2tn4 Citations

Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily.

Structure 5 1695-711 (1997)
Cited: 85 times
EuropePMC logo PMID: 9438870

Abstract

Background

In contrast to Ca2+4-bound calmodulin (CaM), which has evolved to bind to many target sequences and thus regulate the function of a variety of enzymes, troponin C (TnC) is a bistable switch which controls contraction in striated muscles. The specific target of TnC is troponin I (TnI), the inhibitory subunit of the troponin complex on the thin filaments of muscle. To date, only the crystal structure of Ca2+2-bound TnC (i.e. in the 'off' state) had been determined, which together with the structure of Ca2+4-bound CaM formed the basis for the so-called 'HMJ' model of the conformational changes in TnC upon Ca2+ binding. NMR spectroscopic studies of Ca2+4-bound TnC (i.e. in the 'on' state) have recently been carried out, but the detailed conformational changes that take place upon switching from the off to the on state have not yet been described.

Results

We have determined the crystal structures of two forms of expressed rabbit Ca2+4-bound TnC to 2.0 A resolution. The structures show that the conformation of the N-terminal lobe (N lobe) is similar to that predicted by the HMJ model. Our results also reveal, in detail, the residues involved in binding of Ca2+ in the regulatory N lobe of the molecule. We show that the central helix, which links the N and C lobes of TnC, is better stabilized in the Ca2+2-bound than in the Ca2+4-bound state of the molecule. Comparison of the crystal structures of the off and on states of TnC reveals the specific linkages in the molecule that change in the transition from off to on state upon Ca2+-binding. Small sequence differences are also shown to account for large functional differences between CaM and TnC.

Conclusion

The two lobes of TnC are designed to respond to Ca2+-binding quite differently, although the structures with bound Ca2+ are very similar. A small number of differences in the sequences of these two lobes accounts for the fact that the C lobe is stabilized only in the open (Ca2+-bound) state, whereas the N lobe can switch between two stable states. This difference accounts for the Ca2+-dependent and Ca2+-independent interactions of the N and C lobe. The C lobe of TnC is always linked to TnI, whereas the N lobe can maintain its regulatory role - binding strongly to TnI at critical levels of Ca2+ - and in contrast, forming a stable closed conformation in the absence of Ca2+.

Reviews - 2tn4 mentioned but not cited (1)

Articles - 2tn4 mentioned but not cited (3)

  1. Predicting Ca2+ -binding sites using refined carbon clusters. Zhao K, Wang X, Wong HC, Wohlhueter R, Kirberger MP, Chen G, Yang JJ. Proteins 80 2666-2679 (2012)
  2. Pathogenic variants in TNNC2 cause congenital myopathy due to an impaired force response to calcium. van de Locht M, Donkervoort S, de Winter JM, Conijn S, Begthel L, Kusters B, Mohassel P, Hu Y, Medne L, Quinn C, Moore SA, Foley AR, Seo G, Hwee DT, Malik FI, Irving T, Ma W, Granzier HL, Kamsteeg EJ, Immadisetty K, Kekenes-Huskey P, Pinto JR, Voermans N, Bönnemann CG, Ottenheijm CA. J Clin Invest 131 145700 (2021)
  3. Measurement of calcium dissociation rates from troponin C in rigor skeletal myofibrils. Little SC, Tikunova SB, Norman C, Swartz DR, Davis JP. Front Physiol 2 70 (2011)


Reviews citing this publication (14)

  1. Regulation of contraction in striated muscle. Gordon AM, Homsher E, Regnier M. Physiol Rev 80 853-924 (2000)
  2. Calcium, thin filaments, and the integrative biology of cardiac contractility. Kobayashi T, Solaro RJ. Annu Rev Physiol 67 39-67 (2005)
  3. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  4. Target selectivity in EF-hand calcium binding proteins. Bhattacharya S, Bunick CG, Chazin WJ. Biochim Biophys Acta 1742 69-79 (2004)
  5. Structural based insights into the role of troponin in cardiac muscle pathophysiology. Li MX, Wang X, Sykes BD. J Muscle Res Cell Motil 25 559-579 (2004)
  6. The contractile apparatus as a target for drugs against heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin c. Sorsa T, Pollesello P, Solaro RJ. Mol Cell Biochem 266 87-107 (2004)
  7. Centrins in retinal photoreceptor cells: regulators in the connecting cilium. Trojan P, Krauss N, Choe HW, Giessl A, Pulvermüller A, Wolfrum U. Prog Retin Eye Res 27 237-259 (2008)
  8. Structure-function relationships in Ca(2+) cycling proteins. MacLennan DH, Abu-Abed M, Kang C. J Mol Cell Cardiol 34 897-918 (2002)
  9. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Li MX, Robertson IM, Sykes BD. Biochem Biophys Res Commun 369 88-99 (2008)
  10. Infrared spectroscopic study of the metal-coordination structures of calcium-binding proteins. Nara M, Tanokura M. Biochem Biophys Res Commun 369 225-239 (2008)
  11. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Marques MA, de Oliveira GA. Front Physiol 7 429 (2016)
  12. Molecular interaction studies of peptides using steady-state fluorescence intensity. Static (de)quenching revisited. Ribeiro MM, Franquelim HG, Castanho MA, Veiga AS. J Pept Sci 14 401-406 (2008)
  13. Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. Bullard B, Pastore A. J Muscle Res Cell Motil 40 99-110 (2019)
  14. Invited review: probing the structures of muscle regulatory proteins using small-angle solution scattering. Lu Y, Jeffries CM, Trewhella J. Biopolymers 95 505-516 (2011)

Articles citing this publication (67)

  1. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Takeda S, Yamashita A, Maeda K, Maéda Y. Nature 424 35-41 (2003)
  2. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Seidman CE. N Engl J Med 343 1688-1696 (2000)
  3. Ca(2+)-regulated structural changes in troponin. Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ. Proc Natl Acad Sci U S A 102 5038-5043 (2005)
  4. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maéda Y. Proc Natl Acad Sci U S A 95 4847-4852 (1998)
  5. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. Malmendal A, Evenäs J, Forsén S, Akke M. J Mol Biol 293 883-899 (1999)
  6. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T. J Mol Biol 352 178-201 (2005)
  7. Designing calcium-sensitizing mutations in the regulatory domain of cardiac troponin C. Tikunova SB, Davis JP. J Biol Chem 279 35341-35352 (2004)
  8. Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147-163 and bepridil. Wang X, Li MX, Sykes BD. J Biol Chem 277 31124-31133 (2002)
  9. Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Li Y, Love ML, Putkey JA, Cohen C. Proc Natl Acad Sci U S A 97 5140-5145 (2000)
  10. Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. Grabarek Z. J Mol Biol 346 1351-1366 (2005)
  11. Solution structure of human cardiac troponin C in complex with the green tea polyphenol, (-)-epigallocatechin 3-gallate. Robertson IM, Li MX, Sykes BD. J Biol Chem 284 23012-23023 (2009)
  12. In situ orientations of protein domains: troponin C in skeletal muscle fibers. Ferguson RE, Sun YB, Mercier P, Brack AS, Sykes BD, Corrie JE, Trentham DR, Irving M. Mol Cell 11 865-874 (2003)
  13. Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. Luo Y, Wu JL, Li B, Langsetmo K, Gergely J, Tao T. J Mol Biol 296 899-910 (2000)
  14. Ca(2+) induces an extended conformation of the inhibitory region of troponin I in cardiac muscle troponin. Dong WJ, Xing J, Robinson JM, Cheung HC. J Mol Biol 314 51-61 (2001)
  15. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin. Mäler L, Sastry M, Chazin WJ. J Mol Biol 317 279-290 (2002)
  16. Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Tsigelny I, Shindyalov IN, Bourne PE, Südhof TC, Taylor P. Protein Sci 9 180-185 (2000)
  17. Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Liou YM, Kuo SC, Hsieh SR. Pflugers Arch 456 787-800 (2008)
  18. Mass spectrometry-based carboxyl footprinting of proteins: method evaluation. Zhang H, Wen J, Huang RY, Blankenship RE, Gross ML. Int J Mass Spectrom 312 78-86 (2012)
  19. Cooperative [Ca²+]-dependent regulation of the rate of myosin binding to actin: solution data and the tropomyosin chain model. Geeves M, Griffiths H, Mijailovich S, Smith D. Biophys J 100 2679-2687 (2011)
  20. Inhibitory region of troponin I: Ca(2+)-dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments. Kobayashi T, Kobayashi M, Gryczynski Z, Lakowicz JR, Collins JH. Biochemistry 39 86-91 (2000)
  21. Correlating calcium binding, Förster resonance energy transfer, and conformational change in the biosensor TN-XXL. Geiger A, Russo L, Gensch T, Thestrup T, Becker S, Hopfner KP, Griesinger C, Witte G, Griesbeck O. Biophys J 102 2401-2410 (2012)
  22. A model of troponin-I in complex with troponin-C using hybrid experimental data: the inhibitory region is a beta-hairpin. Tung CS, Wall ME, Gallagher SC, Trewhella J. Protein Sci 9 1312-1326 (2000)
  23. Calcium-dependent changes in the flexibility of the regulatory domain of troponin C in the troponin complex. Blumenschein TM, Stone DB, Fletterick RJ, Mendelson RA, Sykes BD. J Biol Chem 280 21924-21932 (2005)
  24. Solution structure of the chicken skeletal muscle troponin complex via small-angle neutron and X-ray scattering. King WA, Stone DB, Timmins PA, Narayanan T, von Brasch AA, Mendelson RA, Curmi PM. J Mol Biol 345 797-815 (2005)
  25. Troponin regulatory function and dynamics revealed by H/D exchange-mass spectrometry. Kowlessur D, Tobacman LS. J Biol Chem 285 2686-2694 (2010)
  26. Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. Chaudhuri T, Mukherjea M, Sachdev S, Randall JD, Sarkar S. J Mol Biol 352 58-71 (2005)
  27. An EF-hand phage display study of calmodulin subdomain pairing. Linse S, Voorhies M, Norström E, Schultz DA. J Mol Biol 296 473-486 (2000)
  28. Conformational changes of troponin C within the thin filaments detected by neutron scattering. Matsumoto F, Makino K, Maeda K, Patzelt H, Maéda Y, Fujiwara S. J Mol Biol 342 1209-1221 (2004)
  29. News Pulling the calcium trigger. Sykes BD. Nat Struct Biol 10 588-589 (2003)
  30. Conformations of the regulatory domain of cardiac troponin C examined by residual dipolar couplings. Pääkkönen K, Sorsa T, Drakenberg T, Pollesello P, Tilgmann C, Permi P, Heikkinen S, Kilpeläinen I, Annila A. Eur J Biochem 267 6665-6672 (2000)
  31. Kinetic analysis of the interactions between troponin C and the C-terminal troponin I regulatory region and validation of a new peptide delivery/capture system used for surface plasmon resonance. Tripet B, De Crescenzo G, Grothe S, O'Connor-McCourt M, Hodges RS. J Mol Biol 323 345-362 (2002)
  32. Conformational variation of calcium-bound troponin C. Soman J, Tao T, Phillips GN. Proteins 37 510-511 (1999)
  33. A structural and dynamic characterization of the EF-hand protein CLSP. Babini E, Bertini I, Capozzi F, Chirivino E, Luchinat C. Structure 14 1029-1038 (2006)
  34. Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. Smith L, Greenfield NJ, Hitchcock-DeGregori SE. Biophys J 76 400-408 (1999)
  35. Proximity relationships between residue 117 of rabbit skeletal troponin-I and residues in troponin-C and actin. Li Z, Gergely J, Tao T. Biophys J 81 321-333 (2001)
  36. Ca2+-dependent interaction of the inhibitory region of troponin I with acidic residues in the N-terminal domain of troponin C. Kobayashi T, Zhao X, Wade R, Collins JH. Biochim Biophys Acta 1430 214-221 (1999)
  37. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. Badr MA, Pinto JR, Davidson MW, Chase PB. PLoS One 11 e0164222 (2016)
  38. The structure of Lethocerus troponin C: insights into the mechanism of stretch activation in muscles. De Nicola G, Burkart C, Qiu F, Agianian B, Labeit S, Martin S, Bullard B, Pastore A. Structure 15 813-824 (2007)
  39. Troponin-I interacts with the Met47 region of skeletal muscle actin. Implications for the mechanism of thin filament regulation by calcium. Luo Y, Leszyk J, Li B, Li Z, Gergely J, Tao T. J Mol Biol 316 429-434 (2002)
  40. Calcium- and magnesium-dependent interactions between the C-terminus of troponin I and the N-terminal, regulatory domain of troponin C. Digel J, Abugo O, Kobayashi T, Gryczynski Z, Lakowicz JR, Collins JH. Arch Biochem Biophys 387 243-249 (2001)
  41. HD exchange and PLIMSTEX determine the affinities and order of binding of Ca2+ with troponin C. Huang RY, Rempel DL, Gross ML. Biochemistry 50 5426-5435 (2011)
  42. Molecular Basis of S100A1 Activation at Saturating and Subsaturating Calcium Concentrations. Scott CE, Kekenes-Huskey PM. Biophys J 110 1052-1063 (2016)
  43. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements. Goto K, Toyama A, Takeuchi H, Takayama K, Saito T, Iwamoto M, Yeh JZ, Narahashi T. FEBS Lett 561 51-57 (2004)
  44. Calcineurin regulatory subunit B is a unique calcium sensor that regulates calcineurin in both calcium-dependent and calcium-independent manner. Li J, Jia Z, Zhou W, Wei Q. Proteins 77 612-623 (2009)
  45. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations. Genchev GZ, Kobayashi T, Lu H. PLoS One 8 e58313 (2013)
  46. Effect of metal ion substitutions in anticoagulation factor I from the venom of Agkistrodon acutus on the binding of activated coagulation factor X and on structural stability. Xu X, Zhang L, Shen D, Wu H, Peng L, Li J. J Biol Inorg Chem 14 559-571 (2009)
  47. Electric charge balance mechanism of extended soluble proteins. Uchikoga N, Takahashi SY, Ke R, Sonoyama M, Mitaku S. Protein Sci 14 74-80 (2005)
  48. Fourier transform infrared spectroscopic study on the Ca2+ -bound coordination structures of synthetic peptide analogues of the calcium-binding site III of troponin C. Nara M, Morii H, Yumoto F, Kagi H, Tanokura M. Biopolymers 82 339-343 (2006)
  49. Kinetic analysis of the interactions between troponin C (TnC) and troponin I (TnI) binding peptides: evidence for separate binding sites for the 'structural' N-terminus and the 'regulatory' C-terminus of TnI on TnC. Tripet B, De Crescenzo G, Grothe S, O'Connor-McCourt M, Hodges RS. J Mol Recognit 16 37-53 (2003)
  50. Structures of the troponin core domain containing the cardiomyopathy-causing mutants studied by small-angle X-ray scattering. Matsuo T, Takeda S, Oda T, Fujiwara S. Biophys Physicobiol 12 145-158 (2015)
  51. The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Webb M, Jackson del R, Stewart TJ, Dugan SP, Carter MS, Cremo CR, Baker JE. Biochemistry 52 6437-6444 (2013)
  52. Calcium-bindings of wild type and mutant troponin Cs of Caenorhabditis elegans. Ueda T, Katsuzaki H, Terami H, Ohtsuka H, Kagawa H, Murase T, Kajiwara Y, Yoshioka O, Iio T. Biochim Biophys Acta 1548 220-228 (2001)
  53. Coarse-Grained Modeling of Peptide Docking Associated with Large Conformation Transitions of the Binding Protein: Troponin I Fragment-Troponin C System. Wabik J, Kurcinski M, Kolinski A. Molecules 20 10763-10780 (2015)
  54. Binding of calcium and magnesium to human cardiac troponin C. Rayani K, Seffernick J, Li AY, Davis JP, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. J Biol Chem 296 100350 (2021)
  55. Binding properties of the calcium-activated F2 isoform of Lethocerus troponin C. Martin SR, Avella G, Adrover M, de Nicola GF, Bullard B, Pastore A. Biochemistry 50 1839-1847 (2011)
  56. Effects of high pressure and temperature on the wild-type and F29W mutant forms of the N-domain of avian troponin C. Yu A, Ballard L, Smillie L, Pearlstone J, Foguel D, Silva J, Jonas A, Jonas J. Biochim Biophys Acta 1431 53-63 (1999)
  57. Calcium-dependent protein-protein interactions induce changes in proximity relationships of Cys48 and Cys64 in chicken skeletal troponin I. Liou YM, Chen MW. Eur J Biochem 270 3092-3100 (2003)
  58. Conformational changes induced in troponin I by interaction with troponin T and actin/tropomyosin. Tao T, Gong BJ, Grabarek Z, Gergely J. Biochim Biophys Acta 1450 423-433 (1999)
  59. The structure of Ca2+-loaded S100A2 at 1.3-Å resolution. Koch M, Fritz G. FEBS J 279 1799-1810 (2012)
  60. Conformational thermodynamics guided structural reconstruction of biomolecular fragments. Sikdar S, Chakrabarti J, Ghosh M. Mol Biosyst 12 444-453 (2016)
  61. Mutation of Lys-75 affects calmodulin conformation. Medvedeva MV, Polyakova OV, Watterson DM, Gusev NB. FEBS Lett 450 139-143 (1999)
  62. Structural preference for changes in the direction of the Ca2+-induced transition: a study of the regulatory domain of skeletal troponin-C. Pitici F. Biophys J 84 82-101 (2003)
  63. Infrared study of synthetic peptide analogues of the calcium-binding site III of troponin C: The role of helix F of an EF-hand motif. Nara M, Morii H, Tanokura M. Biopolymers 99 342-347 (2013)
  64. The calcium-saturated cTnI/cTnC complex: structure of the inhibitory region of cTnI. Sheldahl C, Xing J, Dong WJ, Harvey SC, Cheung HC. Biophys J 84 1057-1064 (2003)
  65. Molecular dynamics provides new insights into the mechanism of calcium signal transduction and interdomain interactions in cardiac troponin. Genchev GZ, Kobayashi M, Kobayashi T, Lu H. FEBS Open Bio 11 1841-1853 (2021)
  66. What determines the degree of compactness of a calcium-binding protein? Mouawad L, Isvoran A, Quiniou E, Craescu CT. FEBS J 276 1082-1093 (2009)
  67. Replacement of Lys-75 of calmodulin affects its interaction with smooth muscle caldesmon. Medvedeva MV, Djemuchadze DR, Watterson DM, Marston SB, Gusev NB. Biochim Biophys Acta 1544 143-150 (2001)