2q7k Citations

Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone.

J Biol Chem 282 25801-16 (2007)
Related entries: 2q7i, 2q7j, 2q7l

Cited: 109 times
EuropePMC logo PMID: 17591767

Abstract

The androgen receptor (AR) is transcriptionally activated by high affinity binding of testosterone (T) or its 5alpha-reduced metabolite, dihydrotestosterone (DHT), a more potent androgen required for male reproductive tract development. The molecular basis for the weaker activity of T was investigated by determining T-bound ligand binding domain crystal structures of wild-type AR and a prostate cancer somatic mutant complexed with the AR FXXLF or coactivator LXXLL peptide. Nearly identical interactions of T and DHT in the AR ligand binding pocket correlate with similar rates of dissociation from an AR fragment containing the ligand binding domain. However, T induces weaker AR FXXLF and coactivator LXXLL motif interactions at activation function 2 (AF2). Less effective FXXLF motif binding to AF2 accounts for faster T dissociation from full-length AR. T can nevertheless acquire DHT-like activity through an AR helix-10 H874Y prostate cancer mutation. The Tyr-874 mutant side chain mediates a new hydrogen bonding scheme from exterior helix-10 to backbone protein core helix-4 residue Tyr-739 to rescue T-induced AR activity by improving AF2 binding of FXXLF and LXXLL motifs. Greater AR AF2 activity by improved core helix interactions is supported by the effects of melanoma antigen gene protein-11, an AR coregulator that binds the AR FXXLF motif and targets AF2 for activation. We conclude that T is a weaker androgen than DHT because of less favorable T-dependent AR FXXLF and coactivator LXXLL motif interactions at AF2.

Articles - 2q7k mentioned but not cited (8)

  1. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. Askew EB, Gampe RT, Stanley TB, Faggart JL, Wilson EM. J Biol Chem 282 25801-25816 (2007)
  2. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  3. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Sci Rep 11 2220 (2021)
  4. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations. Sakkiah S, Kusko R, Pan B, Guo W, Ge W, Tong W, Hong H. Front Pharmacol 9 492 (2018)
  5. Determining novel candidate anti-hepatocellular carcinoma drugs using interaction networks and molecular docking between drug targets and natural compounds of SiNiSan. Zhang Q, Feng Z, Gao M, Guo L. PeerJ 9 e10745 (2021)
  6. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women's Hormonal Health and Reproductive System Diseases. Sakhteman A, Pasdaran A, Afifi M, Hamedi A. J Evid Based Integr Med 25 2515690X20932527 (2020)
  7. An Integrated Analysis of Network Pharmacology, Molecular Docking, and Experiment Validation to Explore the New Candidate Active Component and Mechanism of Cuscutae Semen-Mori Fructus Coupled-Herbs in Treating Oligoasthenozoospermia. Bai X, Tang Y, Li Q, Liu D, Liu G, Fan X, Liu Z, Yu S, Tang T, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Drug Des Devel Ther 15 2059-2089 (2021)
  8. Experimental validation and molecular docking to explore the active components of cannabis in testicular function and sperm quality modulations in rats. Nwonuma CO, Nwatu VC, Mostafa-Hedeab G, Adeyemi OS, Alejolowo OO, Ojo OA, Adah SA, Awakan OJ, Okolie CE, Asogwa NT, Udofia IA, Egharevba GO, Aljarba NH, Alkahtani S, Batiha GE. BMC Complement Med Ther 22 227 (2022)


Reviews citing this publication (32)

  1. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Harris WP, Mostaghel EA, Nelson PS, Montgomery B. Nat Clin Pract Urol 6 76-85 (2009)
  2. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Nucl Recept Signal 6 e008 (2008)
  3. Androgen Signaling in Prostate Cancer. Dai C, Heemers H, Sharifi N. Cold Spring Harb Perspect Med 7 (2017)
  4. Estrogen and androgen signaling in the pathogenesis of BPH. Ho CK, Habib FK. Nat Rev Urol 8 29-41 (2011)
  5. Androgen receptor antagonists in castration-resistant prostate cancer. Rathkopf D, Scher HI. Cancer J 19 43-49 (2013)
  6. Assessment of steroidogenesis and steroidogenic enzyme functions. Luu-The V. J Steroid Biochem Mol Biol 137 176-182 (2013)
  7. Posttranslational modification of the androgen receptor in prostate cancer. van der Steen T, Tindall DJ, Huang H. Int J Mol Sci 14 14833-14859 (2013)
  8. Androgen receptor coregulators: recruitment via the coactivator binding groove. van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Mol Cell Endocrinol 352 57-69 (2012)
  9. Genomic profiling defines subtypes of prostate cancer with the potential for therapeutic stratification. Schoenborn JR, Nelson P, Fang M. Clin Cancer Res 19 4058-4066 (2013)
  10. Structural analyses of sex hormone-binding globulin reveal novel ligands and function. Avvakumov GV, Cherkasov A, Muller YA, Hammond GL. Mol Cell Endocrinol 316 13-23 (2010)
  11. ARe we there yet? Understanding androgen receptor signaling in breast cancer. Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. NPJ Breast Cancer 6 47 (2020)
  12. Prostate cancer: current treatment and prevention strategies. Chen FZ, Zhao XK. Iran Red Crescent Med J 15 279-284 (2013)
  13. 5α-Reduced glucocorticoids: a story of natural selection. Nixon M, Upreti R, Andrew R. J Endocrinol 212 111-127 (2012)
  14. Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Askew EB, Minges JT, Hnat AT, Wilson EM. Mol Cell Endocrinol 348 403-410 (2012)
  15. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Stein MN, Patel N, Bershadskiy A, Sokoloff A, Singer EA. Asian J Androl 16 387-400 (2014)
  16. Androgen receptors beyond prostate cancer: an old marker as a new target. Munoz J, Wheler JJ, Kurzrock R. Oncotarget 6 592-603 (2015)
  17. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Shohat-Tal A, Sen A, Barad DH, Kushnir V, Gleicher N. Nat Rev Endocrinol 11 429-441 (2015)
  18. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Sakkiah S, Ng HW, Tong W, Hong H. Expert Opin Ther Targets 20 1267-1282 (2016)
  19. Circulating steroid hormone variations throughout different stages of prostate cancer. Snaterse G, Visser JA, Arlt W, Hofland J. Endocr Relat Cancer 24 R403-R420 (2017)
  20. Androgen receptor modulators: a marriage of chemistry and biology. McEwan IJ. Future Med Chem 5 1109-1120 (2013)
  21. Precision medicine for prostate cancer. Galazi M, Rodriguez-Vida A, Ng T, Mason M, Chowdhury S. Expert Rev Anticancer Ther 14 1305-1315 (2014)
  22. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. J Biol Chem 296 100240 (2021)
  23. [Does the pharmacological class effect between the different luteinizing hormone releasing hormone analogues used in the treatment of prostate cancer have to be assumed?]. Vilar-González S, Maldonado-Pijuan X, Andrés-García I. Actas Urol Esp 34 749-757 (2010)
  24. Androgens and prevention of prostate cancer. Sarvis JA, Thompson IM. Curr Opin Endocrinol Diabetes Obes 15 271-277 (2008)
  25. Evidence-based medicine: comparative analysis of luteinizing hormone-releasing hormone analogues in combination with external beam radiation and surgery in the treatment of carcinoma of the prostate. González SV, Pijuan XM. BJU Int 107 1200-1208 (2011)
  26. Testosterone May Hold Therapeutic Promise for the Treatment of Ischemic Stroke in Aging: A Closer Look at Laboratory Findings. Farajdokht F, Farhoudi M, Majdi A, Zamanlu M, Sadigh-Eteghad S, Vahedi S, Mahmoudi J. Adv Pharm Bull 9 48-55 (2019)
  27. [Androgen-deprivation therapy in prostate cancer: clinical evidence and future perspectives]. Pinto F, Calarco A, Totaro A, Sacco E, Volpe A, Racioppi M, D'Addessi A, Bassi PF. Urologia 77 71-83 (2010)
  28. Androgen Receptor in Hormone Receptor-Positive Breast Cancer. Khan AF, Karami S, Peidl AS, Waiters KD, Babajide MF, Bawa-Khalfe T. Int J Mol Sci 25 476 (2023)
  29. Making the Case for Autophagy Inhibition as a Therapeutic Strategy in Combination with Androgen-Targeted Therapies in Prostate Cancer. Elshazly AM, Gewirtz DA. Cancers (Basel) 15 5029 (2023)
  30. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Alemany M. Int J Mol Sci 23 11952 (2022)
  31. Treatment of Androgenetic Alopecia Using PRP to Target Dysregulated Mechanisms and Pathways. Abdin R, Zhang Y, Jimenez JJ. Front Med (Lausanne) 9 843127 (2022)
  32. [Qualitative and quantitative hormonal regulation in castration-resistant prostate cancer]. Murez T, Basset V, Audenet F, Lebret T, Branchereau J. Prog Urol 23 Suppl 1 S1-8 (2013)

Articles citing this publication (69)

  1. The role of androgen receptor mutations in prostate cancer progression. Brooke GN, Bevan CL. Curr Genomics 10 18-25 (2009)
  2. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB, Wilson EM. Cancer Res 71 1486-1496 (2011)
  3. Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP. Karpf AR, Bai S, James SR, Mohler JL, Wilson EM. Mol Cancer Res 7 523-535 (2009)
  4. Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer. Ponguta LA, Gregory CW, French FS, Wilson EM. J Biol Chem 283 20989-21001 (2008)
  5. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone. Sedelaar JP, Isaacs JT. Prostate 69 1724-1729 (2009)
  6. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N, Habert R, Mhaouty-Kodja S, Tronche F, Sitruk-Ware R, Schumacher M, Ghandour MS. Brain 136 132-146 (2013)
  7. Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Brooke GN, Parker MG, Bevan CL. Oncogene 27 2941-2950 (2008)
  8. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Kahn B, Collazo J, Kyprianou N. Int J Biol Sci 10 588-595 (2014)
  9. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Mohler JL, Titus MA, Wilson EM. Clin Cancer Res 17 5844-5849 (2011)
  10. Levels of 5alpha-reductase type 1 and type 2 are increased in localized high grade compared to low grade prostate cancer. Thomas LN, Douglas RC, Lazier CB, Gupta R, Norman RW, Murphy PR, Rittmaster RS, Too CK. J Urol 179 147-151 (2008)
  11. Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor. Bai S, Wilson EM. Mol Cell Biol 28 1947-1963 (2008)
  12. Testosterone, not 5α-dihydrotestosterone, stimulates LRH-1 leading to FSH-independent expression of Cyp19 and P450scc in granulosa cells. Wu YG, Bennett J, Talla D, Stocco C. Mol Endocrinol 25 656-668 (2011)
  13. Strategies and methods to study sex differences in cardiovascular structure and function: a guide for basic scientists. Miller VM, Kaplan JR, Schork NJ, Ouyang P, Berga SL, Wenger NK, Shaw LJ, Webb RC, Mallampalli M, Steiner M, Taylor DA, Merz CN, Reckelhoff JF. Biol Sex Differ 2 14 (2011)
  14. Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators. Askew EB, Bai S, Hnat AT, Minges JT, Wilson EM. J Biol Chem 284 34793-34808 (2009)
  15. The anxiolytic effect of testosterone in the rat is mediated via the androgen receptor. Hodosy J, Zelmanová D, Majzúnová M, Filová B, Malinová M, Ostatníková D, Celec P. Pharmacol Biochem Behav 102 191-195 (2012)
  16. Transcriptional synergy between melanoma antigen gene protein-A11 (MAGE-11) and p300 in androgen receptor signaling. Askew EB, Bai S, Blackwelder AJ, Wilson EM. J Biol Chem 285 21824-21836 (2010)
  17. A new small molecule inhibitor of estrogen receptor alpha binding to estrogen response elements blocks estrogen-dependent growth of cancer cells. Mao C, Patterson NM, Cherian MT, Aninye IO, Zhang C, Montoya JB, Cheng J, Putt KS, Hergenrother PJ, Wilson EM, Nardulli AM, Nordeen SK, Shapiro DJ. J Biol Chem 283 12819-12830 (2008)
  18. Hormone control and expression of androgen receptor coregulator MAGE-11 in human endometrium during the window of receptivity to embryo implantation. Bai S, Grossman G, Yuan L, Lessey BA, French FS, Young SL, Wilson EM. Mol Hum Reprod 14 107-116 (2008)
  19. Testosterone and vascular function in aging. Lopes RA, Neves KB, Carneiro FS, Tostes RC. Front Physiol 3 89 (2012)
  20. The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. Hay CW, McEwan IJ. PLoS One 7 e32514 (2012)
  21. Outsmarting androgen receptor: creative approaches for targeting aberrant androgen signaling in advanced prostate cancer. Knudsen KE, Kelly WK. Expert Rev Endocrinol Metab 6 483-493 (2011)
  22. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, Dubbink HJ. J Biol Chem 285 5097-5105 (2010)
  23. Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins. Su S, Minges JT, Grossman G, Blackwelder AJ, Mohler JL, Wilson EM. J Biol Chem 288 24809-24824 (2013)
  24. Discovery of the selective androgen receptor modulator MK-0773 using a rational development strategy based on differential transcriptional requirements for androgenic anabolism versus reproductive physiology. Schmidt A, Kimmel DB, Bai C, Scafonas A, Rutledge S, Vogel RL, McElwee-Witmer S, Chen F, Nantermet PV, Kasparcova V, Leu CT, Zhang HZ, Duggan ME, Gentile MA, Hodor P, Pennypacker B, Masarachia P, Opas EE, Adamski SA, Cusick TE, Wang J, Mitchell HJ, Kim Y, Prueksaritanont T, Perkins JJ, Meissner RS, Hartman GD, Freedman LP, Harada S, Ray WJ. J Biol Chem 285 17054-17064 (2010)
  25. Androgen receptor molecular biology and potential targets in prostate cancer. Wilson EM. Ther Adv Urol 2 105-117 (2010)
  26. Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. Minges JT, Su S, Grossman G, Blackwelder AJ, Pop EA, Mohler JL, Wilson EM. J Biol Chem 288 1939-1952 (2013)
  27. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors. Wu Y, Godoy A, Azzouni F, Wilton JH, Ip C, Mohler JL. Prostate 73 1470-1482 (2013)
  28. A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes. Cherian MT, Wilson EM, Shapiro DJ. J Biol Chem 287 23368-23380 (2012)
  29. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Trapman J, Jenster G. Mol Endocrinol 23 1776-1786 (2009)
  30. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Badders NM, Korff A, Miranda HC, Vuppala PK, Smith RB, Winborn BJ, Quemin ER, Sopher BL, Dearman J, Messing J, Kim NC, Moore J, Freibaum BD, Kanagaraj AP, Fan B, Tillman H, Chen PC, Wang Y, Freeman BB, Li Y, Kim HJ, La Spada AR, Taylor JP. Nat Med 24 427-437 (2018)
  31. Androgen receptor exon 1 mutation causes androgen insensitivity by creating phosphorylation site and inhibiting melanoma antigen-A11 activation of NH2- and carboxyl-terminal interaction-dependent transactivation. Lagarde WH, Blackwelder AJ, Minges JT, Hnat AT, French FS, Wilson EM. J Biol Chem 287 10905-10915 (2012)
  32. Primate-specific melanoma antigen-A11 regulates isoform-specific human progesterone receptor-B transactivation. Su S, Blackwelder AJ, Grossman G, Minges JT, Yuan L, Young SL, Wilson EM. J Biol Chem 287 34809-34824 (2012)
  33. SRD5A2 V89L polymorphism and prostate cancer risk: a meta-analysis. Wang C, Tao W, Chen Q, Hu H, Wen XY, Han R. Prostate 70 170-178 (2010)
  34. Analysis of interdomain interactions of the androgen receptor. Wilson EM. Methods Mol Biol 776 113-129 (2011)
  35. Pharmacokinetics and pharmacodynamics of LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo-[3,2-f]quinolin-7(6H)-one], an orally available nonsteroidal-selective androgen receptor modulator. Vajda EG, López FJ, Rix P, Hill R, Chen Y, Lee KJ, O'Brien Z, Chang WY, Meglasson MD, Lee YH. J Pharmacol Exp Ther 328 663-670 (2009)
  36. Proteomic Analysis of Charcoal-Stripped Fetal Bovine Serum Reveals Changes in the Insulin-like Growth Factor Signaling Pathway. Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, Wei H, Ma D, Qu J, Mohler JL, Tang L, Wu Y. J Proteome Res 17 2963-2977 (2018)
  37. Testosterone-dependent interaction between androgen receptor and aryl hydrocarbon receptor induces liver receptor homolog 1 expression in rat granulosa cells. Wu Y, Baumgarten SC, Zhou P, Stocco C. Mol Cell Biol 33 2817-2828 (2013)
  38. Molecular determinants of the recognition of ulipristal acetate by oxo-steroid receptors. Petit-Topin I, Fay M, Resche-Rigon M, Ulmann A, Gainer E, Rafestin-Oblin ME, Fagart J. J Steroid Biochem Mol Biol 144 Pt B 427-435 (2014)
  39. The SRD5A2 V89L polymorphism is associated with severity of disease in men with early onset prostate cancer. Scariano JK, Treat E, Alba F, Nelson H, Ness SA, Smith AY. Prostate 68 1798-1805 (2008)
  40. Gain in transcriptional activity by primate-specific coevolution of melanoma antigen-A11 and its interaction site in androgen receptor. Liu Q, Su S, Blackwelder AJ, Minges JT, Wilson EM. J Biol Chem 286 29951-29963 (2011)
  41. Dynamic communication between androgen and coactivator: mutually induced conformational perturbations in androgen receptor ligand-binding domain. Xu X, Yang W, Wang X, Li Y, Wang Y, Ai C. Proteins 79 1154-1171 (2011)
  42. Establishment of long-term monolayer cultures of somatic cells from human fetal testes and expansion of peritubular myoid cells in the presence of androgen. Cowan G, Childs AJ, Anderson RA, Saunders PT. Reproduction 139 749-757 (2010)
  43. Melanoma antigen-A11 regulates substrate-specificity of Skp2-mediated protein degradation. Su S, Chen X, Geng J, Minges JT, Grossman G, Wilson EM. Mol Cell Endocrinol 439 1-9 (2017)
  44. Post-translational Down-regulation of Melanoma Antigen-A11 (MAGE-A11) by Human p14-ARF Tumor Suppressor. Minges JT, Grossman G, Zhang P, Kafri T, Wilson EM. J Biol Chem 290 25174-25187 (2015)
  45. Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups. Zaman N, Giannopoulos PN, Chowdhury S, Bonneil E, Thibault P, Wang E, Trifiro M, Paliouras M. PLoS One 9 e113190 (2014)
  46. Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cell-penetrating peptides, and lentiviral infection. van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Jenster G, Trapman J. Prostate 71 241-253 (2011)
  47. A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation. Wong HY, Hoogerbrugge JW, Pang KL, van Leeuwen M, van Royen ME, Molier M, Berrevoets CA, Dooijes D, Dubbink HJ, van de Wijngaart DJ, Wolffenbuttel KP, Trapman J, Kleijer WJ, Drop SL, Grootegoed JA, Brinkmann AO. Mol Cell Endocrinol 292 69-78 (2008)
  48. Dominant-negative androgen receptor inhibition of intracrine androgen-dependent growth of castration-recurrent prostate cancer. Titus MA, Zeithaml B, Kantor B, Li X, Haack K, Moore DT, Wilson EM, Mohler JL, Kafri T. PLoS One 7 e30192 (2012)
  49. Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Kharlyngdoh JB, Pradhan A, Asnake S, Walstad A, Ivarsson P, Olsson PE. Environ Int 74 60-70 (2015)
  50. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Dahiya NR, Chandrasekaran B, Kolluru V, Ankem M, Damodaran C, Vadhanam MV. Mol Carcinog 57 1332-1341 (2018)
  51. Androgen receptor regulation by histone methyltransferase Suppressor of variegation 3-9 homolog 2 and Melanoma antigen-A11. Askew EB, Bai S, Parris AB, Minges JT, Wilson EM. Mol Cell Endocrinol 443 42-51 (2017)
  52. Biology and natural history of prostate cancer and the role of chemoprevention. Rosenberg MT, Froehner M, Albala D, Miner MM. Int J Clin Pract 64 1746-1753 (2010)
  53. Molecular Mechanism of Binding between 17β-Estradiol and DNA. Hilder TA, Hodgkiss JM. Comput Struct Biotechnol J 15 91-97 (2017)
  54. The direction of cross affects [corrected] obesity after puberty in male but not female offspring. Kärst S, Arends D, Heise S, Trost J, Yaspo ML, Amstislavskiy V, Risch T, Lehrach H, Brockmann GA. BMC Genomics 16 904 (2015)
  55. Androgen receptor-mediated regulation of adrenocortical activity in the sand rat, Psammomys obesus. Benmouloud A, Amirat Z, Khammar F, Patchev AV, Exbrayat JM, Almeida OF. J Comp Physiol B 184 1055-1063 (2014)
  56. Nitric oxidergic cells related to ejaculation in gerbil forebrain contain androgen receptor and respond to testosterone. Simmons DA, Yahr P. J Comp Neurol 519 900-915 (2011)
  57. Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor. Azhagiya Singam ER, Tachachartvanich P, La Merrill MA, Smith MT, Durkin KA. J Phys Chem B 123 7657-7666 (2019)
  58. The Bound Structures of 17β-Estradiol-Binding Aptamers. Hilder TA, Hodgkiss JM. Chemphyschem 18 1881-1887 (2017)
  59. Diagnosis and treatment of sexual dysfunctions in late-onset hypogonadism. Kim JW, Moon du G. Korean J Urol 52 725-735 (2011)
  60. Discovery of Novel Androgen Receptor Ligands by Structure-based Virtual Screening and Bioassays. Zhou W, Duan M, Fu W, Pang J, Tang Q, Sun H, Xu L, Chang S, Li D, Hou T. Genomics Proteomics Bioinformatics 16 416-427 (2018)
  61. Androgen receptor mutations modulate activation by 11-oxygenated androgens and glucocorticoids. Snaterse G, Mies R, van Weerden WM, French PJ, Jonker JW, Houtsmuller AB, van Royen ME, Visser JA, Hofland J. Prostate Cancer Prostatic Dis (2022)
  62. Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor. Fancher AT, Hua Y, Strock CJ, Johnston PA. Assay Drug Dev Technol 17 364-386 (2019)
  63. Molecular and structural basis of androgen receptor responses to dihydrotestosterone, medroxyprogesterone acetate and Δ(4)-tibolone. Bianco-Miotto T, Trotta AP, Need EF, Lee AM, Ochnik AM, Giorgio L, Leach DA, Swinstead EE, O'Loughlin MA, Newman MR, Birrell SN, Butler LM, Harris JM, Buchanan G. Mol Cell Endocrinol 382 899-908 (2014)
  64. Steroid 5α-reductase in adult rat brain after neonatal dihydrotestosterone administration. Sánchez P, Torres JM, Castro B, Del Moral RG, de Dios Luna J, Ortega E. Neurochem Res 38 557-563 (2013)
  65. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. Acta Crystallogr F Struct Biol Commun 79 95-104 (2023)
  66. Design and synthesis of a new steroid-macrocyclic derivative with biological activity. López-Ramos M, Figueroa-Valverde L, Herrera-Meza S, Rosas-Nexticapa M, Díaz-Cedillo F, García-Cervera E, Pool-Gómez E, Cahuich-Carrillo R. J Chem Biol 10 69-84 (2017)
  67. Inhibitory Activities of Dimeric Ellagitannins Isolated from Cornus alba on Benign Prostatic Hypertrophy. Park DH, Park KH, Yin J, Kim MJ, Yoon SE, Lee SH, Heo JH, Chung HJ, Kim JW, Kim KM, Lee MW. Molecules 26 (2021)
  68. Macular Abnormalities Associated With 5α-Reductase Inhibitor. Shin YK, Lee GW, Kang SW, Kim SJ, Kim AY. JAMA Ophthalmol 138 732-739 (2020)
  69. ZIP9 Is a Druggable Determinant of Sex Differences in Melanoma. Aguirre-Portolés C, Payne R, Trautz A, Foskett JK, Natale CA, Seykora JT, Ridky TW. Cancer Res 81 5991-6003 (2021)