2y4i Citations

A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK.

Nature 472 366-9 (2011)
Cited: 168 times
EuropePMC logo PMID: 21441910

Abstract

In metazoans, the Ras-Raf-MEK (mitogen-activated protein-kinase kinase)-ERK (extracellular signal-regulated kinase) signalling pathway relays extracellular stimuli to elicit changes in cellular function and gene expression. Aberrant activation of this pathway through oncogenic mutations is responsible for a large proportion of human cancer. Kinase suppressor of Ras (KSR) functions as an essential scaffolding protein to coordinate the assembly of Raf-MEK-ERK complexes. Here we integrate structural and biochemical studies to understand how KSR promotes stimulatory Raf phosphorylation of MEK (refs 6, 7). We show, from the crystal structure of the kinase domain of human KSR2 (KSR2(KD)) in complex with rabbit MEK1, that interactions between KSR2(KD) and MEK1 are mediated by their respective activation segments and C-lobe αG helices. Analogous to BRAF (refs 8, 9), KSR2 self-associates through a side-to-side interface involving Arg 718, a residue identified in a genetic screen as a suppressor of Ras signalling. ATP is bound to the KSR2(KD) catalytic site, and we demonstrate KSR2 kinase activity towards MEK1 by in vitro assays and chemical genetics. In the KSR2(KD)-MEK1 complex, the activation segments of both kinases are mutually constrained, and KSR2 adopts an inactive conformation. BRAF allosterically stimulates the kinase activity of KSR2, which is dependent on formation of a side-to-side KSR2-BRAF heterodimer. Furthermore, KSR2-BRAF heterodimerization results in an increase of BRAF-induced MEK phosphorylation via the KSR2-mediated relay of a signal from BRAF to release the activation segment of MEK for phosphorylation. We propose that KSR interacts with a regulatory Raf molecule in cis to induce a conformational switch of MEK, facilitating MEK's phosphorylation by a separate catalytic Raf molecule in trans.

Reviews - 2y4i mentioned but not cited (6)

  1. Prospects for pharmacological targeting of pseudokinases. Kung JE, Jura N. Nat Rev Drug Discov 18 501-526 (2019)
  2. Targeting the MAPK Pathway in RAS Mutant Cancers. Hymowitz SG, Malek S. Cold Spring Harb Perspect Med 8 a031492 (2018)
  3. Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores. Gógl G, Kornev AP, Reményi A, Taylor SS. Trends Biochem Sci 44 300-311 (2019)
  4. Nucleotide-binding mechanisms in pseudokinases. Hammarén HM, Virtanen AT, Silvennoinen O. Biosci Rep 36 e00282 (2015)
  5. Scaffold proteins as dynamic integrators of biological processes. DiRusso CJ, Dashtiahangar M, Gilmore TD. J Biol Chem 298 102628 (2022)
  6. Looking lively: emerging principles of pseudokinase signaling. Sheetz JB, Lemmon MA. Trends Biochem Sci 47 875-891 (2022)

Articles - 2y4i mentioned but not cited (13)

  1. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Moriceau G, Hugo W, Hong A, Shi H, Kong X, Yu CC, Koya RC, Samatar AA, Khanlou N, Braun J, Ruchalski K, Seifert H, Larkin J, Dahlman KB, Johnson DB, Algazi A, Sosman JA, Ribas A, Lo RS. Cancer Cell 27 240-256 (2015)
  2. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Pearce LR, Atanassova N, Banton MC, Bottomley B, van der Klaauw AA, Revelli JP, Hendricks A, Keogh JM, Henning E, Doree D, Jeter-Jones S, Garg S, Bochukova EG, Bounds R, Ashford S, Gayton E, Hindmarsh PC, Shield JP, Crowne E, Barford D, Wareham NJ, UK10K consortium, O'Rahilly S, Murphy MP, Powell DR, Barroso I, Farooqi IS. Cell 155 765-777 (2013)
  3. Sequence and structural analyses of nuclear export signals in the NESdb database. Xu D, Farmer A, Collett G, Grishin NV, Chook YM. Mol Biol Cell 23 3677-3693 (2012)
  4. Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Deniston CK, Salogiannis J, Mathea S, Snead DM, Lahiri I, Matyszewski M, Donosa O, Watanabe R, Böhning J, Shiau AK, Knapp S, Villa E, Reck-Peterson SL, Leschziner AE. Nature 588 344-349 (2020)
  5. MEK drives BRAF activation through allosteric control of KSR proteins. Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, Kurinov I, Sicheri F, Therrien M. Nature 554 549-553 (2018)
  6. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling. Dhawan NS, Scopton AP, Dar AC. Nature 537 112-116 (2016)
  7. Structural basis for the action of the drug trametinib at KSR-bound MEK. Khan ZM, Real AM, Marsiglia WM, Chow A, Duffy ME, Yerabolu JR, Scopton AP, Dar AC. Nature 588 509-514 (2020)
  8. Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale. Kuzu G, Gursoy A, Nussinov R, Keskin O. J Proteome Res 12 2641-2653 (2013)
  9. Structure-functional prediction and analysis of cancer mutation effects in protein kinases. Dixit A, Verkhivker GM. Comput Math Methods Med 2014 653487 (2014)
  10. praja2 regulates KSR1 stability and mitogenic signaling. Rinaldi L, Delle Donne R, Sepe M, Porpora M, Garbi C, Chiuso F, Gallo A, Parisi S, Russo L, Bachmann V, Huber RG, Stefan E, Russo T, Feliciello A. Cell Death Dis 7 e2230 (2016)
  11. KSR induces RAS-independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors. Paniagua G, Jacob HKC, Brehey O, García-Alonso S, Lechuga CG, Pons T, Musteanu M, Guerra C, Drosten M, Barbacid M. Mol Oncol 16 3066-3081 (2022)
  12. Effect of Binding Pose and Modeled Structures on SVMGen and GlideScore Enrichment of Chemical Libraries. Xu D, Meroueh SO. J Chem Inf Model 56 1139-1151 (2016)
  13. Tyr728 in the kinase domain of the murine kinase suppressor of RAS 1 regulates binding and activation of the mitogen-activated protein kinase kinase. Sibilski C, Mueller T, Kollipara L, Zahedi RP, Rapp UR, Rudel T, Baljuls A. J Biol Chem 288 35237-35252 (2013)


Reviews citing this publication (61)

  1. ERK1/2 MAP kinases: structure, function, and regulation. Roskoski R. Pharmacol Res 66 105-143 (2012)
  2. Compromised MAPK signaling in human diseases: an update. Kim EK, Choi EJ. Arch Toxicol 89 867-882 (2015)
  3. Vemurafenib: the first drug approved for BRAF-mutant cancer. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Nat Rev Drug Discov 11 873-886 (2012)
  4. Tumor adaptation and resistance to RAF inhibitors. Lito P, Rosen N, Solit DB. Nat Med 19 1401-1409 (2013)
  5. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat Rev Mol Cell Biol 16 281-298 (2015)
  6. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Ostrem JM, Shokat KM. Nat Rev Drug Discov 15 771-785 (2016)
  7. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  8. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. Microbiol Mol Biol Rev 80 793-835 (2016)
  9. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Degirmenci U, Wang M, Hu J. Cells 9 E198 (2020)
  10. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Oncotarget 3 954-987 (2012)
  11. A historical overview of protein kinases and their targeted small molecule inhibitors. Roskoski R. Pharmacol Res 100 1-23 (2015)
  12. Signalling scaffolds and local organization of cellular behaviour. Langeberg LK, Scott JD. Nat Rev Mol Cell Biol 16 232-244 (2015)
  13. MEK1/2 dual-specificity protein kinases: structure and regulation. Roskoski R. Biochem Biophys Res Commun 417 5-10 (2012)
  14. Evolution of the eukaryotic protein kinases as dynamic molecular switches. Taylor SS, Keshwani MM, Steichen JM, Kornev AP. Philos Trans R Soc Lond B Biol Sci 367 2517-2528 (2012)
  15. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Reiterer V, Eyers PA, Farhan H. Trends Cell Biol 24 489-505 (2014)
  16. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Sun J, Nan G. Int J Mol Med 39 1338-1346 (2017)
  17. AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Esseltine JL, Scott JD. Trends Pharmacol Sci 34 648-655 (2013)
  18. Structural Basis for the Non-catalytic Functions of Protein Kinases. Kung JE, Jura N. Structure 24 7-24 (2016)
  19. Targeting Oncogenic BRAF: Past, Present, and Future. Zaman A, Wu W, Bivona TG. Cancers (Basel) 11 E1197 (2019)
  20. Ras-Mediated Activation of the Raf Family Kinases. Terrell EM, Morrison DK. Cold Spring Harb Perspect Med 9 a033746 (2019)
  21. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Beenstock J, Mooshayef N, Engelberg D. Trends Biochem Sci 41 938-953 (2016)
  22. RAS: Striking at the Core of the Oncogenic Circuitry. Gimple RC, Wang X. Front Oncol 9 965 (2019)
  23. Dawn of the dead: protein pseudokinases signal new adventures in cell biology. Eyers PA, Murphy JM. Biochem Soc Trans 41 969-974 (2013)
  24. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Pan CQ, Sudol M, Sheetz M, Low BC. Cell Signal 24 2143-2165 (2012)
  25. Live and let die: insights into pseudoenzyme mechanisms from structure. Murphy JM, Mace PD, Eyers PA. Curr Opin Struct Biol 47 95-104 (2017)
  26. Local cAMP signaling in disease at a glance. Gold MG, Gonen T, Scott JD. J Cell Sci 126 4537-4543 (2013)
  27. 'Pathway drug cocktail': targeting Ras signaling based on structural pathways. Nussinov R, Tsai CJ, Mattos C. Trends Mol Med 19 695-704 (2013)
  28. Bio-Zombie: the rise of pseudoenzymes in biology. Murphy JM, Farhan H, Eyers PA. Biochem Soc Trans 45 537-544 (2017)
  29. Pseudokinases: update on their functions and evaluation as new drug targets. Byrne DP, Foulkes DM, Eyers PA. Future Med Chem 9 245-265 (2017)
  30. Receptor tyrosine kinases with intracellular pseudokinase domains. Mendrola JM, Shi F, Park JH, Lemmon MA. Biochem Soc Trans 41 1029-1036 (2013)
  31. Autophagy- An emerging target for melanoma therapy. Ndoye A, Weeraratna AT. F1000Res 5 F1000 Faculty Rev-1888 (2016)
  32. The dual function of KSR1: a pseudokinase and beyond. Zhang H, Koo CY, Stebbing J, Giamas G. Biochem Soc Trans 41 1078-1082 (2013)
  33. It takes two to tango--signalling by dimeric Raf kinases. Baljuls A, Kholodenko BN, Kolch W. Mol Biosyst 9 551-558 (2013)
  34. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Krygowska AA, Castellano E. Cold Spring Harb Perspect Med 8 a031450 (2018)
  35. Pseudokinases from a structural perspective. Taylor SS, Shaw A, Hu J, Meharena HS, Kornev A. Biochem Soc Trans 41 981-986 (2013)
  36. The FAM83 family of proteins: from pseudo-PLDs to anchors for CK1 isoforms. Bozatzi P, Sapkota GP. Biochem Soc Trans 46 761-771 (2018)
  37. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. Mace PD, Murphy JM. J Biol Chem 296 100705 (2021)
  38. Biliverdin reductase: a target for cancer therapy? Gibbs PE, Miralem T, Maines MD. Front Pharmacol 6 119 (2015)
  39. Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. Krysan PJ, Colcombet J. Front Plant Sci 9 1674 (2018)
  40. KSR as a therapeutic target for Ras-dependent cancers. Neilsen BK, Frodyma DE, Lewis RE, Fisher KW. Expert Opin Ther Targets 21 499-509 (2017)
  41. MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Stefan E, Bister K. Curr Top Microbiol Immunol 407 117-151 (2017)
  42. The principle of conformational signaling. Tompa P. Chem Soc Rev 45 4252-4284 (2016)
  43. Molecular mechanisms of asymmetric RAF dimer activation. Jambrina PG, Bohuszewicz O, Buchete NV, Kolch W, Rosta E. Biochem Soc Trans 42 784-790 (2014)
  44. Targeting EGFR and RAS/RAF Signaling in the Treatment of Metastatic Colorectal Cancer: From Current Treatment Strategies to Future Perspectives. Mizukami T, Izawa N, Nakajima TE, Sunakawa Y. Drugs 79 633-645 (2019)
  45. Going for broke: targeting the human cancer pseudokinome. Bailey FP, Byrne DP, McSkimming D, Kannan N, Eyers PA. Biochem J 465 195-211 (2015)
  46. Nucleoside diphosphate kinases (NDPKs) in animal development. Takács-Vellai K, Vellai T, Farkas Z, Mehta A. Cell Mol Life Sci 72 1447-1462 (2015)
  47. The metastasis suppressor Nm23 as a modulator of Ras/ERK signaling. Takács-Vellai K. J Mol Signal 9 4 (2014)
  48. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. Frodyma D, Neilsen B, Costanzo-Garvey D, Fisher K, Lewis R. F1000Res 6 1621 (2017)
  49. Techniques to examine nucleotide binding by pseudokinases. Lucet IS, Babon JJ, Murphy JM. Biochem Soc Trans 41 975-980 (2013)
  50. Pseudokinase drug intervention: a potentially poisoned chalice. Claus J, Cameron AJ, Parker PJ. Biochem Soc Trans 41 1083-1088 (2013)
  51. A pickup in pseudokinase activity. Dar AC. Biochem Soc Trans 41 987-994 (2013)
  52. Challenges in the annotation of pseudoenzymes in databases: the UniProtKB approach. Zaru R, Magrane M, Orchard S, UniProt Consortium. FEBS J 287 4114-4127 (2020)
  53. Raf-interactome in tuning the complexity and diversity of Raf function. An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. FEBS J 282 32-53 (2015)
  54. Signalling dynamics in embryonic development. Sonnen KF, Janda CY. Biochem J 478 4045-4070 (2021)
  55. Hereditary Hearing Impairment with Cutaneous Abnormalities. Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Genes (Basel) 12 43 (2020)
  56. RAS-targeted cancer therapy: Advances in drugging specific mutations. Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. MedComm (2020) 4 e285 (2023)
  57. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Front Cell Dev Biol 10 942500 (2022)
  58. Growth factor and receptor malfunctions associated with human genetic deafness. Naz S, Friedman TB. Clin Genet 97 138-155 (2020)
  59. Navigating the ERK1/2 MAPK Cascade. Martin-Vega A, Cobb MH. Biomolecules 13 1555 (2023)
  60. Ras Mitogen-activated Protein Kinase Signaling and Kinase Suppressor of Ras as Therapeutic Targets for Hepatocellular Carcinoma. Moon H, Ro SW. J Liver Cancer 21 1-11 (2021)
  61. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Wang P, Laster K, Jia X, Dong Z, Liu K. Mol Cancer 22 208 (2023)

Articles citing this publication (88)

  1. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de Stanchina E, Barratt DG, Cosulich S, Klinowska T, Rosen N, Shokat KM. Nature 534 272-276 (2016)
  2. Allosteric activation of functionally asymmetric RAF kinase dimers. Hu J, Stites EC, Yu H, Yu H, Germino EA, Meharena HS, Stork PJS, Kornev AP, Taylor SS, Shaw AS. Cell 154 1036-1046 (2013)
  3. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, Kellet M, Storm PB, Resnick AC. Proc Natl Acad Sci U S A 110 5957-5962 (2013)
  4. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, Eyers PA, Ungureanu D, Hammaren H, Silvennoinen O, Varghese LN, Chen K, Tripaydonis A, Jura N, Fukuda K, Qin J, Nimchuk Z, Mudgett MB, Elowe S, Gee CL, Liu L, Daly RJ, Manning G, Babon JJ, Lucet IS. Biochem J 457 323-334 (2014)
  5. GTP-Dependent K-Ras Dimerization. Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R. Structure 23 1325-1335 (2015)
  6. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Haling JR, Sudhamsu J, Yen I, Sideris S, Sandoval W, Phung W, Bravo BJ, Giannetti AM, Peck A, Masselot A, Morales T, Smith D, Brandhuber BJ, Hymowitz SG, Malek S. Cancer Cell 26 402-413 (2014)
  7. The secret life of kinases: functions beyond catalysis. Rauch J, Volinsky N, Romano D, Kolch W. Cell Commun Signal 9 23 (2011)
  8. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. Röring M, Herr R, Fiala GJ, Heilmann K, Braun S, Eisenhardt AE, Halbach S, Capper D, von Deimling A, Schamel WW, Saunders DN, Brummer T. EMBO J 31 2629-2647 (2012)
  9. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, Thevakumaran N, Talukdar M, Pillon MC, Ceccarelli DF, Wan LC, Juang YC, Mao DY, Gaughan C, Brinton MA, Perelygin AA, Kourinov I, Guarné A, Silverman RH, Sicheri F. Mol Cell 53 221-234 (2014)
  10. Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX, Ou Y, Asara JM, Cantley LC, Zheng B. Mol Cell 52 161-172 (2013)
  11. RAF inhibitors activate the MAPK pathway by relieving inhibitory autophosphorylation. Holderfield M, Merritt H, Chan J, Wallroth M, Tandeske L, Zhai H, Tellew J, Hardy S, Hekmat-Nejad M, Stuart DD, McCormick F, Nagel TE. Cancer Cell 23 594-602 (2013)
  12. How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Witzel F, Maddison L, Blüthgen N. Front Physiol 3 475 (2012)
  13. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Linden R. Front Mol Neurosci 10 77 (2017)
  14. "RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. Cseh B, Doma E, Baccarini M. FEBS Lett 588 2398-2406 (2014)
  15. Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Sos ML, Levin RS, Gordan JD, Oses-Prieto JA, Webber JT, Salt M, Hann B, Burlingame AL, McCormick F, Bandyopadhyay S, Shokat KM. Cell Rep 8 1037-1048 (2014)
  16. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, Adelmann CH, Restrepo M, Richards KN, Stewart LR, Du L, Ferguson SB, Chakravarti D, Ehrenreiter K, Baccarini M, Ruggieri R, Curry JL, Kim KB, Ciurea AM, Duvic M, Prieto VG, Ullrich SE, Dalby KN, Flores ER, Tsai KY. Elife 2 e00969 (2013)
  17. The higher level of complexity of K-Ras4B activation at the membrane. Jang H, Banerjee A, Chavan TS, Lu S, Zhang J, Gaponenko V, Nussinov R. FASEB J 30 1643-1655 (2016)
  18. MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Chai J, Wang S, Han D, Dong W, Xie C, Guo H. Tumour Biol 36 1313-1321 (2015)
  19. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB, Riedl SJ. Nat Commun 4 1681 (2013)
  20. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Meister M, Tomasovic A, Banning A, Tikkanen R. Int J Mol Sci 14 4854-4884 (2013)
  21. The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases. Reese ML, Shah N, Boothroyd JC. J Biol Chem 289 27849-27858 (2014)
  22. A feedback loop consisting of RUNX2/LncRNA-PVT1/miR-455 is involved in the progression of colorectal cancer. Chai J, Guo D, Ma W, Han D, Dong W, Guo H, Zhang Y. Am J Cancer Res 8 538-550 (2018)
  23. Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. Sulpizio A, Minelli ME, Wan M, Burrowes PD, Wu X, Sanford EJ, Shin JH, Williams BC, Goldberg ML, Smolka MB, Mao Y. Elife 8 e51162 (2019)
  24. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Bailey FP, Byrne DP, Oruganty K, Eyers CE, Novotny CJ, Shokat KM, Kannan N, Eyers PA. Biochem J 467 47-62 (2015)
  25. Redefining the Protein Kinase Conformational Space with Machine Learning. Ung PM, Rahman R, Schlessinger A. Cell Chem Biol 25 916-924.e2 (2018)
  26. Structure and evolution of the Fam20 kinases. Zhang H, Zhu Q, Cui J, Wang Y, Chen MJ, Guo X, Tagliabracci VS, Dixon JE, Xiao J. Nat Commun 9 1218 (2018)
  27. Helional-induced activation of human olfactory receptor 2J3 promotes apoptosis and inhibits proliferation in a non-small-cell lung cancer cell line. Kalbe B, Schulz VM, Schlimm M, Philippou S, Jovancevic N, Jansen F, Scholz P, Lübbert H, Jarocki M, Faissner A, Hecker E, Veitinger S, Tsai T, Osterloh S, Hatt H. Eur J Cell Biol 96 34-46 (2017)
  28. Loss-of-Function CNKSR2 Mutation Is a Likely Cause of Non-Syndromic X-Linked Intellectual Disability. Houge G, Rasmussen IH, Hovland R. Mol Syndromol 2 60-63 (2012)
  29. Distinct pseudokinase domain conformations underlie divergent activation mechanisms among vertebrate MLKL orthologues. Davies KA, Fitzgibbon C, Young SN, Garnish SE, Yeung W, Coursier D, Birkinshaw RW, Sandow JJ, Lehmann WIL, Liang LY, Lucet IS, Chalmers JD, Patrick WM, Kannan N, Petrie EJ, Czabotar PE, Murphy JM. Nat Commun 11 3060 (2020)
  30. Substrate and inhibitor-induced dimerization and cooperativity in caspase-1 but not caspase-3. Datta D, McClendon CL, Jacobson MP, Wells JA. J Biol Chem 288 9971-9981 (2013)
  31. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Genes Dev 31 1939-1957 (2017)
  32. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole. Beraki T, Hu X, Broncel M, Young JC, O'Shaughnessy WJ, Borek D, Treeck M, Reese ML. Proc Natl Acad Sci U S A 116 6361-6370 (2019)
  33. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Pandian GN, Taniguchi J, Junetha S, Sato S, Han L, Saha A, AnandhaKumar C, Bando T, Nagase H, Vaijayanthi T, Taylor RD, Sugiyama H. Sci Rep 4 3843 (2014)
  34. DFGmodel: predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. Ung PM, Schlessinger A. ACS Chem Biol 10 269-278 (2015)
  35. VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Fernández IF, Pérez-Rivas LG, Blanco S, Castillo-Dominguez AA, Lozano J, Lazo PA. Cell Mol Life Sci 69 3881-3893 (2012)
  36. Spatially dependent dynamic MAPK modulation by the Nde1-Lis1-Brap complex patterns mammalian CNS. Lanctot AA, Peng CY, Pawlisz AS, Joksimovic M, Feng Y. Dev Cell 25 241-255 (2013)
  37. Protein scaffolds can enhance the bistability of multisite phosphorylation systems. Chan C, Liu X, Wang L, Bardwell L, Nie Q, Enciso G. PLoS Comput Biol 8 e1002551 (2012)
  38. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Alexa A, Gógl G, Glatz G, Garai Á, Zeke A, Varga J, Dudás E, Jeszenői N, Bodor A, Hetényi C, Reményi A. Proc Natl Acad Sci U S A 112 2711-2716 (2015)
  39. A CC-SAM, for coiled coil-sterile α motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. Koveal D, Schuh-Nuhfer N, Ritt D, Page R, Morrison DK, Peti W. Sci Signal 5 ra94 (2012)
  40. Activation loop phosphorylation regulates B-Raf in vivo and transformation by B-Raf mutants. Köhler M, Röring M, Schorch B, Heilmann K, Stickel N, Fiala GJ, Schmitt LC, Braun S, Ehrenfeld S, Uhl FM, Kaltenbacher T, Weinberg F, Herzog S, Zeiser R, Schamel WW, Jumaa H, Brummer T. EMBO J 35 143-161 (2016)
  41. Structural characterization of the RLCK family member BSK8: a pseudokinase with an unprecedented architecture. Grütter C, Sreeramulu S, Sessa G, Rauh D. J Mol Biol 425 4455-4467 (2013)
  42. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis. Weaver KL, Alves-Guerra MC, Jin K, Wang Z, Han X, Ranganathan P, Zhu X, DaSilva T, Liu W, Ratti F, Demarest RM, Tzimas C, Rice M, Vasquez-Del Carpio R, Dahmane N, Robbins DJ, Capobianco AJ. Cancer Res 74 4741-4751 (2014)
  43. ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Wang F, Wang AY, Chesnelong C, Yang Y, Nabbi A, Thalappilly S, Alekseev V, Riabowol K. Oncogene 37 286-301 (2018)
  44. Complexity in KSR function revealed by Raf inhibitor and KSR structure studies. McKay MM, Freeman AK, Morrison DK. Small GTPases 2 276-281 (2011)
  45. ERK Signals: Scaffolding Scaffolds? Casar B, Crespo P. Front Cell Dev Biol 4 49 (2016)
  46. The interplay of double phosphorylation and scaffolding in MAPK pathways. Kocieniewski P, Faeder JR, Lipniacki T. J Theor Biol 295 116-124 (2012)
  47. IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs. Zhou H, Bulek K, Li X, Herjan T, Yu M, Qian W, Wang H, Zhou G, Chen X, Yang H, Hong L, Zhao J, Qin L, Fukuda K, Flotho A, Gao J, Dongre A, Carman JA, Kang Z, Su B, Kern TS, Smith JD, Hamilton TA, Melchior F, Fox PL, Li X. Elife 6 e29630 (2017)
  48. A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway. Popov IK, Hiatt SM, Whalen S, Keren B, Ruivenkamp C, van Haeringen A, Chen MJ, Cooper GM, Korf BR, Chang C. Front Physiol 10 388 (2019)
  49. Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases. Meharena HS, Fan X, Ahuja LG, Keshwani MM, McClendon CL, Chen AM, Adams JA, Taylor SS. PLoS Biol 14 e2000127 (2016)
  50. c-Raf in KRas Mutant Cancers: A Moving Target. McCormick F. Cancer Cell 33 158-159 (2018)
  51. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Gonzalez-Del Pino GL, Li K, Park E, Schmoker AM, Ha BH, Eck MJ. Proc Natl Acad Sci U S A 118 e2107207118 (2021)
  52. In silico structural and functional analysis of the human TOPK protein by structure modeling and molecular dynamics studies. Kirubakaran P, Karthikeyan M, Singh KhD, Nagamani S, Premkumar K. J Mol Model 19 407-419 (2013)
  53. Intrinsic disorder within AKAP79 fine-tunes anchored phosphatase activity toward substrates and drug sensitivity. Nygren PJ, Mehta S, Schweppe DK, Langeberg LK, Whiting JL, Weisbrod CR, Bruce JE, Zhang J, Veesler D, Scott JD. Elife 6 e30872 (2017)
  54. Prognostic value of BRAF/MIR-17 signature and B-Raf protein expression in patients with colorectal cancer: A pilot study. Ibrahiem AT, Fawzy MS, Abu AlSel BT, Toraih EA. J Clin Lab Anal 35 e23679 (2021)
  55. The N-Terminal GTPase Domain of p190RhoGAP Proteins Is a PseudoGTPase. Stiegler AL, Boggon TJ. Structure 26 1451-1461.e4 (2018)
  56. Identification of a truncated kinase suppressor of Ras 2 mRNA in sperm. Guo L, Volle DJ, Lewis RE. FEBS Open Bio 4 420-425 (2014)
  57. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution. Coyle SM, Lim WA. Elife 5 e12435 (2016)
  58. Restoration of mutant K-Ras repressed miR-199b inhibits K-Ras mutant non-small cell lung cancer progression. Jin H, Jang Y, Cheng N, Li Q, Cui PF, Zhou ZW, Jiang HL, Cho MH, Westover KD, Tan QY, Xu CX. J Exp Clin Cancer Res 38 165 (2019)
  59. Shedding light on local kinase activation. Scott JD, Newton AC. BMC Biol 10 61 (2012)
  60. A Central Region of NF-κB Essential Modulator Is Required for IKKβ-Induced Conformational Change and for Signal Propagation. Shaffer R, DeMaria AM, Kagermazova L, Liu Y, Babaei M, Caban-Penix S, Cervantes A, Jehle S, Makowski L, Gilmore TD, Whitty A, Allen KN. Biochemistry 58 2906-2920 (2019)
  61. Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAFV600E expression. Ko T, Sharma R, Li S. Oncogene 39 723-738 (2020)
  62. How MAP kinase modules function as robust, yet adaptable, circuits. Tian T, Harding A. Cell Cycle 13 2379-2390 (2014)
  63. Dissection of MAPK signaling specificity through protein engineering in a developmental context. Wengier DL, Lampard GR, Bergmann DC. BMC Plant Biol 18 60 (2018)
  64. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. Fröhlich F, Gerosa L, Muhlich J, Sorger PK. Mol Syst Biol 19 e10988 (2023)
  65. Targeting cysteine rich C1 domain of Scaffold protein Kinase Suppressor of Ras (KSR) with anthocyanidins and flavonoids - a binding affinity characterization study. Karthik D, Majumder P, Palanisamy S, Khairunnisa K, Venugopal V. Bioinformation 10 580-585 (2014)
  66. Biochemistry. KSR plays CRAF-ty. Shi F, Lemmon MA. Science 332 1043-1044 (2011)
  67. KSR1 is coordinately regulated with Notch signaling and oxidative phosphorylation in thyroid cancer. Lee J, Seol MY, Jeong S, Kwon HJ, Lee CR, Ku CR, Kang SW, Jeong JJ, Shin DY, Nam KH, Lee EJ, Chung WY, Jo YS. J Mol Endocrinol 54 115-124 (2015)
  68. Molecular mechanisms underlying cellular effects of human MEK1 mutations. Marmion RA, Yang L, Goyal Y, Jindal GA, Wetzel JL, Singh M, Schüpbach T, Shvartsman SY. Mol Biol Cell 32 974-983 (2021)
  69. New insight puts CRAF in sight as a therapeutic target. Rebocho AP, Marais R. Cancer Discov 1 98-99 (2011)
  70. Qualitative differences in disease-associated MEK mutants reveal molecular signatures and aberrant signaling-crosstalk in cancer. Kubota Y, Fujioka Y, Patil A, Takagi Y, Matsubara D, Iijima M, Momose I, Naka R, Nakai K, Noda NN, Takekawa M. Nat Commun 13 4063 (2022)
  71. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity. Zeng L, Ehrenreiter K, Menon J, Menard R, Kern F, Nakazawa Y, Bevilacqua E, Imamoto A, Baccarini M, Rosner MR. Cell Signal 25 1156-1165 (2013)
  72. The mechanism of activation of MEK1 by B-Raf and KSR1. Maloney RC, Zhang M, Liu Y, Jang H, Nussinov R. Cell Mol Life Sci 79 281 (2022)
  73. A small molecule inhibitor of HER3: a proof-of-concept study. Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. Biochem J 477 3329-3347 (2020)
  74. Fic and non-Fic AMPylases: protein AMPylation in metazoans. Chatterjee BK, Truttmann MC. Open Biol 11 210009 (2021)
  75. How oncogenic mutations activate human MAP kinase 1 (MEK1): a molecular dynamics simulation study. Liu Y, Zhu J, Guo X, Huang T, Han J, Gao J, Xu D, Han W. J Biomol Struct Dyn 38 3942-3958 (2020)
  76. MAPK Signaling Pathway Is Essential for Female Reproductive Regulation in the Cabbage Beetle, Colaphellus bowringi. Huang Z, Tian Z, Zhao Y, Zhu F, Liu W, Wang X. Cells 11 1602 (2022)
  77. A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans. Halova L, Cobley D, Franz-Wachtel M, Wang T, Morrison KR, Krug K, Nalpas N, Maček B, Hagan IM, Humphrey SJ, Petersen J. Open Biol 11 200405 (2021)
  78. Architecture of the MKK6-p38α complex defines the basis of MAPK specificity and activation. Juyoux P, Galdadas I, Gobbo D, von Velsen J, Pelosse M, Tully M, Vadas O, Gervasio FL, Pellegrini E, Bowler MW. Science 381 1217-1225 (2023)
  79. article-commentary Knock-in(g) RAF for a loop. Varga A, Baccarini M. EMBO J 35 118-120 (2016)
  80. Conformational control and regulation of the pseudokinase KSR via small molecule binding interactions. Chow A, Khan ZM, Marsiglia WM, Dar AC. Methods Enzymol 667 365-402 (2022)
  81. Evaluating the Pharmacokinetics and Pharmacodynamics of Chemotherapeutics within a Spatial SILAC-Labeled Spheroid Model System. Beller NC, Wang Y, Hummon AB. Anal Chem 95 11263-11272 (2023)
  82. Evolutionary history of MEK1 illuminates the nature of deleterious mutations. Andrianova EP, Marmion RA, Shvartsman SY, Zhulin IB. Proc Natl Acad Sci U S A 120 e2304184120 (2023)
  83. Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Lv W, Sha Y, Liu X, He Y, Hu J, Wang J, Li S, Guo X, Shao P, Zhao F, Li M. Int J Mol Sci 24 14489 (2023)
  84. KSR2-14-3-3ζ complex serves as a biomarker and potential therapeutic target in sorafenib-resistant hepatocellular carcinoma. Gao C, Wang SW, Lu JC, Chai XQ, Li YC, Zhang PF, Huang XY, Cai JB, Zheng YM, Guo XJ, Shi GM, Ke AW, Fan J. Biomark Res 10 25 (2022)
  85. Prognostic Value of BRAF, Programmed Cell Death 1 (PD1), and PD Ligand 1 (PDL1) Protein Expression in Colon Adenocarcinoma. Ibrahiem AT, Eladl E, Toraih EA, Fawzy MS, Abdelwahab K, Elnaghi K, Emarah Z, Shaalan AAM, Ehab Z, Soliman NA. Diagnostics (Basel) 13 237 (2023)
  86. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. Martín-Vega A, Ruiz-Peinado L, García-Gómez R, Herrero A, de la Fuente-Vivas D, Parvathaneni S, Caloto R, Morante M, von Kriegsheim A, Bustelo XR, Sacks DB, Casar B, Crespo P. Sci Adv 9 eadd7969 (2023)
  87. Scaffolding Protein Connector Enhancer of Kinase Suppressor of Ras 1 (CNKSR1) Regulates MAPK Inhibition Responsiveness in Pancreas Cancer via Crosstalk with AKT Signaling. Li D, Miermont AM, Sable R, Quadri HS, Mathews Griner LA, Martin SE, Odzorig T, De S, Ferrer M, Powers AS, Hewitt SM, Rudloff U. Mol Cancer Res 21 316-331 (2023)
  88. The many-faced KSR1: a tumor suppressor in breast cancer. Zhang H, Stebbing J, Giamas G. Oncoscience 2 669-670 (2015)