2uxj Citations

pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states.

J Mol Biol 371 396-409 (2007)
Related entries: 2j8c, 2j8d, 2uws, 2uwt, 2uwu, 2uwv, 2uww, 2ux3, 2ux4, 2ux5, 2uxk, 2uxl, 2uxm

Cited: 57 times
EuropePMC logo PMID: 17570397

Abstract

The structure of the photosynthetic reaction-center from Rhodobacter sphaeroides has been determined at four different pH values (6.5, 8.0, 9.0, 10.0) in the neutral and in charge separated states. At pH 8.0, in the neutral state, we obtain a resolution of 1.87 A, which is the best ever reported for the bacterial reaction center protein. Our crystallographic data confirm the existence of two different binding positions of the secondary quinone (QB). We observe a new orientation of QB in its distal position, which shows no ring-flip compared to the orientation in the proximal position. Datasets collected for the different pH values show a pH-dependence of the population of the proximal position. The new orientation of QB in the distal position and the pH-dependence could be confirmed by continuum electrostatics calculations. Our calculations are in agreement with the experimentally observed proton uptake upon charge separation. The high resolution of our crystallographic data allows us to identify new water molecules and external residues being involved in two previously described hydrogen bond proton channels. These extended proton-transfer pathways, ending at either of the two oxo-groups of QB in its proximal position, provide additional evidence that ring-flipping is not required for complete protonation of QB upon reduction.

Articles - 2uxj mentioned but not cited (3)

  1. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem Rev 119 5607-5774 (2019)
  2. 'Double water exclusion': a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Li J, Liu Q. Bioinformatics 25 743-750 (2009)
  3. pH and Potential Transients of the bc1 Complex Co-Reconstituted in Proteo-Lipobeads with the Reaction Center from Rb. sphaeroides. Geiss AF, Khandelwal R, Baurecht D, Bliem C, Reiner-Rozman C, Boersch M, Ullmann GM, Loew LM, Naumann RL. J Phys Chem B 121 143-152 (2017)


Reviews citing this publication (7)

  1. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Romero E, Novoderezhkin VI, van Grondelle R. Nature 543 355-365 (2017)
  2. Crystal structure of cyanobacterial photosystem II at 3.0 A resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. Müh F, Renger T, Zouni A. Plant Physiol Biochem 46 238-264 (2008)
  3. Water in Photosystem II: structural, functional and mechanistic considerations. Linke K, Ho FM. Biochim Biophys Acta 1837 14-32 (2014)
  4. The nonheme iron in photosystem II. Müh F, Zouni A. Photosynth Res 116 295-314 (2013)
  5. Investigating the mechanisms of photosynthetic proteins using continuum electrostatics. Ullmann GM, Kloppmann E, Essigke T, Krammer EM, Klingen AR, Becker T, Bombarda E. Photosynth Res 97 33-53 (2008)
  6. Structure-function investigations of bacterial photosynthetic reaction centers. Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Biochemistry (Mosc) 76 1465-1483 (2011)
  7. High-field EPR on membrane proteins - crossing the gap to NMR. Möbius K, Lubitz W, Savitsky A. Prog Nucl Magn Reson Spectrosc 75 1-49 (2013)

Articles citing this publication (47)

  1. McVol - a program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. Till MS, Ullmann GM. J Mol Model 16 419-429 (2010)
  2. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Wientjes E, van Stokkum IH, van Amerongen H, Croce R. Biophys J 100 1372-1380 (2011)
  3. Structural analysis of metal sites in proteins: non-heme iron sites as a case study. Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM. J Mol Biol 388 356-380 (2009)
  4. An efficient, step-economical strategy for the design of functional metalloproteins. Rittle J, Field MJ, Green MT, Tezcan FA. Nat Chem 11 434-441 (2019)
  5. Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. Tani K, Kanno R, Makino Y, Hall M, Takenouchi M, Imanishi M, Yu LJ, Overmann J, Madigan MT, Kimura Y, Mizoguchi A, Humbel BM, Wang-Otomo ZY. Nat Commun 11 4955 (2020)
  6. Engineering of an alternative electron transfer path in photosystem II. Larom S, Salama F, Schuster G, Adir N. Proc Natl Acad Sci U S A 107 9650-9655 (2010)
  7. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, Hunter CN. Sci Adv 7 eabe2631 (2021)
  8. Hydrogen bonding and spin density distribution in the Qb semiquinone of bacterial reaction centers and comparison with the Qa site. Martin E, Samoilova RI, Narasimhulu KV, Lin TJ, O'Malley PJ, Wraight CA, Dikanov SA. J Am Chem Soc 133 5525-5537 (2011)
  9. Cryo-EM structure of the photosynthetic RC-LH1-PufX supercomplex at 2.8-Å resolution. Bracun L, Yamagata A, Christianson BM, Terada T, Canniffe DP, Shirouzu M, Liu LN. Sci Adv 7 eabf8864 (2021)
  10. Energetic insights into two electron transfer pathways in light-driven energy-converting enzymes. Kawashima K, Ishikita H. Chem Sci 9 4083-4092 (2018)
  11. GMCT : a Monte Carlo simulation package for macromolecular receptors. Ullmann RT, Ullmann GM. J Comput Chem 33 887-900 (2012)
  12. Carboxylate shifts steer interquinone electron transfer in photosynthesis. Chernev P, Zaharieva I, Dau H, Haumann M. J Biol Chem 286 5368-5374 (2011)
  13. Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. Malferrari M, Mezzetti A, Francia F, Venturoli G. Biochim Biophys Acta 1827 328-339 (2013)
  14. Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Cao P, Bracun L, Yamagata A, Christianson BM, Negami T, Zou B, Terada T, Canniffe DP, Shirouzu M, Li M, Liu LN. Nat Commun 13 1977 (2022)
  15. Hydrogen bonds between nitrogen donors and the semiquinone in the Q(B) site of bacterial reaction centers. Martin E, Samoilova RI, Narasimhulu KV, Wraight CA, Dikanov SA. J Am Chem Soc 132 11671-11677 (2010)
  16. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein. Wolf S, Freier E, Cui Q, Gerwert K. J Chem Phys 141 22D524 (2014)
  17. Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy. Malferrari M, Turina P, Francia F, Mezzetti A, Leibl W, Venturoli G. Photochem Photobiol Sci 14 238-251 (2015)
  18. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure. Rea G, Lambreva M, Polticelli F, Bertalan I, Antonacci A, Pastorelli S, Damasso M, Johanningmeier U, Giardi MT. PLoS One 6 e16216 (2011)
  19. Hydrogen bonding between the Q(B) site ubisemiquinone and Ser-L223 in the bacterial reaction center: a combined spectroscopic and computational perspective. Martin E, Baldansuren A, Lin TJ, Samoilova RI, Wraight CA, Dikanov SA, O'Malley PJ. Biochemistry 51 9086-9093 (2012)
  20. Spectrally silent light induced conformation change in photosynthetic reaction centers. Nagy L, Maróti P, Terazima M. FEBS Lett 582 3657-3662 (2008)
  21. Direct phasing of protein crystals with high solvent content. He H, Su WP. Acta Crystallogr A Found Adv 71 92-98 (2015)
  22. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the QB site in bacterial reaction centers: a combined X- and S-band (14,15)N ESEEM and DFT study. Taguchi AT, O'Malley PJ, Wraight CA, Dikanov SA. J Phys Chem B 118 1501-1509 (2014)
  23. Proton-transfer pathways in photosynthetic reaction centers analyzed by profile hidden markov models and network calculations. Krammer EM, Till MS, Sebban P, Ullmann GM. J Mol Biol 388 631-643 (2009)
  24. Thermal Effects and Structural Changes of Photosynthetic Reaction Centers Characterized by Wide Frequency Band Hydrophone: Effects of Carotenoids and Terbutryn. Nagy L, Kiss V, Brumfeld V, Osvay K, Börzsönyi Á, Magyar M, Szabó T, Dorogi M, Malkin S. Photochem Photobiol 91 1368-1375 (2015)
  25. Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution. Mezzetti A, Blanchet L, de Juan A, Leibl W, Ruckebusch C. Anal Bioanal Chem 399 1999-2014 (2011)
  26. Lipid binding to the carotenoid binding site in photosynthetic reaction centers. Deshmukh SS, Tang K, Kálmán L. J Am Chem Soc 133 16309-16316 (2011)
  27. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Vermaas JV, Taguchi AT, Dikanov SA, Wraight CA, Tajkhorshid E. Biochemistry 54 2104-2116 (2015)
  28. Assembly of a photosynthetic reaction center with ABA tri-block polymersomes: highlights on protein localization. Tangorra RR, Operamolla A, Milano F, Hassan Omar O, Henrard J, Comparelli R, Italiano F, Agostiano A, De Leo V, Marotta R, Falqui A, Farinola GM, Trotta M. Photochem Photobiol Sci 14 1844-1852 (2015)
  29. Effect of ultrasound on the function and structure of a membrane protein: The case study of photosynthetic Reaction Center from Rhodobacter sphaeroides. De Leo V, Catucci L, Di Mauro AE, Agostiano A, Giotta L, Trotta M, Milano F. Ultrason Sonochem 35 103-111 (2017)
  30. Reorganization energies of the electron transfer reactions involving quinones in the reaction center of Rhodobacter sphaeroides. Ptushenko VV, Krishtalik LI. Photosynth Res 138 167-175 (2018)
  31. Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. Saer RG, Pan J, Hardjasa A, Lin S, Rosell F, Mauk AG, Woodbury NW, Murphy ME, Beatty JT. Biochim Biophys Acta 1837 366-374 (2014)
  32. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Zheng Z, Dutton PL, Gunner MR. Proteins 78 2638-2654 (2010)
  33. Interfaces Between Alpha-helical Integral Membrane Proteins: Characterization, Prediction, and Docking. Li B, Mendenhall J, Meiler J. Comput Struct Biotechnol J 17 699-711 (2019)
  34. Lipidic cubic phase serial femtosecond crystallography structure of a photosynthetic reaction centre. Båth P, Banacore A, Börjesson P, Bosman R, Wickstrand C, Safari C, Dods R, Ghosh S, Dahl P, Ortolani G, Björg Ulfarsdottir T, Hammarin G, García Bonete MJ, Vallejos A, Ostojić L, Edlund P, Linse JB, Andersson R, Nango E, Owada S, Tanaka R, Tono K, Joti Y, Nureki O, Luo F, James D, Nass K, Johnson PJM, Knopp G, Ozerov D, Cirelli C, Milne C, Iwata S, Brändén G, Neutze R. Acta Crystallogr D Struct Biol 78 698-708 (2022)
  35. Membrane-protein crystals for neutron diffraction. Sørensen TLM, Hjorth-Jensen SJ, Oksanen E, Andersen JL, Olesen C, Møller JV, Nissen P. Acta Crystallogr D Struct Biol 74 1208-1218 (2018)
  36. Putative hydrogen bond to tyrosine M208 in photosynthetic reaction centers from Rhodobacter capsulatus significantly slows primary charge separation. Saggu M, Carter B, Zhou X, Faries K, Cegelski L, Holten D, Boxer SG, Kirmaier C. J Phys Chem B 118 6721-6732 (2014)
  37. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. Mavelli F, Trotta M, Ciriaco F, Agostiano A, Giotta L, Italiano F, Milano F. Eur Biophys J 43 301-315 (2014)
  38. Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria. Sipka G, Kis M, Maróti P. Photosynth Res 136 379-392 (2018)
  39. Comparative ENDOR study at 34 GHz of the triplet state of the primary donor in bacterial reaction centers of Rb. sphaeroides and Bl. viridis. Marchanka A, Lubitz W, Plato M, van Gastel M. Photosynth Res 120 99-111 (2014)
  40. Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces. Swainsbury DJ, Harniman RL, Di Bartolo ND, Liu J, Harper WF, Corrie AS, Jones MR. Biochim Biophys Acta 1857 1829-1839 (2016)
  41. Local water sensing: water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR. Nalepa A, Malferrari M, Lubitz W, Venturoli G, Möbius K, Savitsky A. Phys Chem Chem Phys 19 28388-28400 (2017)
  42. Mutational control of bioenergetics of bacterial reaction center probed by delayed fluorescence. Onidas D, Sipka G, Asztalos E, Maróti P. Biochim Biophys Acta 1827 1191-1199 (2013)
  43. The fe2+ site of photosynthetic reaction centers probed by multiple scattering x-ray absorption fine structure spectroscopy: improving structure resolution in dry matrices. Veronesi G, Giachini L, Francia F, Mallardi A, Palazzo G, Boscherini F, Venturoli G. Biophys J 95 814-822 (2008)
  44. Energy dissipative photoprotective mechanism of carotenoid spheroidene from the photoreaction center of purple bacteria Rhodobacter sphaeroides. Arulmozhiraja S, Nakatani N, Nakayama A, Hasegawa JY. Phys Chem Chem Phys 17 23468-23480 (2015)
  45. Studying hydrogen bonding and dynamics of the acetylate groups of the Special Pair of Rhodobacter sphaeroides WT. Gräsing D, Dziubińska-Kühn KM, Zahn S, Alia A, Matysik J. Sci Rep 9 10528 (2019)
  46. Photosystem I with benzoquinone analogues incorporated into the A1 binding site. Makita H, Hastings G. Photosynth Res 137 85-93 (2018)
  47. Supramolecular Biohybrid Construct for Photoconversion Based on a Bacterial Reaction Center Covalently Bound to Cytochrome c by an Organic Light Harvesting Bridge. Buscemi G, Trotta M, Vona D, Farinola GM, Milano F, Ragni R. Bioconjug Chem 34 629-637 (2023)