2wpt Citations

The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction.

Proc Natl Acad Sci U S A 107 10080-5 (2010)
Cited: 84 times
EuropePMC logo PMID: 20479265

Abstract

High-affinity, high-selectivity protein-protein interactions that are critical for cell survival present an evolutionary paradox: How does selectivity evolve when acquired mutations risk a lethal loss of high-affinity binding? A detailed understanding of selectivity in such complexes requires structural information on weak, noncognate complexes which can be difficult to obtain due to their transient and dynamic nature. Using NMR-based docking as a guide, we deployed a disulfide-trapping strategy on a noncognate complex between the colicin E9 endonuclease (E9 DNase) and immunity protein 2 (Im2), which is seven orders of magnitude weaker binding than the cognate femtomolar E9 DNase-Im9 interaction. The 1.77 A crystal structure of the E9 DNase-Im2 complex reveals an entirely noncovalent interface where the intersubunit disulfide merely supports the crystal lattice. In combination with computational alanine scanning of interfacial residues, the structure reveals that the driving force for binding is so strong that a severely unfavorable specificity contact is tolerated at the interface and as a result the complex becomes weakened through "frustration." As well as rationalizing past mutational and thermodynamic data, comparing our noncognate structure with previous cognate complexes highlights the importance of loop regions in developing selectivity and accentuates the multiple roles of buried water molecules that stabilize, ameliorate, or aggravate interfacial contacts. The study provides direct support for dual-recognition in colicin DNase-Im protein complexes and shows that weakened noncognate complexes are primed for high-affinity binding, which can be achieved by economical mutation of a limited number of residues at the interface.

Reviews - 2wpt mentioned but not cited (1)

  1. Molecular docking as a popular tool in drug design, an in silico travel. de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Adv Appl Bioinform Chem 9 1-11 (2016)

Articles - 2wpt mentioned but not cited (22)

  1. How good is automated protein docking? Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S. Proteins 81 2159-2166 (2013)
  2. A structure-based benchmark for protein-protein binding affinity. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AM, Janin J. Protein Sci 20 482-491 (2011)
  3. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis ICh, Vajda S. Proteins 78 3124-3130 (2010)
  4. The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Meenan NA, Sharma A, Fleishman SJ, Macdonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C. Proc Natl Acad Sci U S A 107 10080-10085 (2010)
  5. An integrated suite of fast docking algorithms. Mashiach E, Schneidman-Duhovny D, Peri A, Shavit Y, Nussinov R, Wolfson HJ. Proteins 78 3197-3204 (2010)
  6. HotRegion: a database of predicted hot spot clusters. Cukuroglu E, Gursoy A, Keskin O. Nucleic Acids Res 40 D829-33 (2012)
  7. MDockPP: A hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Huang SY, Zou X. Proteins 78 3096-3103 (2010)
  8. EvoEF2: accurate and fast energy function for computational protein design. Huang X, Pearce R, Zhang Y. Bioinformatics 36 1135-1142 (2020)
  9. A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13-19. Sircar A, Chaudhury S, Kilambi KP, Berrondo M, Gray JJ. Proteins 78 3115-3123 (2010)
  10. Blind prediction of interfacial water positions in CAPRI. Lensink MF, Moal IH, Bates PA, Kastritis PL, Melquiond AS, Karaca E, Schmitz C, van Dijk M, Bonvin AM, Eisenstein M, Jiménez-García B, Grosdidier S, Solernou A, Pérez-Cano L, Pallara C, Fernández-Recio J, Xu J, Muthu P, Praneeth Kilambi K, Gray JJ, Grudinin S, Derevyanko G, Mitchell JC, Wieting J, Kanamori E, Tsuchiya Y, Murakami Y, Sarmiento J, Standley DM, Shirota M, Kinoshita K, Nakamura H, Chavent M, Ritchie DW, Park H, Ko J, Lee H, Seok C, Shen Y, Kozakov D, Vajda S, Kundrotas PJ, Vakser IA, Pierce BG, Hwang H, Vreven T, Weng Z, Buch I, Farkash E, Wolfson HJ, Zacharias M, Qin S, Zhou HX, Huang SY, Zou X, Wojdyla JA, Kleanthous C, Wodak SJ. Proteins 82 620-632 (2014)
  11. Extending RosettaDock with water, sugar, and pH for prediction of complex structures and affinities for CAPRI rounds 20-27. Kilambi KP, Pacella MS, Xu J, Labonte JW, Porter JR, Muthu P, Drew K, Kuroda D, Schueler-Furman O, Bonneau R, Gray JJ. Proteins 81 2201-2209 (2013)
  12. Performance of ZDOCK in CAPRI rounds 20-26. Vreven T, Pierce BG, Hwang H, Weng Z. Proteins 81 2175-2182 (2013)
  13. Selection of near-native poses in CAPRI rounds 13-19. Qin S, Zhou HX. Proteins 78 3166-3173 (2010)
  14. Assessment of software methods for estimating protein-protein relative binding affinities. Gonzalez TR, Martin KP, Barnes JE, Patel JS, Ytreberg FM. PLoS One 15 e0240573 (2020)
  15. Using collections of structural models to predict changes of binding affinity caused by mutations in protein-protein interactions. Meseguer A, Dominguez L, Bota PM, Aguirre-Plans J, Bonet J, Fernandez-Fuentes N, Oliva B. Protein Sci 29 2112-2130 (2020)
  16. Computational studies of protein-protein dissociation by statistical potential and coarse-grained simulations: a case study on interactions between colicin E9 endonuclease and immunity proteins. Su Z, Wu Y. Phys Chem Chem Phys 21 2463-2471 (2019)
  17. Using the concept of transient complex for affinity predictions in CAPRI rounds 20-27 and beyond. Qin S, Zhou HX. Proteins 81 2229-2236 (2013)
  18. A knowledge-based scoring function to assess quaternary associations of proteins. Dhawanjewar AS, Roy AA, Madhusudhan MS. Bioinformatics 36 3739-3748 (2020)
  19. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Shushan A, Kosloff M. Sci Rep 11 3789 (2021)
  20. Scoring of protein-protein docking models utilizing predicted interface residues. Pozzati G, Kundrotas P, Elofsson A. Proteins 90 1493-1505 (2022)
  21. Cold spots are universal in protein-protein interactions. Gurusinghe SNS, Oppenheimer B, Shifman JM. Protein Sci 31 e4435 (2022)
  22. Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability. Sapozhnikov Y, Patel JS, Ytreberg FM, Miller CR. BMC Bioinformatics 24 426 (2023)


Reviews citing this publication (7)

  1. Protein binding specificity versus promiscuity. Schreiber G, Keating AE. Curr Opin Struct Biol 21 50-61 (2011)
  2. Transient protein-protein interactions. Acuner Ozbabacan SE, Engin HB, Gursoy A, Keskin O. Protein Eng Des Sel 24 635-648 (2011)
  3. Hot spots in protein-protein interfaces: towards drug discovery. Cukuroglu E, Engin HB, Gursoy A, Keskin O. Prog Biophys Mol Biol 116 165-173 (2014)
  4. Nuclease colicins and their immunity proteins. Papadakos G, Wojdyla JA, Kleanthous C. Q Rev Biophys 45 57-103 (2012)
  5. Resilience of biochemical activity in protein domains in the face of structural divergence. Zhang D, Iyer LM, Burroughs AM, Aravind L. Curr Opin Struct Biol 26 92-103 (2014)
  6. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Chen TS, Keating AE. Protein Sci 21 949-963 (2012)
  7. Evolution of protein interactions: from interactomes to interfaces. Andreani J, Guerois R. Arch Biochem Biophys 554 65-75 (2014)

Articles citing this publication (54)

  1. Docking and scoring protein interactions: CAPRI 2009. Lensink MF, Wodak SJ. Proteins 78 3073-3084 (2010)
  2. Docking, scoring, and affinity prediction in CAPRI. Lensink MF, Wodak SJ. Proteins 81 2082-2095 (2013)
  3. Role of the biomolecular energy gap in protein design, structure, and evolution. Fleishman SJ, Baker D. Cell 149 262-273 (2012)
  4. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles. Brender JR, Zhang Y. PLoS Comput Biol 11 e1004494 (2015)
  5. Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Guo W, Wisniewski JA, Ji H. Bioorg Med Chem Lett 24 2546-2554 (2014)
  6. Blind predictions of protein interfaces by docking calculations in CAPRI. Lensink MF, Wodak SJ. Proteins 78 3085-3095 (2010)
  7. Lecture The emergence of protein complexes: quaternary structure, dynamics and allostery. Colworth Medal Lecture. Perica T, Marsh JA, Sousa FL, Sousa FL, Natan E, Colwell LJ, Ahnert SE, Teichmann SA. Biochem Soc Trans 40 475-491 (2012)
  8. Structure of the ultra-high-affinity colicin E2 DNase--Im2 complex. Wojdyla JA, Fleishman SJ, Baker D, Kleanthous C. J Mol Biol 417 79-94 (2012)
  9. Defining the limits of homology modeling in information-driven protein docking. Rodrigues JP, Melquiond AS, Karaca E, Trellet M, van Dijk M, van Zundert GC, Schmitz C, de Vries SJ, Bordogna A, Bonati L, Kastritis PL, Bonvin AM. Proteins 81 2119-2128 (2013)
  10. Protein docking prediction using predicted protein-protein interface. Li B, Kihara D. BMC Bioinformatics 13 7 (2012)
  11. Score_set: a CAPRI benchmark for scoring protein complexes. Lensink MF, Wodak SJ. Proteins 82 3163-3169 (2014)
  12. Binding site prediction and improved scoring during flexible protein-protein docking with ATTRACT. Fiorucci S, Zacharias M. Proteins 78 3131-3139 (2010)
  13. Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Netzer R, Listov D, Lipsh R, Dym O, Albeck S, Knop O, Kleanthous C, Fleishman SJ. Nat Commun 9 5286 (2018)
  14. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif. Ahmed MH, Spyrakis F, Cozzini P, Tripathi PK, Mozzarelli A, Scarsdale JN, Safo MA, Kellogg GE. PLoS One 6 e24712 (2011)
  15. Versatility and invariance in the evolution of homologous heteromeric interfaces. Andreani J, Faure G, Guerois R. PLoS Comput Biol 8 e1002677 (2012)
  16. Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. de Vries SJ, Melquiond AS, Kastritis PL, Karaca E, Bordogna A, van Dijk M, Rodrigues JP, Bonvin AM. Proteins 78 3242-3249 (2010)
  17. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. Joshi A, Grinter R, Josts I, Chen S, Wojdyla JA, Lowe ED, Kaminska R, Sharp C, McCaughey L, Roszak AW, Cogdell RJ, Byron O, Walker D, Kleanthous C. J Mol Biol 427 2852-2866 (2015)
  18. Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring. Gong X, Wang P, Yang F, Chang S, Liu B, He H, Cao L, Xu X, Li C, Chen W, Wang C. Proteins 78 3150-3155 (2010)
  19. Genome-wide influence of indel Substitutions on evolution of bacteria of the PVC superphylum, revealed using a novel computational method. Kamneva OK, Liberles DA, Ward NL. Genome Biol Evol 2 870-886 (2010)
  20. The targets of CAPRI Rounds 13-19. Janin J. Proteins 78 3067-3072 (2010)
  21. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. PLoS Biol 11 e1001489 (2013)
  22. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. Melo R, Fieldhouse R, Melo A, Correia JD, Cordeiro MN, Gümüş ZH, Costa J, Bonvin AM, Moreira IS. Int J Mol Sci 17 E1215 (2016)
  23. A "fuzzy"-logic language for encoding multiple physical traits in biomolecules. Warszawski S, Netzer R, Tawfik DS, Fleishman SJ. J Mol Biol 426 4125-4138 (2014)
  24. Expanding the frontiers of protein-protein modeling: from docking and scoring to binding affinity predictions and other challenges. Pallara C, Jiménez-García B, Pérez-Cano L, Romero-Durana M, Solernou A, Grosdidier S, Pons C, Moal IH, Fernandez-Recio J. Proteins 81 2192-2200 (2013)
  25. Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies. Lobner E, Humm AS, Göritzer K, Mlynek G, Puchinger MG, Hasenhindl C, Rüker F, Traxlmayr MW, Djinović-Carugo K, Obinger C. Structure 25 878-889.e5 (2017)
  26. Optimization of pyDock for the new CAPRI challenges: Docking of homology-based models, domain-domain assembly and protein-RNA binding. Pons C, Solernou A, Perez-Cano L, Grosdidier S, Fernandez-Recio J. Proteins 78 3182-3188 (2010)
  27. Novel Immunity Proteins Associated with Colicin M-like Bacteriocins Exhibit Promiscuous Protection in Pseudomonas. Ghequire MG, Kemland L, De Mot R. Front Microbiol 8 93 (2017)
  28. Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle. Grabarczyk DB, Chappell PE, Johnson S, Stelzl LS, Lea SM, Berks BC. Proc Natl Acad Sci U S A 112 E7166-75 (2015)
  29. "Disruptor" residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Gα subunits. Asli A, Sadiya I, Avital-Shacham M, Kosloff M. Sci Signal 11 eaan3677 (2018)
  30. Molecular and Biochemical Characterization of YeeF/YezG, a Polymorphic Toxin-Immunity Protein Pair From Bacillus subtilis. Kaundal S, Deep A, Kaur G, Thakur KG. Front Microbiol 11 95 (2020)
  31. Unintended consequences? Water molecules at biological and crystallographic protein-protein interfaces. Ahmed MH, Habtemariam M, Safo MK, Scarsdale JN, Spyrakis F, Cozzini P, Mozzarelli A, Kellogg GE. Comput Biol Chem 47 126-141 (2013)
  32. Thermodynamics of interfacial changes in a protein-protein complex. Das A, Chakrabarti J, Ghosh M. Mol Biosyst 10 437-445 (2014)
  33. Measuring inter-protein pairwise interaction energies from a single native mass spectrum by double-mutant cycle analysis. Sokolovski M, Cveticanin J, Hayoun D, Korobko I, Sharon M, Horovitz A. Nat Commun 8 212 (2017)
  34. Refinement of protein-protein complexes in contact map space with metadynamics simulations. Pfeiffenberger E, Bates PA. Proteins 87 12-22 (2019)
  35. Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. Naftaly S, Cohen I, Shahar A, Hockla A, Radisky ES, Papo N. Nat Commun 9 3935 (2018)
  36. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures. Maheshwari S, Brylinski M. BMC Struct Biol 15 23 (2015)
  37. Refining evERdock: Improved selection of good protein-protein complex models achieved by MD optimization and use of multiple conformations. Shinobu A, Takemura K, Matubayasi N, Kitao A. J Chem Phys 149 195101 (2018)
  38. CAPRI targets T29-T42: proving ground for new docking procedures. Eisenstein M, Ben-Shimon A, Frankenstein Z, Kowalsman N. Proteins 78 3174-3181 (2010)
  39. Climbing Up and Down Binding Landscapes through Deep Mutational Scanning of Three Homologous Protein-Protein Complexes. Heyne M, Shirian J, Cohen I, Peleg Y, Radisky ES, Papo N, Shifman JM. J Am Chem Soc 143 17261-17275 (2021)
  40. Data-driven models for protein interaction and design. Zhu X, Ericksen SS, Demerdash ON, Mitchell JC. Proteins 81 2221-2228 (2013)
  41. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions. Vagenende V, Han AX, Pek HB, Loo BL. PLoS Comput Biol 9 e1003072 (2013)
  42. Role of tyrosine hot-spot residues at the interface of colicin E9 and immunity protein 9: a comparative free energy simulation study. Luitz MP, Zacharias M. Proteins 81 461-468 (2013)
  43. Affinity of disordered protein complexes is modulated by entropy-energy reinforcement. Hazra MK, Levy Y. Proc Natl Acad Sci U S A 119 e2120456119 (2022)
  44. On the ability of molecular dynamics simulation and continuum electrostatics to treat interfacial water molecules in protein-protein complexes. Copie G, Cleri F, Blossey R, Lensink MF. Sci Rep 6 38259 (2016)
  45. Intrinsic protein disorder could be overlooked in cocrystallization conditions: An SRCD case study. Németh E, Balogh RK, Borsos K, Czene A, Thulstrup PW, Gyurcsik B. Protein Sci 25 1977-1988 (2016)
  46. Love-Hate ligands for high resolution analysis of strain in ultra-stable protein/small molecule interaction. Fairhead M, Shen D, Chan LK, Lowe ED, Donohoe TJ, Howarth M. Bioorg Med Chem 22 5476-5486 (2014)
  47. Computational design, construction, and characterization of a set of specificity determining residues in protein-protein interactions. Nagao C, Izako N, Soga S, Khan SH, Kawabata S, Shirai H, Mizuguchi K. Proteins 80 2426-2436 (2012)
  48. Interolog interfaces in protein-protein docking. Alsop JD, Mitchell JC. Proteins 83 1940-1946 (2015)
  49. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade. Samanta S, Mukherjee S. J Chem Phys 146 165103 (2017)
  50. Molecular engineering strategies for visualizing low-affinity protein complexes. Ming Q, Gonzalez-Perez D, Luca VC. Exp Biol Med (Maywood) 244 1559-1567 (2019)
  51. Protein-protein interface detection using the energy centrality relationship (ECR) characteristic of proteins. Sudarshan S, Kodathala SB, Mahadik AC, Mehta I, Beck BW. PLoS One 9 e97115 (2014)
  52. ReplicOpter: a replicate optimizer for flexible docking. Demerdash ON, Buyan A, Mitchell JC. Proteins 78 3156-3165 (2010)
  53. Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method. Aharon L, Aharoni SL, Radisky ES, Papo N. Biochem J 477 1701-1719 (2020)
  54. Designing Cyclic-Constrained Peptides to Inhibit Human Phosphoglycerate Dehydrogenase. Qing X, Wang Q, Xu H, Liu P, Lai L. Molecules 28 6430 (2023)