2016)
  6. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. Giessing AM, Jensen SS, Rasmussen A, Hansen LH, Gondela A, Long K, Vester B, Kirpekar F. RNA 15 327-336 (2009)
  7. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Bleich R, Watrous JD, Dorrestein PC, Bowers AA, Shank EA. Proc Natl Acad Sci U S A 112 3086-3091 (2015)
  8. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Wong W, Bai XC, Sleebs BE, Triglia T, Brown A, Thompson JK, Jackson KE, Hanssen E, Marapana DS, Fernandez IS, Ralph SA, Cowman AF, Scheres SHW, Baum J. Nat Microbiol 2 17031 (2017)
  9. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A. Proc Natl Acad Sci U S A 112 E5805-14 (2015)
  10. Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Aminake MN, Schoof S, Sologub L, Leubner M, Kirschner M, Arndt HD, Pradel G. Antimicrob Agents Chemother 55 1338-1348 (2011)
  11. Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. Bowers AA, Acker MG, Koglin A, Walsh CT. J Am Chem Soc 132 7519-7527 (2010)
  12. Riboswitch control of aminoglycoside antibiotic resistance. Jia X, Zhang J, Sun W, He W, Jiang H, Chen D, Murchie AI. Cell 152 68-81 (2013)
  13. Antiplasmodial thiostrepton derivatives: proteasome inhibitors with a dual mode of action. Schoof S, Pradel G, Aminake MN, Ellinger B, Baumann S, Potowski M, Najajreh Y, Kirschner M, Arndt HD. Angew Chem Int Ed Engl 49 3317-3321 (2010)
  14. Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. Acker MG, Bowers AA, Walsh CT. J Am Chem Soc 131 17563-17565 (2009)
  15. Transplanting supersites of HIV-1 vulnerability. Zhou T, Zhu J, Yang Y, Gorman J, Ofek G, Srivatsan S, Druz A, Lees CR, Lu G, Soto C, Stuckey J, Burton DR, Koff WC, Connors M, Kwong PD. PLoS One 9 e99881 (2014)
  16. Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. Wolf A, Kirschner KN. J Mol Model 19 539-549 (2013)
  17. Thiopeptide antibiotic biosynthesis. Arndt HD, Schoof S, Lu JY. Angew Chem Int Ed Engl 48 6770-6773 (2009)
  18. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. Fulle S, Gohlke H. J Mol Biol 387 502-517 (2009)
  19. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. Mustoe AM, Al-Hashimi HM, Brooks CL. J Phys Chem B 118 2615-2627 (2014)
  20. The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds. Malcolmson SJ, Young TS, Ruby JG, Skewes-Cox P, Walsh CT. Proc Natl Acad Sci U S A 110 8483-8488 (2013)
  21. Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus. Nomura N, Honda T, Baba K, Naganuma T, Tanzawa T, Arisaka F, Noda M, Uchiyama S, Tanaka I, Yao M, Uchiumi T. Proc Natl Acad Sci U S A 109 3748-3753 (2012)
  22. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. Nucleic Acids Res 40 360-370 (2012)
  23. siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. Bee A, Brewer D, Beesley C, Dodson A, Forootan S, Dickinson T, Gerard P, Lane B, Yao S, Cooper CS, Djamgoz MB, Gosden CM, Ke Y, Foster CS. PLoS One 6 e22672 (2011)
  24. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. Arenz S, Nguyen F, Beckmann R, Wilson DN. Proc Natl Acad Sci U S A 112 5401-5406 (2015)
  25. Ribosomal Natural Products, Tailored To Fit. Funk MA, van der Donk WA. Acc Chem Res 50 1577-1586 (2017)
  26. Evidence of direct complementary interactions between messenger RNAs and their cognate proteins. Polyansky AA, Zagrovic B. Nucleic Acids Res 41 8434-8443 (2013)
  27. ThioFinder: a web-based tool for the identification of thiopeptide gene clusters in DNA sequences. Li J, Qu X, He X, Duan L, Wu G, Bi D, Deng Z, Liu W, Ou HY. PLoS One 7 e45878 (2012)
  28. Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Li C, Zhang F, Kelly WL. Mol Biosyst 7 82-90 (2011)
  29. Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to β-Lactams. Kudrin P, Varik V, Oliveira SR, Beljantseva J, Del Peso Santos T, Dzhygyr I, Rejman D, Cava F, Tenson T, Hauryliuk V. Antimicrob Agents Chemother 61 e02173-16 (2017)
  30. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. García-Ortega L, Alvarez-García E, Gavilanes JG, Martínez-del-Pozo A, Joseph S. Nucleic Acids Res 38 4108-4119 (2010)
  31. Thiopeptide Antibiotics Exhibit a Dual Mode of Action against Intracellular Pathogens by Affecting Both Host and Microbe. Zheng Q, Wang Q, Wang S, Wu J, Gao Q, Liu W. Chem Biol 22 1002-1007 (2015)
  32. Thiostrepton is an inducer of oxidative and proteotoxic stress that impairs viability of human melanoma cells but not primary melanocytes. Qiao S, Lamore SD, Cabello CM, Lesson JL, Muñoz-Rodriguez JL, Wondrak GT. Biochem Pharmacol 83 1229-1240 (2012)
  33. A fluorescent probe for the 70 S-ribosomal GTPase-associated center. Schoof S, Baumann S, Ellinger B, Arndt HD. Chembiochem 10 242-245 (2009)
  34. Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides. Fleming SR, Bartges TE, Vinogradov AA, Kirkpatrick CL, Goto Y, Suga H, Hicks LM, Bowers AA. J Am Chem Soc 141 758-762 (2019)
  35. Yeast ribosomal protein L10 helps coordinate tRNA movement through the large subunit. Petrov AN, Meskauskas A, Roshwalb SC, Dinman JD. Nucleic Acids Res 36 6187-6198 (2008)
  36. Generation of thiocillin ring size variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. Bowers AA, Acker MG, Young TS, Walsh CT. J Am Chem Soc 134 10313-10316 (2012)
  37. Skin microbiota analysis-inspired development of novel anti-infectives. Liu Y, Liu Y, Du Z, Zhang L, Chen J, Shen Z, Liu Q, Qin J, Lv H, Wang H, He L, Liu J, Huang Q, Sun Y, Otto M, Li M. Microbiome 8 85 (2020)
  38. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Réblová K, Sponer J, Lankas F. Nucleic Acids Res 40 6290-6303 (2012)
  39. Ribosomal protein L3 functions as a 'rocker switch' to aid in coordinating of large subunit-associated functions in eukaryotes and Archaea. Meskauskas A, Dinman JD. Nucleic Acids Res 36 6175-6186 (2008)
  40. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein. Chandler JR, Truong TT, Silva PM, Seyedsayamdost MR, Carr G, Radey M, Jacobs MA, Sims EH, Clardy J, Greenberg EP. mBio 3 e00499-12 (2012)
  41. Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA. Havelund JF, Giessing AM, Hansen T, Rasmussen A, Scott LG, Kirpekar F. J Mol Biol 411 529-536 (2011)
  42. Structure of BipA in GTP form bound to the ratcheted ribosome. Kumar V, Chen Y, Ero R, Ahmed T, Tan J, Li Z, Wong AS, Bhushan S, Gao YG. Proc Natl Acad Sci U S A 112 10944-10949 (2015)
  43. Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115. Bennallack PR, Burt SR, Heder MJ, Robison RA, Griffitts JS. J Bacteriol 196 4344-4350 (2014)
  44. Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. Mikolajka A, Liu H, Chen Y, Starosta AL, Márquez V, Ivanova M, Cooperman BS, Wilson DN. Chem Biol 18 589-600 (2011)
  45. Successful Development of Bacteriocins into Therapeutic Formulation for Treatment of MRSA Skin Infection in a Murine Model. Ovchinnikov KV, Kranjec C, Thorstensen T, Carlsen H, Diep DB. Antimicrob Agents Chemother 64 e00829-20 (2020)
  46. Total synthesis and stereochemical assignment of micrococcin P1. Lefranc D, Ciufolini MA. Angew Chem Int Ed Engl 48 4198-4201 (2009)
  47. Random-sequence genetic oligomer pools display an innate potential for ligation and recombination. Mutschler H, Taylor AI, Porebski BT, Lightowlers A, Houlihan G, Abramov M, Herdewijn P, Holliger P. Elife 7 e43022 (2018)
  48. Structure-Activity Relationship and Molecular Mechanics Reveal the Importance of Ring Entropy in the Biosynthesis and Activity of a Natural Product. Tran HL, Lexa KW, Julien O, Young TS, Walsh CT, Jacobson MP, Wells JA. J Am Chem Soc 139 2541-2544 (2017)
  49. Substrate-Tuned Catalysis of the Radical S-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis. Ji X, Li Y, Ding W, Zhang Q. Angew Chem Int Ed Engl 54 9021-9024 (2015)
  50. Reduced ribosomes of the apicoplast and mitochondrion of Plasmodium spp. and predicted interactions with antibiotics. Gupta A, Shah P, Haider A, Gupta K, Siddiqi MI, Ralph SA, Habib S. Open Biol 4 140045 (2014)
  51. The ribosomal A-site finger is crucial for binding and activation of the stringent factor RelA. Kudrin P, Dzhygyr I, Ishiguro K, Beljantseva J, Maksimova E, Oliveira SRA, Varik V, Payoe R, Konevega AL, Tenson T, Suzuki T, Hauryliuk V. Nucleic Acids Res 46 1973-1983 (2018)
  52. Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1. Pallesen J, Hashem Y, Korkmaz G, Koripella RK, Huang C, Ehrenberg M, Sanyal S, Frank J. Elife 2 e00411 (2013)
  53. Proteasome inhibitory activity of thiazole antibiotics. Pandit B, Bhat UG, Gartel AL. Cancer Biol Ther 11 43-47 (2011)
  54. Structure of the thiostrepton resistance methyltransferase.S-adenosyl-L-methionine complex and its interaction with ribosomal RNA. Dunstan MS, Hang PC, Zelinskaya NV, Honek JF, Conn GL. J Biol Chem 284 17013-17020 (2009)
  55. Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. Starosta AL, Qin H, Mikolajka A, Leung GY, Schwinghammer K, Nicolaou KC, Chen DY, Cooperman BS, Wilson DN. Chem Biol 16 1087-1096 (2009)
  56. Proteomic analysis reveals a role for PAX8 in peritoneal colonization of high grade serous ovarian cancer that can be targeted with micelle encapsulated thiostrepton. Hardy LR, Pergande MR, Esparza K, Heath KN, Önyüksel H, Cologna SM, Burdette JE. Oncogene 38 6003-6016 (2019)
  57. Saturation mutagenesis of TsrA Ala4 unveils a highly mutable residue of thiostrepton A. Zhang F, Kelly WL. ACS Chem Biol 10 998-1009 (2015)
  58. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Zheng Q, Wang S, Duan P, Liao R, Chen D, Liu W. Proc Natl Acad Sci U S A 113 14318-14323 (2016)
  59. Bases in 16S rRNA important for subunit association, tRNA binding, and translocation. Shi X, Chiu K, Ghosh S, Joseph S. Biochemistry 48 6772-6782 (2009)
  60. Chemistry and biology of macrolide antiparasitic agents. Lee Y, Choi JY, Fu H, Harvey C, Ravindran S, Roush WR, Boothroyd JC, Khosla C. J Med Chem 54 2792-2804 (2011)
  61. Inhibition of translation initiation complex formation by GE81112 unravels a 16S rRNA structural switch involved in P-site decoding. Fabbretti A, Schedlbauer A, Brandi L, Kaminishi T, Giuliodori AM, Garofalo R, Ochoa-Lizarralde B, Takemoto C, Yokoyama S, Connell SR, Gualerzi CO, Fucini P. Proc Natl Acad Sci U S A 113 E2286-95 (2016)
  62. Multiple oxidative routes towards the maturation of nosiheptide. Liu W, Xue Y, Ma M, Wang S, Liu N, Chen Y. Chembiochem 14 1544-1547 (2013)
  63. Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation. Wawiórka L, Molestak E, Szajwaj M, Michalec-Wawiórka B, Mołoń M, Borkiewicz L, Grela P, Boguszewska A, Tchórzewski M. Mol Cell Biol 37 e00060-17 (2017)
  64. Mutagenesis of the thiostrepton precursor peptide at Thr7 impacts both biosynthesis and function. Li C, Zhang F, Kelly WL. Chem Commun (Camb) 48 558-560 (2012)
  65. NMR structures of thiostrepton derivatives for characterization of the ribosomal binding site. Jonker HR, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD. Angew Chem Int Ed Engl 50 3308-3312 (2011)
  66. Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis. Miller JL, Cimen H, Koc H, Koc EC. J Proteome Res 8 4789-4798 (2009)
  67. Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. Kummer E, Ban N. EMBO J 39 e104820 (2020)
  68. Structural signatures of antibiotic binding sites on the ribosome. David-Eden H, Mankin AS, Mandel-Gutfreund Y. Nucleic Acids Res 38 5982-5994 (2010)
  69. A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Wang L, Yang F, Zhang D, Chen Z, Xu RM, Nierhaus KH, Gong W, Qin Y. Nat Struct Mol Biol 19 403-410 (2012)
  70. Could a Proto-Ribosome Emerge Spontaneously in the Prebiotic World? Agmon IC. Molecules 21 E1701 (2016)
  71. Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. Zhang Z, Morgan CE, Bonomo RA, Yu EW. mBio 12 e0103121 (2021)
  72. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. RNA 17 1664-1677 (2011)
  73. Avilamycin and evernimicin induce structural changes in rProteins uL16 and CTC that enhance the inhibition of A-site tRNA binding. Krupkin M, Wekselman I, Matzov D, Eyal Z, Diskin Posner Y, Rozenberg H, Zimmerman E, Bashan A, Yonath A. Proc Natl Acad Sci U S A 113 E6796-E6805 (2016)
  74. Base pairs and pseudo pairs observed in RNA-ligand complexes. Kondo J, Westhof E. J Mol Recognit 23 241-252 (2010)
  75. Cobalt(III)-Catalyzed C-H Amidation of Dehydroalanine for the Site-Selective Structural Diversification of Thiostrepton. Scamp RJ, deRamon E, Paulson EK, Miller SJ, Ellman JA. Angew Chem Int Ed Engl 59 890-895 (2020)
  76. Biosynthesis of the Thiopeptins and Identification of an F420H2-Dependent Dehydropiperidine Reductase. Ichikawa H, Bashiri G, Kelly WL. J Am Chem Soc 140 10749-10756 (2018)
  77. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. Welty R, Pabit SA, Katz AM, Calvey GD, Pollack L, Hall KB. RNA 24 1828-1838 (2018)
  78. Structures of domains I and IV from YbbR are representative of a widely distributed protein family. Barb AW, Cort JR, Seetharaman J, Lew S, Lee HW, Acton T, Xiao R, Kennedy MA, Tong L, Montelione GT, Prestegard JH. Protein Sci 20 396-405 (2011)
  79. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue. Zhang F, Li C, Kelly WL. ACS Chem Biol 11 415-424 (2016)
  80. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro. Nomura Y, Takabayashi T, Kuroda H, Yukawa Y, Sattasuk K, Akita M, Nozawa A, Tozawa Y. Plant Mol Biol 78 185-196 (2012)
  81. Functional analysis of the uL11 protein impact on translational machinery. Wawiórka L, Molestak E, Szajwaj M, Michalec-Wawiórka B, Boguszewska A, Borkiewicz L, Liudkovska V, Kufel J, Tchórzewski M. Cell Cycle 15 1060-1072 (2016)
  82. Aza-Wittig-supported synthesis of the A ring of nosiheptide. Lu JY, Riedrich M, Mikyna M, Arndt HD. Angew Chem Int Ed Engl 48 8137-8140 (2009)
  83. Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ. Ding W, Ji W, Wu Y, Wu R, Liu WQ, Mo T, Zhao J, Ma X, Zhang W, Xu P, Deng Z, Tang B, Yu Y, Zhang Q. Nat Commun 8 437 (2017)
  84. Direct visualization of translational GTPase factor pool formed around the archaeal ribosomal P-stalk by high-speed AFM. Imai H, Uchiumi T, Kodera N. Proc Natl Acad Sci U S A 117 32386-32394 (2020)
  85. Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system. Habazettl J, Allan M, Jensen PR, Sass HJ, Thompson CJ, Grzesiek S. Proc Natl Acad Sci U S A 111 E5498-507 (2014)
  86. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. Sandu C, Chandramouli N, Glickman JF, Molina H, Kuo CL, Kukushkin N, Goldberg AL, Steller H. J Cell Mol Med 19 2181-2192 (2015)
  87. D-cysteine occurrence in thiostrepton may not necessitate an epimerase. Schoof S, Arndt HD. Chem Commun (Camb) 7113-7115 (2009)
  88. Functional role of the C-terminal tail of the archaeal ribosomal stalk in recruitment of two elongation factors to the sarcin/ricin loop of 23S rRNA. Imai H, Miyoshi T, Murakami R, Ito K, Ishino Y, Uchiumi T. Genes Cells 20 613-624 (2015)
  89. Initiation factor 2, tRNA, and 50S subunits cooperatively stabilize mRNAs on the ribosome during initiation. Masuda T, Petrov AN, Iizuka R, Funatsu T, Puglisi JD, Uemura S. Proc Natl Acad Sci U S A 109 4881-4885 (2012)
  90. Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins. Baba K, Tumuraya K, Tanaka I, Yao M, Uchiumi T. Nucleic Acids Res 41 3635-3643 (2013)
  91. Rapid Biophysical Characterization and NMR Spectroscopy Structural Analysis of Small Proteins from Bacteria and Archaea. Kubatova N, Pyper DJ, Jonker HRA, Saxena K, Remmel L, Richter C, Brantl S, Evguenieva-Hackenberg E, Hess WR, Klug G, Marchfelder A, Soppa J, Streit W, Mayzel M, Orekhov VY, Fuxreiter M, Schmitz RA, Schwalbe H. Chembiochem 21 1178-1187 (2020)
  92. Common chaperone activity in the G-domain of trGTPase protects L11-L12 interaction on the ribosome. Zhang D, Liu G, Xue J, Lou J, Nierhaus KH, Gong W, Qin Y. Nucleic Acids Res 40 10851-10865 (2012)
  93. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A. Kaminishi T, Schedlbauer A, Fabbretti A, Brandi L, Ochoa-Lizarralde B, He CG, Milón P, Connell SR, Gualerzi CO, Fucini P. Nucleic Acids Res 43 10015-10025 (2015)
  94. Structure-based Mechanistic Insights into Terminal Amide Synthase in Nosiheptide-Represented Thiopeptides Biosynthesis. Liu S, Guo H, Zhang T, Han L, Yao P, Zhang Y, Rong N, Yu Y, Lan W, Wang C, Ding J, Wang R, Liu W, Cao C. Sci Rep 5 12744 (2015)
  95. On the possible origin of protein homochirality, structure, and biochemical function. Skolnick J, Zhou H, Gao M. Proc Natl Acad Sci U S A 116 26571-26579 (2019)
  96. Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA. Jurėnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. Nucleic Acids Res 49 8384-8395 (2021)
  97. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. Iniyan AM, Sudarman E, Wink J, Kannan RR, Vincent SGP. J Antibiot (Tokyo) 72 99-105 (2019)
  98. Exploring Allosteric Signaling in the Exit Tunnel of the Bacterial Ribosome by Molecular Dynamics Simulations and Residue Network Model. Guzel P, Yildirim HZ, Yuce M, Kurkcuoglu O. Front Mol Biosci 7 586075 (2020)
  99. Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production. Wang Q, Zhang D, Li Y, Zhang F, Wang C, Liang X. Appl Biochem Biotechnol 173 1553-1563 (2014)
  100. Genome-Based Characterization of a Plasmid-Associated Micrococcin P1 Biosynthetic Gene Cluster and Virulence Factors in Mammaliicoccus sciuri IMDO-S72. Van der Veken D, Hollanders C, Verce M, Michiels C, Ballet S, Weckx S, Leroy F. Appl Environ Microbiol 88 e0208821 (2022)
  101. RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Takada H, Crowe-McAuliffe C, Polte C, Sidorova ZY, Murina V, Atkinson GC, Konevega AL, Ignatova Z, Wilson DN, Hauryliuk V. Nucleic Acids Res 49 8355-8369 (2021)
  102. Thiostrepton Reactivates Latent HIV-1 through the p-TEFb and NF-κB Pathways Mediated by Heat Shock Response. Peng W, Hong Z, Chen X, Gao H, Dai Z, Zhao J, Liu W, Li D, Deng K. Antimicrob Agents Chemother 64 e02328-19 (2020)
  103. FRASS: the web-server for RNA structural comparison. Kirillova S, Tosatto SC, Carugo O. BMC Bioinformatics 11 327 (2010)
  104. Quantum mechanical studies of lincosamides. Kulczycka-Mierzejewska K, Trylska J, Sadlej J. J Mol Model 18 2727-2740 (2012)
  105. Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain. Welty R, Rau M, Pabit S, Dunstan MS, Conn GL, Pollack L, Hall KB. J Mol Biol 432 991-1007 (2020)
  106. Structure-activity relationships of thiostrepton derivatives: implications for rational drug design. Wolf A, Schoof S, Baumann S, Arndt HD, Kirschner KN. J Comput Aided Mol Des 28 1205-1215 (2014)
  107. Substrate recognition and modification by the nosiheptide resistance methyltransferase. Yin S, Jiang H, Chen D, Murchie AI. PLoS One 10 e0122972 (2015)
  108. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus. Briggs JW, Ren L, Chakrabarti KR, Tsai YC, Weissman AM, Hansen RJ, Gustafson DL, Khan YA, Dinman JD, Khanna C. PLoS One 12 e0185089 (2017)
  109. Biochemistry. Leaps in translational elongation. Liljas A. Science 326 677-678 (2009)
  110. Context-sensitivity of isosteric substitutions of non-Watson-Crick basepairs in recurrent RNA 3D motifs. Khisamutdinov EF, Sweeney BA, Leontis NB. Nucleic Acids Res 49 9574-9593 (2021)
  111. De Novo Discovery of Thiopeptide Pseudo-natural Products Acting as Potent and Selective TNIK Kinase Inhibitors. Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, Terasaka N, Goto Y, Ogata K, Sengoku T, Onaka H, Suga H. J Am Chem Soc 144 20332-20341 (2022)
  112. Invariom refinement of a new monoclinic solvate of thiostrepton at 0.64 Å resolution. Pröpper K, Holstein JJ, Hübschle CB, Bond CS, Dittrich B. Acta Crystallogr D Biol Crystallogr 69 1530-1539 (2013)
  113. Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy. Bird KE, Xander C, Murcia S, Schmalstig AA, Wang X, Emanuele MJ, Braunstein M, Bowers AA. ACS Chem Biol 15 2164-2174 (2020)
  114. Two conserved amino acids of juxtaposed domains of a ribosomal maturation protein CgtA sustain its optimal GTPase activity. Chatterjee A, Datta PP. Biochem Biophys Res Commun 461 636-641 (2015)
  115. Using Peptide Mimics to Study the Biosynthesis of the Side-Ring System of Nosiheptide. Wang B, LaMattina JW, Badding ED, Gadsby LK, Grove TL, Booker SJ. Methods Enzymol 606 241-268 (2018)
  116. A Survey of Spontaneous Antibiotic-Resistant Mutants of the Halophilic, Thermophilic Bacterium Rhodothermus marinus. Silvia S, Donahue SA, Killeavy EE, Jogl G, Gregory ST. Antibiotics (Basel) 10 1384 (2021)
  117. Functional roles in S-adenosyl-L-methionine binding and catalysis for active site residues of the thiostrepton resistance methyltransferase. Myers CL, Kuiper EG, Grant PC, Hernandez J, Conn GL, Honek JF. FEBS Lett 589 3263-3270 (2015)
  118. Phenotypic Suppression of Streptomycin Resistance by Mutations in Multiple Components of the Translation Apparatus. Carr JF, Lee HJ, Jaspers JB, Dahlberg AE, Jogl G, Gregory ST. J Bacteriol 197 2981-2988 (2015)
  119. Bacteriocins Revitalize Non-Effective Penicillin G to Overcome Methicillin-Resistant Staphylococcus pseudintermedius. Ovchinnikov KV, Kranjec C, Thorstensen T, Carlsen H, Diep DB. Antibiotics (Basel) 11 1691 (2022)
  120. Design of a chimeric glycosyltransferase OleD for the site-specific O-monoglycosylation of 3-hydroxypyridine in nosiheptide. Zhao L, Xu Y, Chen M, Wu L, Li M, Lu Y, Lu M, Chen Y, Wu X. Microb Biotechnol 16 1971-1984 (2023)
  121. NMR structure and dynamics of Q4D059, a kinetoplastid-specific and conserved protein from Trypanosoma cruzi. López-Castilla A, Pons T, Pires JR. J Struct Biol 190 11-20 (2015)
  122. In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex. Park J, Kim LH, Lee JM, Choi S, Son YJ, Hwang HJ, Shin SJ. Microbiol Spectr e0182523 (2023)
  123. In vitro and intracellular inhibitory activities of nosiheptide against Mycobacterium abscessus. Zhu R, Yu X, Zhang T, Kong Y, Wang F, Jia J, Xue Y, Huang H. Front Microbiol 13 926361 (2022)
  124. Binding of translation elongation factors to individual copies of the archaeal ribosomal stalk protein aP1 assembled onto aP0. Honda T, Imai H, Suzuki T, Miyoshi T, Ito K, Uchiumi T. Biochem Biophys Res Commun 483 153-158 (2017)
  125. Finding priority bacterial ribosomes for future structural and antimicrobial research based upon global RNA and protein sequence analysis. Cooper HB, Krause KL, Gardner PP. PeerJ 11 e14969 (2023)
  126. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA. Mundus J, Flyvbjerg KF, Kirpekar F. Extremophiles 20 91-99 (2016)
  127. In Silico Discovery of Anticancer Peptides from Sanghuang. Liu M, Lv J, Chen L, Li W, Han W. Int J Mol Sci 23 13682 (2022)
  128. Nitro-Group-Containing Thiopeptide Derivatives as Promising Agents to Target Clostridioides difficile. Kim D, Kim YR, Hwang HJ, Ciufolini MA, Lee J, Lee H, Clovis S, Jung S, Oh SH, Son YJ, Kwak JH. Pharmaceuticals (Basel) 15 623 (2022)
  129. Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance. König G, Sokkar P, Pryk N, Heinrich S, Möller D, Cimicata G, Matzov D, Dietze P, Thiel W, Bashan A, Bandow JE, Zuegg J, Yonath A, Schulz F, Sanchez-Garcia E. Proc Natl Acad Sci U S A 118 e2113632118 (2021)
  130. Thiocillin contributes to the ecological fitness of Bacillus cereus ATCC 14579 during interspecies interactions with Myxococcus xanthus. Müller S, DeLeon O, Atkinson SN, Saravia F, Kellogg S, Shank EA, Kirby JR. Front Microbiol 14 1295262 (2023)
  131. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Talà A, Calcagnile M, Resta SC, Pennetta A, De Benedetto GE, Alifano P. Front Microbiol 14 1104454 (2023)