2hzi Citations

Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia.

Acta Crystallogr D Biol Crystallogr 63 80-93 (2007)
Related entries: 2hyy, 2hz0, 2hz4, 2hzn

Cited: 117 times
EuropePMC logo PMID: 17164530

Abstract

Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 such point mutations have been observed in imatinib-resistant patients. The crystal structures of wild-type and mutant Abl kinase in complex with imatinib and other small-molecule Abl inhibitors were determined, with the aim of understanding the molecular basis of resistance and to aid in the design and optimization of inhibitors active against the resistance mutants. These results are presented in a way which illustrates the approaches used to generate multiple structures, the type of information that can be gained and the way that this information is used to support drug discovery.

Articles - 2hzi mentioned but not cited (19)

  1. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Cowan-Jacob SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J, Rummel G, Rheinberger P, Centeleghe M, Fabbro D, Manley PW. Acta Crystallogr. D Biol. Crystallogr. 63 80-93 (2007)
  2. Pharmacophore-based similarity scoring for DOCK. Jiang L, Rizzo RC. J Phys Chem B 119 1083-1102 (2015)
  3. Protein kinase-inhibitor database: structural variability of and inhibitor interactions with the protein kinase P-loop. Patel RY, Doerksen RJ. J. Proteome Res. 9 4433-4442 (2010)
  4. Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis. Kairys V, Gilson MK, Lather V, Schiffer CA, Fernandes MX. Chem Biol Drug Des 74 234-245 (2009)
  5. Enhancing Virtual Screening Performance of Protein Kinases with Molecular Dynamics Simulations. Offutt TL, Swift RV, Amaro RE. J Chem Inf Model 56 1923-1935 (2016)
  6. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. Harigua-Souiai E, Cortes-Ciriano I, Desdouits N, Malliavin TE, Guizani I, Nilges M, Blondel A, Bouvier G. BMC Bioinformatics 16 93 (2015)
  7. Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Wieder M, Perricone U, Seidel T, Boresch S, Langer T. Monatsh. Chem. 147 553-563 (2016)
  8. An aggregate analysis of many predicted structures to reduce errors in protein structure comparison caused by conformational flexibility. Godshall BG, Tang Y, Yang W, Chen BY. BMC Struct. Biol. 13 Suppl 1 S10 (2013)
  9. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases. Wong CF. Protein Sci. 25 192-203 (2016)
  10. Effect of Binding Pose and Modeled Structures on SVMGen and GlideScore Enrichment of Chemical Libraries. Xu D, Meroueh SO. J Chem Inf Model 56 1139-1151 (2016)
  11. Performance studies on distributed virtual screening. Krüger J, Grunzke R, Herres-Pawlis S, Hoffmann A, de la Garza L, Kohlbacher O, Nagel WE, Gesing S. Biomed Res Int 2014 624024 (2014)
  12. Modeling conformational flexibility of kinases in inactive states. Schwarz D, Merget B, Deane C, Fulle S. Proteins 87 943-951 (2019)
  13. ReverseDock: a web server for blind docking of a single ligand to multiple protein targets using AutoDock Vina. Krause F, Voigt K, Di Ventura B, Öztürk MA. Front Mol Biosci 10 1243970 (2023)
  14. ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions. Zhang X, Shen C, Guo X, Wang Z, Weng G, Ye Q, Wang G, He Q, Yang B, Cao D, Hou T. J Cheminform 13 6 (2021)
  15. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)
  16. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction. Zhang H, Saravanan KM, Zhang JZH. Molecules 28 4691 (2023)
  17. How good are AlphaFold models for docking-based virtual screening? Scardino V, Di Filippo JI, Cavasotto CN. iScience 26 105920 (2023)
  18. Molecular docking and pharmacophoric modelling of 1,5-disubstituted tetrazoles as inhibitors of two proteins present in cancer, the ABL and the mutated T315I kinase. Díaz-Cervantes E, Cortés-García CJ, Chacón-García L, Suárez-Castro A. In Silico Pharmacol 8 6 (2020)
  19. Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents. Günay F, Balta S, Ng YY, Ulucan Ö, Turgut Z, Günkara ÖT. Turk J Chem 46 86-102 (2022)


Reviews citing this publication (19)

  1. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Pao W, Chmielecki J. Nat. Rev. Cancer 10 760-774 (2010)
  2. Flexible ligand docking to multiple receptor conformations: a practical alternative. Totrov M, Abagyan R. Curr. Opin. Struct. Biol. 18 178-184 (2008)
  3. Developing irreversible inhibitors of the protein kinase cysteinome. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS. Chem. Biol. 20 146-159 (2013)
  4. Protein kinase inhibition of clinically important staurosporine analogues. Gani OA, Engh RA. Nat Prod Rep 27 489-498 (2010)
  5. Rational drug design. Mandal S, Moudgil M, Mandal SK. Eur. J. Pharmacol. 625 90-100 (2009)
  6. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  7. Treatment for chronic myelogenous leukemia: the long road to imatinib. Hunter T. J. Clin. Invest. 117 2036-2043 (2007)
  8. Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening. Tanrikulu Y, Schneider G. Nat Rev Drug Discov 7 667-677 (2008)
  9. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  10. The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Eck MJ, Manley PW. Curr. Opin. Cell Biol. 21 288-295 (2009)
  11. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. Krishnamurty R, Maly DJ. ACS Chem. Biol. 5 121-138 (2010)
  12. Strategies for overcoming imatinib resistance in chronic myeloid leukemia. Kujawski L, Talpaz M. Leuk. Lymphoma 48 2310-2322 (2007)
  13. From protein sequences to 3D-structures and beyond: the example of the UniProt knowledgebase. Hinz U, UniProt Consortium. Cell. Mol. Life Sci. 67 1049-1064 (2010)
  14. New insights into small-molecule inhibitors of Bcr-Abl. Schenone S, Bruno O, Radi M, Botta M. Med Res Rev 31 1-41 (2011)
  15. Revisiting protein kinase-substrate interactions: Toward therapeutic development. de Oliveira PS, Ferraz FA, Pena DA, Pramio DT, Morais FA, Schechtman D. Sci Signal 9 re3 (2016)
  16. Guidelines for the successful generation of protein-ligand complex crystals. Müller I. Acta Crystallogr D Struct Biol 73 79-92 (2017)
  17. Review of the Synthesis and Anticancer Properties of Pyrazolo[4,3-e][1,2,4]triazine Derivatives. Bernat Z, Szymanowska A, Kciuk M, Kotwica-Mojzych K, Mojzych M. Molecules 25 (2020)
  18. [The short history of protein kinase inhibitors. New, competitive, successful]. Kunick C, Egert-Schmidt AM. Pharm Unserer Zeit 37 360-368 (2008)
  19. The impact of structural biology in medicine illustrated with four case studies. Hu T, Sprague ER, Fodor M, Stams T, Clark KL, Cowan-Jacob SW. J. Mol. Med. 96 9-19 (2018)

Articles citing this publication (79)

  1. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, Ossenkoppele GJ, Nicolini FE, O'Brien SG, Litzow M, Bhatia R, Cervantes F, Haque A, Shou Y, Resta DJ, Weitzman A, Hochhaus A, le Coutre P. Blood 110 3540-3546 (2007)
  2. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN. EMBO J. 27 1907-1918 (2008)
  3. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, Walker C, Jarai G. Eur. J. Pharmacol. 599 44-53 (2008)
  4. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Manley PW, Stiefl N, Cowan-Jacob SW, Kaufman S, Mestan J, Wartmann M, Wiesmann M, Woodman R, Gallagher N. Bioorg. Med. Chem. 18 6977-6986 (2010)
  5. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Jones D, Thomas D, Yin CC, O'Brien S, Cortes JE, Jabbour E, Breeden M, Giles FJ, Zhao W, Kantarjian HM. Cancer 113 985-994 (2008)
  6. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Tanaka C, Yin OQ, Sethuraman V, Smith T, Wang X, Grouss K, Kantarjian H, Giles F, Ottmann OG, Galitz L, Schran H. Clin. Pharmacol. Ther. 87 197-203 (2010)
  7. Crystal structure of the T315I mutant of AbI kinase. Zhou T, Parillon L, Li F, Wang Y, Keats J, Lamore S, Xu Q, Shakespeare W, Dalgarno D, Zhu X. Chem Biol Drug Des 70 171-181 (2007)
  8. Discovery of a potential allosteric ligand binding site in CDK2. Betzi S, Alam R, Martin M, Lubbers DJ, Han H, Jakkaraj SR, Georg GI, Schönbrunn E. ACS Chem. Biol. 6 492-501 (2011)
  9. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. BMC Struct. Biol. 9 7 (2009)
  10. Understanding kinase selectivity through energetic analysis of binding site waters. Robinson DD, Sherman W, Farid R. ChemMedChem 5 618-627 (2010)
  11. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. Aleksandrov A, Simonson T. J. Biol. Chem. 285 13807-13815 (2010)
  12. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors. Hornakova T, Springuel L, Devreux J, Dusa A, Constantinescu SN, Knoops L, Renauld JC. Haematologica 96 845-853 (2011)
  13. The ins and outs of bcr-abl inhibition. Reddy EP, Aggarwal AK. Genes Cancer 3 447-454 (2012)
  14. A novel approach to the discovery of small-molecule ligands of CDK2. Martin MP, Alam R, Betzi S, Ingles DJ, Zhu JY, Schönbrunn E. Chembiochem 13 2128-2136 (2012)
  15. Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations. Lee TS, Potts SJ, Kantarjian H, Cortes J, Giles F, Albitar M. Cancer 112 1744-1753 (2008)
  16. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1427-1449 (2008)
  17. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN. J. Mol. Biol. 426 2457-2470 (2014)
  18. Antileukemic effects of the novel, mutant FLT3 inhibitor NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Weisberg E, Roesel J, Bold G, Furet P, Jiang J, Cools J, Wright RD, Nelson E, Barrett R, Ray A, Moreno D, Hall-Meyers E, Stone R, Galinsky I, Fox E, Gilliland G, Daley JF, Lazo-Kallanian S, Kung AL, Griffin JD. Blood 112 5161-5170 (2008)
  19. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. Mol. Cell 33 43-52 (2009)
  20. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity. Lin YL, Meng Y, Huang L, Roux B. J. Am. Chem. Soc. 136 14753-14762 (2014)
  21. Induced-fit docking studies of the active and inactive states of protein tyrosine kinases. Zhong H, Tran LM, Stang JL. J. Mol. Graph. Model. 28 336-346 (2009)
  22. Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Vajpai N, Strauss A, Fendrich G, Cowan-Jacob SW, Manley PW, Jahnke W, Grzesiek S. Biomol NMR Assign 2 41-42 (2008)
  23. Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY. PLoS ONE 4 e8470 (2009)
  24. BCR-ABL residues interacting with ponatinib are critical to preserve the tumorigenic potential of the oncoprotein. Buffa P, Romano C, Pandini A, Massimino M, Tirrò E, Di Raimondo F, Manzella L, Fraternali F, Vigneri PG. FASEB J. 28 1221-1236 (2014)
  25. Targeting Filarial Abl-like Kinases: Orally Available, Food and Drug Administration-Approved Tyrosine Kinase Inhibitors Are Microfilaricidal and Macrofilaricidal. O'Connell EM, Bennuru S, Steel C, Dolan MA, Nutman TB. J. Infect. Dis. 212 684-693 (2015)
  26. A molecular mechanics model for imatinib and imatinib:kinase binding. Aleksandrov A, Simonson T. J Comput Chem 31 1550-1560 (2010)
  27. X-ray structure of p38α bound to TAK-715: comparison with three classic inhibitors. Azevedo R, van Zeeland M, Raaijmakers H, Kazemier B, de Vlieg J, Oubrie A. Acta Crystallogr D Biol Crystallogr 68 1041-1050 (2012)
  28. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase. Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, D'Amelio N, Gervasio FL. Sci Rep 6 24235 (2016)
  29. Synthesis and Biopharmaceutical Evaluation of Imatinib Analogues Featuring Unusual Structural Motifs. Nicolaou KC, Vourloumis D, Totokotsopoulos S, Papakyriakou A, Karsunky H, Fernando H, Gavrilyuk J, Webb D, Stepan AF. ChemMedChem 11 31-37 (2016)
  30. Binding free energy calculation with QM/MM hybrid methods for Abl-Kinase inhibitor. Dubey KD, Ojha RP. J Biol Phys 37 69-78 (2011)
  31. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. Bauer MR, Jones RN, Baud MG, Wilcken R, Boeckler FM, Fersht AR, Joerger AC, Spencer J. ACS Chem. Biol. 11 2265-2274 (2016)
  32. Inhibitor screening of protein kinases using MALDI-TOF MS combined with separation and enrichment of phosphopeptides by TiO2 nanoparticle deposited capillary column. Lü S, Luo Q, Li X, Wu J, Liu J, Xiong S, Feng YQ, Wang F. Analyst 135 2858-2863 (2010)
  33. Structural modeling of V299L and E459K Bcr-Abl mutation, and sequential therapy of tyrosine kinase inhibitors for the compound mutations. Kim D, Kim DW, Cho BS, Goh HG, Kim SH, Kim WS, Lee J, Kweon IY, Park SH, Yoon JH, Kim ND, Chun H. Leuk. Res. 33 1260-1265 (2009)
  34. Analysis of c-Met kinase domain complexes: a new specific catalytic site receptor model for defining binding modes of ATP-competitive ligands. Asses Y, Leroux V, Tairi-Kellou S, Dono R, Maina F, Maigret B. Chem Biol Drug Des 74 560-570 (2009)
  35. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space. Stegemann B, Klebe G. Proteins 80 626-648 (2012)
  36. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery. Sun H, Pan P, Tian S, Xu L, Kong X, Li Y, Dan Li, Hou T. Sci Rep 6 24817 (2016)
  37. Design, synthesis and biological activities of Nilotinib derivates as antitumor agents. Pan X, Wang F, Zhang Y, Gao H, Hu Z, Wang S, Zhang J. Bioorg. Med. Chem. 21 2527-2534 (2013)
  38. Structure-Based Design of Tetrahydroisoquinoline-7-carboxamides as Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. Wang Z, Bian H, Bartual SG, Du W, Luo J, Zhao H, Zhang S, Mo C, Zhou Y, Xu Y, Tu Z, Ren X, Lu X, Brekken RA, Yao L, Bullock AN, Su J, Ding K. J. Med. Chem. 59 5911-5916 (2016)
  39. Characterization of ABL exon 7 deletion by molecular genetic and bioinformatic methods reveals no association with imatinib resistance in chronic myeloid leukemia. Meggyesi N, Kalmár L, Fekete S, Masszi T, Masszi T, Tordai A, Andrikovics H. Med. Oncol. 29 2136-2142 (2012)
  40. Classifying kinase conformations using a machine learning approach. McSkimming DI, Rasheed K, Kannan N. BMC Bioinformatics 18 86 (2017)
  41. Is Structure-Based Drug Design Ready for Selectivity Optimization? Albanese SK, Chodera JD, Volkamer A, Keng S, Abel R, Wang L. J Chem Inf Model 60 6211-6227 (2020)
  42. Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Fassunke J, Müller F, Keul M, Michels S, Dammert MA, Schmitt A, Plenker D, Lategahn J, Heydt C, Brägelmann J, Tumbrink HL, Alber Y, Klein S, Heimsoeth A, Dahmen I, Fischer RN, Scheffler M, Ihle MA, Priesner V, Scheel AH, Wagener S, Kron A, Frank K, Garbert K, Persigehl T, Püsken M, Haneder S, Schaaf B, Rodermann E, Engel-Riedel W, Felip E, Smit EF, Merkelbach-Bruse S, Reinhardt HC, Kast SM, Wolf J, Rauh D, Büttner R, Sos ML. Nat Commun 9 4655 (2018)
  43. Editorial [Still further crisis...the scene in Belgium]. Scheen AJ. Rev Med Liege 66 1-3 (2011)
  44. Diversity of Long-Lived Intermediates along the Binding Pathway of Imatinib to Abl Kinase Revealed by MD Simulations. Paul F, Thomas T, Roux B. J Chem Theory Comput 16 7852-7865 (2020)
  45. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale. Parton DL, Grinaway PB, Hanson SM, Beauchamp KA, Chodera JD. PLoS Comput. Biol. 12 e1004728 (2016)
  46. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT. Da Silva Figueiredo Celestino Gomes P, Chauvot De Beauchêne I, Panel N, Lopez S, De Sepulveda P, Geraldo Pascutti P, Solary E, Tchertanov L. PLoS ONE 11 e0160165 (2016)
  47. Intermolecular Interactions in Crystal Structures of Imatinib-Containing Compounds. Vologzhanina AV, Ushakov IE, Korlyukov AA. Int J Mol Sci 21 E8970 (2020)
  48. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. Meng Y, Gao C, Clawson DK, Atwell S, Russell M, Vieth M, Roux B. J Chem Theory Comput 14 2721-2732 (2018)
  49. Letter Restoration of donor chimerism by nilotinib in a chronic myeloid leukaemia patient post mutation-associated imatinib mesylate resistance and allogeneic stem cell transplant failure. O'Connor LM, Langabeer S, McCann SR, Conneally E. Bone Marrow Transplant. 42 833-835 (2008)
  50. Synthesis and biological evaluation of novel aromatic-heterocyclic biphenyls as potent anti-leukemia agents. Dong J, Pan X, Wang J, Su P, Zhang L, Wei F, Zhang J. Eur J Med Chem 101 780-789 (2015)
  51. The molecular mechanism behind resistance of the kinase FLT3 to the inhibitor quizartinib. Friedman R. Proteins 85 2143-2152 (2017)
  52. Three-way complex variant translocation involving short arm chromosome (1;9;22)(p36;q34;q11) in a chronic myeloid leukemia patient. Asif M, Hussain A, Malik A, Rasool M. Oncol Lett 10 1728-1730 (2015)
  53. A rare case of three-way complex variant translocation in chronic myeloid leukemia t(6;9;22)(p21;q34;q11): A case report. Asif M, Hussain A, Wali A, Ahmad N, Sajjad N, Amir M, Ali I, Pushparaj PN, Rasool M. Biomed Rep 7 377-379 (2017)
  54. Computer Simulations of the Dissociation Mechanism of Gleevec from Abl Kinase with Milestoning. Narayan B, Buchete NV, Elber R. J Phys Chem B 125 5706-5715 (2021)
  55. Conformational Control of UDP-Galactopyranose Mutase Inhibition. Wangkanont K, Winton VJ, Forest KT, Kiessling LL. Biochemistry 56 3983-3992 (2017)
  56. Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex. Dubey KD, Ojha RP. J Mol Model 18 1679-1689 (2012)
  57. How does the novel T315L mutation of breakpoint cluster region-abelson (BCR-ABL) kinase confer resistance to ponatinib: a comparative molecular dynamics simulation study. Zhang H, He X, Ni D, Mou L, Chen X, Lu S. J. Biomol. Struct. Dyn. 38 89-100 (2020)
  58. Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers. Li F, Fahie MA, Gilliam KM, Pham R, Chen M. Nat Commun 13 3541 (2022)
  59. Molecular dynamics simulations of the conformational plasticity in the active pocket of salt-inducible kinase 2 (SIK2) multi-state binding with bosutinib. Shi M, Wang L, Liu K, Chen Y, Hu M, Yang L, He J, Chen L, Xu D. Comput Struct Biotechnol J 20 2574-2586 (2022)
  60. Molecular interactions of c-ABL mutants in complex with imatinib/nilotinib: a computational study using linear interaction energy (LIE) calculations. Pereira EG, Moreira MA, Caffarena ER. J Mol Model 18 4333-4341 (2012)
  61. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Shekhar M, Smith Z, Seeliger MA, Tiwary P. Angew Chem Int Ed Engl 61 e202200983 (2022)
  62. Case Reports A Novel Four-Way Complex Variant Translocation Involving Chromosome 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) in a Chronic Myeloid Leukemia Patient. Asif M, Jamal MS, Khan AR, Naseer MI, Hussain A, Choudhry H, Malik A, Khan SA, Mahmoud MM, Ali A, Iram S, Kamran K, Iqbal A, Abduljaleel Z, Pushparaj PN, Rasool M. Front Oncol 6 124 (2016)
  63. A combined computational and experimental strategy identifies mutations conferring resistance to drugs targeting the BCR-ABL fusion protein. Liu J, Pei J, Lai L. Commun Biol 3 18 (2020)
  64. A new avenue for treating Parkinson's disease targeted at aggrephagy modulation and neuroinflammation: Insights from in vitro and animal studies. Tikhonova MA. EBioMedicine 51 102575 (2020)
  65. Activation of Abl1 Kinase Explored Using Well-Tempered Metadynamics Simulations on an Essential Dynamics Sampled Path. Oruganti B, Friedman R. J Chem Theory Comput 17 7260-7270 (2021)
  66. BCR-ABL tyrosine kinase inhibitor pharmacophore model derived from a series of phenylaminopyrimidine-based (PAP) derivatives. Cui J, Fu R, Zhou LH, Chen SP, Li GW, Qian SX, Liu S. Bioorg. Med. Chem. Lett. 23 2442-2450 (2013)
  67. Combining Mutational Signatures, Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer. Kaserer T, Blagg J. Cell Chem Biol 25 1359-1371.e2 (2018)
  68. Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone. Malik V, Radhakrishnan N, Kaul SC, Wadhwa R, Sundar D. Biomolecules 12 212 (2022)
  69. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Hoemberger M, Pitsawong W, Kern D. Proc Natl Acad Sci U S A 117 19221-19227 (2020)
  70. Design of pyrido[2,3-d]pyrimidin-7-one inhibitors of receptor interacting protein kinase-2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling. Nikhar S, Siokas I, Schlicher L, Lee S, Gyrd-Hansen M, Degterev A, Cuny GD. Eur J Med Chem 215 113252 (2021)
  71. Design, synthesis, and antitumor efficacy of novel 5-deazaflavin derivatives backed by kinase screening, docking, and ADME studies. Bedewy WA, Mohamed MS, Abdelhameed AM, Elsawy MA, Al-Muhur M, Ashida N, Abdalla AN, Elwaie TA, Nagamatsu T, Ali HI. J Enzyme Inhib Med Chem 38 2220570 (2023)
  72. Evaluation of residue variability in a conformation-specific context and during evolutionary sequence reconstruction narrows drug resistance selection in Abl1 tyrosine kinase. Otsuka FAM, Bjelic S. Protein Sci 31 e4354 (2022)
  73. Evolution of kinase polypharmacology across HSP90 drug discovery. Antolin AA, Clarke PA, Collins I, Workman P, Al-Lazikani B. Cell Chem Biol 28 1433-1445.e3 (2021)
  74. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Paul F, Meng Y, Roux B. J Chem Theory Comput 16 1896-1912 (2020)
  75. Molecular Docking, Molecular Dynamics Simulations, and Free Energy Calculation Insights into the Binding Mechanism between VS-4718 and Focal Adhesion Kinase. Shi M, Chen T, Wei S, Zhao C, Zhang X, Li X, Tang X, Liu Y, Yang Z, Chen L. ACS Omega 7 32442-32456 (2022)
  76. Molecular, Cytogenetic, and Hematological Analysis of Chronic Myeloid Leukemia Patients and Discovery of Two Novel Translocations. Asif M, Hussain A, Wali A, Ahmed N, Ali I, Iqbal Z, Amir M, Shafiq M, Rasool M. Anal Cell Pathol (Amst) 2021 4909012 (2021)
  77. New mutation L324M in the ABL1 kinase domain: does it confer high resistance to second-generation inhibitors? Noriega MF, Ferri CA, Icardi G, Bullorsky E, Korin J, Larripa I. Leuk. Lymphoma 55 698-701 (2014)
  78. Preparation of Novel Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides and Their Experimental and Computational Biological Studies. Kciuk M, Mujwar S, Szymanowska A, Marciniak B, Bukowski K, Mojzych M, Kontek R. Int J Mol Sci 23 5892 (2022)
  79. Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. Sn S, Pandurangi J, Murumalla R, Dj V, Garimella L, Acharya A, Rai S, Paul A, Yarreiphang H, Pillai MS, Giridharan M, Clement JP, Alladi PA, Saiyed T, Manjithaya R. EBioMedicine 50 260-273 (2019)