2dgc Citations

Crystal structure of a bZIP/DNA complex at 2.2 A: determinants of DNA specific recognition.

J Mol Biol 254 657-67 (1995)
Cited: 105 times
EuropePMC logo PMID: 7500340

Abstract

The X-ray structure of the GCN4-bZIP protein bound to DNA containing the ATF/CREB recognition sequence has been refined at 2.2 A. The water-mediated interactions between the basic domain and DNA are revealed, and combined with a more accurate description of the direct contacts, further clarify how binding specificity is achieved. Water molecules extend the interactions of both invariant basic domain residues, asparagine 235 and arginine 243, beyond their direct base contacts. The slight bending of the basic domain alpha-helix around the DNA facilitates the linking of arginine 241, 243 and 245 to main-chain carbonyl oxygen atoms via water molecules, apparently stabilizing interactions with the DNA.

Reviews - 2dgc mentioned but not cited (3)

  1. Fast, comprehensive two-dimensional liquid chromatography. Stoll DR, Li X, Wang X, Carr PW, Porter SE, Rutan SC. J Chromatogr A 1168 3-43; discussion 2 (2007)
  2. Interpreting protein/DNA interactions: distinguishing specific from non-specific and electrostatic from non-electrostatic components. Privalov PL, Dragan AI, Crane-Robinson C. Nucleic Acids Res 39 2483-2491 (2011)
  3. Molecular methods for assessment of non-covalent metallodrug-DNA interactions. Kellett A, Molphy Z, Slator C, McKee V, Farrell NP. Chem Soc Rev 48 971-988 (2019)

Articles - 2dgc mentioned but not cited (15)

  1. Parmbsc1: a refined force field for DNA simulations. Ivani I, Dans PD, Noy A, Pérez A, Faustino I, Hospital A, Walther J, Andrio P, Goñi R, Balaceanu A, Portella G, Battistini F, Gelpí JL, González C, Vendruscolo M, Laughton CA, Harris SA, Case DA, Orozco M. Nat Methods 13 55-58 (2016)
  2. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. Corrêa LG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. PLoS One 3 e2944 (2008)
  3. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo. Jeronimo C, Langelier MF, Bataille AR, Pascal JM, Pugh BF, Robert F. Mol Cell 64 455-466 (2016)
  4. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example. Alibés A, Nadra AD, De Masi F, Bulyk ML, Serrano L, Stricher F. Nucleic Acids Res 38 7422-7431 (2010)
  5. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Ashworth J, Baker D. Nucleic Acids Res 37 e73 (2009)
  6. GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion. Pendin D, Tosetto J, Moss TJ, Andreazza C, Moro S, McNew JA, Daga A. Proc Natl Acad Sci U S A 108 16283-16288 (2011)
  7. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Xu B, Yang Y, Liang H, Zhou Y. Proteins 76 718-730 (2009)
  8. Theoretical assessment of the oligolysine model for ionic interactions in protein-DNA complexes. Fenley MO, Russo C, Manning GS. J Phys Chem B 115 9864-9872 (2011)
  9. A dimer-specific function of the transcription factor NFATp. Falvo JV, Lin CH, Tsytsykova AV, Hwang PK, Thanos D, Goldfeld AE, Maniatis T. Proc Natl Acad Sci U S A 105 19637-19642 (2008)
  10. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. Tucker MR, Piana S, Tan D, LeVine MV, Shaw DE. J Phys Chem B 126 4442-4457 (2022)
  11. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. Cieplak AS. PLoS One 12 e0180905 (2017)
  12. Rationally designed coiled-coil DNA looping peptides control DNA topology. Gowetski DB, Kodis EJ, Kahn JD. Nucleic Acids Res 41 8253-8265 (2013)
  13. Geometrical Representation of a Polarisation Management Component on a SOI Platform. Preite MV, Sorianello V, De Angelis G, Romagnoli M, Velha P. Micromachines (Basel) 10 E364 (2019)
  14. Structural predictions of protein-DNA binding: MELD-DNA. Esmaeeli R, Bauzá A, Perez A. Nucleic Acids Res 51 1625-1636 (2023)
  15. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site. Chan IS, Al-Sarraj T, Shahravan SH, Fedorova AV, Shin JA. Biochemistry 51 6632-6643 (2012)


Reviews citing this publication (3)

  1. Enthalpy-entropy compensation: the role of solvation. Dragan AI, Read CM, Crane-Robinson C. Eur Biophys J 46 301-308 (2017)
  2. Nuclear transcription factors in the hippocampus. Hinoi E, Balcar VJ, Kuramoto N, Nakamichi N, Yoneda Y. Prog Neurobiol 68 145-165 (2002)
  3. Designed Multifunctional Peptides for Intracellular Targets. Juretić D. Antibiotics (Basel) 11 1196 (2022)

Articles citing this publication (84)

  1. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. J Mol Biol 319 1097-1113 (2002)
  2. Protein-DNA interactions: A structural analysis. Jones S, van Heyningen P, Berman HM, Thornton JM. J Mol Biol 287 877-896 (1999)
  3. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  4. Structural and thermodynamic strategies for site-specific DNA binding proteins. Jen-Jacobson L, Engler LE, Jacobson LA. Structure 8 1015-1023 (2000)
  5. Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-beta enhancer. Panne D, Maniatis T, Harrison SC. EMBO J 23 4384-4393 (2004)
  6. Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Falvo JV, Parekh BS, Lin CH, Fraenkel E, Maniatis T. Mol Cell Biol 20 4814-4825 (2000)
  7. Unraveling determinants of transcription factor binding outside the core binding site. Levo M, Zalckvar E, Sharon E, Dantas Machado AC, Kalma Y, Lotam-Pompan M, Weinberger A, Yakhini Z, Rohs R, Segal E. Genome Res 25 1018-1029 (2015)
  8. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA. Genes Dev 14 1750-1764 (2000)
  9. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  10. Analyzing protein-DNA recognition mechanisms. Paillard G, Lavery R. Structure 12 113-122 (2004)
  11. The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Li Y, Mui S, Brown JH, Strand J, Reshetnikova L, Tobacman LS, Cohen C. Proc Natl Acad Sci U S A 99 7378-7383 (2002)
  12. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Swaminathan K, Flynn P, Reece RJ, Marmorstein R. Nat Struct Biol 4 751-759 (1997)
  13. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Blanco FA, Judelson HS. Mol Microbiol 56 638-648 (2005)
  14. Structural alignment of protein--DNA interfaces: insights into the determinants of binding specificity. Siggers TW, Silkov A, Honig B. J Mol Biol 345 1027-1045 (2005)
  15. Design and Evolution of a Miniature Bcl-2 Binding Protein We thank the HHMI Biopolymer/Keck Foundation Biotechnology Resource Laboratory (Yale University School of Medicine, New Haven, CT) for oligonucleotide and peptide synthesis and amino acid analysis and Professor Jennifer Doudna (Yale University) for use of a Perseptive Voyager-DE (MALDI-TOF) mass spectrometer. We are grateful also to Dr. Junying Yuan and Dr. Alexi Degterev (Harvard Medical School) for a generous gift of Bcl-X(L)-His(6) and Stacey E. Rutledge for helpful comments. This work was supported by the National Institutes of Health. Chin JW, Schepartz A. Angew Chem Int Ed Engl 40 3806-3809 (2001)
  16. Connecting protein structure with predictions of regulatory sites. Morozov AV, Siggia ED. Proc Natl Acad Sci U S A 104 7068-7073 (2007)
  17. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. Rozenberg H, Rabinovich D, Frolow F, Hegde RS, Shakked Z. Proc Natl Acad Sci U S A 95 15194-15199 (1998)
  18. Molecular characterization of the PEND protein, a novel bZIP protein present in the envelope membrane that is the site of nucleoid replication in developing plastids. Sato N, Ohshima K, Watanabe A, Ohta N, Nishiyama Y, Joyard J, Douce R. Plant Cell 10 859-872 (1998)
  19. Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses. Fordyce PM, Pincus D, Kimmig P, Nelson CS, El-Samad H, Walter P, DeRisi JL. Proc Natl Acad Sci U S A 109 E3084-93 (2012)
  20. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  21. Non-additivity in protein-DNA binding. O'Flanagan RA, Paillard G, Lavery R, Sengupta AM. Bioinformatics 21 2254-2263 (2005)
  22. DNA-binding specificity of the homeodomain-leucine zipper domain. Sessa G, Morelli G, Ruberti I. J Mol Biol 274 303-309 (1997)
  23. Magnesium is required for specific DNA binding of the CREB B-ZIP domain. Moll JR, Acharya A, Gal J, Mir AA, Vinson C. Nucleic Acids Res 30 1240-1246 (2002)
  24. A framework for three-dimensional simulation of morphogenesis. Cickovski TM, Huang C, Chaturvedi R, Glimm T, Hentschel HG, Alber MS, Glazier JA, Newman SA, Izaguirre JA. IEEE/ACM Trans Comput Biol Bioinform 2 273-288 (2005)
  25. Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. Son S, Tanrikulu IC, Tirrell DA. Chembiochem 7 1251-1257 (2006)
  26. DNA-binding domains of Fos and Jun do not induce DNA curvature: an investigation with solution and gel methods. Sitlani A, Crothers DM. Proc Natl Acad Sci U S A 95 1404-1409 (1998)
  27. Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Niu X, Renshaw-Gegg L, Miller L, Guiltinan MJ. Plant Mol Biol 41 1-13 (1999)
  28. Predicting specificity-determining residues in two large eukaryotic transcription factor families. Donald JE, Shakhnovich EI. Nucleic Acids Res 33 4455-4465 (2005)
  29. SKN-1 domain folding and basic region monomer stabilization upon DNA binding. Carroll AS, Gilbert DE, Liu X, Cheung JW, Michnowicz JE, Wagner G, Ellenberger TE, Blackwell TK. Genes Dev 11 2227-2238 (1997)
  30. A novel interaction between calreticulin and ubiquitin-like nuclear protein in rice. Sharma A, Isogai M, Yamamoto T, Sakaguchi K, Hashimoto J, Komatsu S. Plant Cell Physiol 45 684-692 (2004)
  31. The role of helix stabilizing residues in GCN4 basic region folding and DNA binding. Hollenbeck JJ, McClain DL, Oakley MG. Protein Sci 11 2740-2747 (2002)
  32. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution. John M, Leppik R, Busch SJ, Granger-Schnarr M, Schnarr M. Nucleic Acids Res 24 4487-4494 (1996)
  33. Signatures of protein-DNA recognition in free DNA binding sites. Locasale JW, Napoli AA, Chen S, Berman HM, Lawson CL. J Mol Biol 386 1054-1065 (2009)
  34. Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides. Mosquera J, Jiménez-Balsa A, Dodero VI, Vázquez ME, Mascareñas JL. Nat Commun 4 1874 (2013)
  35. Long-range electrostatic interactions influence the orientation of Fos-Jun binding at AP-1 sites. Ramirez-Carrozzi VR, Kerppola TK. J Mol Biol 305 411-427 (2001)
  36. Sequence-specific recognition of DNA by hydrophobic, alanine-rich mutants of the basic region/leucine zipper motif investigated by fluorescence anisotropy. Bird GH, Lajmi AR, Shin JA. Biopolymers 65 10-20 (2002)
  37. Thermodynamic signature of GCN4-bZIP binding to DNA indicates the role of water in discriminating between the AP-1 and ATF/CREB sites. Dragan AI, Frank L, Liu Y, Makeyeva EN, Crane-Robinson C, Privalov PL. J Mol Biol 343 865-878 (2004)
  38. Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components. Sánchez MI, Mosquera J, Vázquez ME, Mascareñas JL. Angew Chem Int Ed Engl 53 9917-9921 (2014)
  39. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T. Nucleic Acids Res 44 5957-5970 (2016)
  40. Characterization of the ATF/CREB site and its complex with GCN4. Hockings SC, Kahn JD, Crothers DM. Proc Natl Acad Sci U S A 95 1410-1415 (1998)
  41. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA. Metallo SJ, Paolella DN, Schepartz A. Nucleic Acids Res 25 2967-2972 (1997)
  42. Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae. Ye W, Wang Y, Dong S, Tyler BM, Wang Y. BMC Genomics 14 839 (2013)
  43. A protein adaptor to locate a functional protein dimer on molecular switchboard. Ngo TA, Nakata E, Saimura M, Kodaki T, Morii T. Methods 67 142-150 (2014)
  44. DNA-binding specificity and dimerization of the DNA-binding domain of the PEND protein in the chloroplast envelope membrane. Sato N, Ohta N. Nucleic Acids Res 29 2244-2250 (2001)
  45. KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Ponnusamy R, Petoukhov MV, Correia B, Custodio TF, Juillard F, Tan M, Pires de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE. Nucleic Acids Res 43 10039-10054 (2015)
  46. Association of protein-DNA recognition complexes: electrostatic and nonelectrostatic effects. Norberg J. Arch Biochem Biophys 410 48-68 (2003)
  47. Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Carrette LL, Gyssels E, De Laet N, Madder A. Chem Commun (Camb) 52 1539-1554 (2016)
  48. The GCN4 bZIP targets noncognate gene regulatory sequences: quantitative investigation of binding at full and half sites. Chan IS, Fedorova AV, Shin JA. Biochemistry 46 1663-1671 (2007)
  49. Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors. Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD. J Struct Biol 186 380-385 (2014)
  50. Bending and adaptability to proteins of the cAMP DNA-responsive element: molecular dynamics contrasted with NMR. Derreumaux S, Fermandjian S. Biophys J 79 656-669 (2000)
  51. DNA-binding specificity of the IDI-4 basic leucine zipper factor of Podospora anserina defined by systematic evolution of ligands by exponential enrichment (SELEX). Dementhon K, Saupe SJ. Eukaryot Cell 4 476-483 (2005)
  52. Exploring DNA dynamics within oligonucleosomes with coarse-grained simulations: SIRAH force field extension for protein-DNA complexes. Brandner A, Schüller A, Melo F, Pantano S. Biochem Biophys Res Commun 498 319-326 (2018)
  53. Metal-ion-regulated miniature DNA-binding proteins based on GCN4 and non-native regulation sites. Oheix E, Peacock AF. Chemistry 20 2829-2839 (2014)
  54. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro. Suckow M, Hollenberg CP. J Mol Biol 276 887-902 (1998)
  55. Metal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides. Learte-Aymamí S, Curado N, Rodríguez J, Vázquez ME, Mascareñas JL. J Am Chem Soc 139 16188-16193 (2017)
  56. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates. Mosquera J, Sánchez MI, Valero J, de Mendoza J, Vázquez ME, Mascareñas JL. Chem Commun (Camb) 51 4811-4814 (2015)
  57. Stapling monomeric GCN4 peptides allows for DNA binding and enhanced cellular uptake. Iyer A, Van Lysebetten D, Ruiz García Y, Louage B, De Geest BG, Madder A. Org Biomol Chem 13 3856-3862 (2015)
  58. A simple motif for protein recognition in DNA secondary structures. Landt SG, Ramirez A, Daugherty MD, Frankel AD. J Mol Biol 351 982-994 (2005)
  59. Crebl2 regulates cell metabolism in muscle and liver cells. Tiebe M, Lutz M, Senyilmaz Tiebe D, Teleman AA. Sci Rep 9 19869 (2019)
  60. Identification and characterization of the DNA-binding properties of a Zhangfei homologue in Japanese pufferfish, Takifugu rubripes. Cockram GP, Hogan MR, Burnett HF, Lu R. Biochem Biophys Res Commun 339 1238-1245 (2006)
  61. Interaction of calicheamicin gamma1(I) and its related carbohydrates with DNA-protein complexes. Sissi C, Aiyar J, Boyer S, Depew K, Danishefsky S, Crothers DM. Proc Natl Acad Sci U S A 96 10643-10648 (1999)
  62. Short, hydrophobic, alanine-based proteins based on the basic region/leucine zipper protein motif: overcoming inclusion body formation and protein aggregation during overexpression, purification, and renaturation. Lajmi AR, Wallace TR, Shin JA. Protein Expr Purif 18 394-403 (2000)
  63. Skn-1: evidence for a bipartite recognition helix in DNA binding. Pal S, Lo MC, Schmidt D, Pelczer I, Thurber S, Walker S. Proc Natl Acad Sci U S A 94 5556-5561 (1997)
  64. Structure of the double-stranded DNA-binding type IV secretion protein TraN from Enterococcus. Goessweiner-Mohr N, Eder M, Hofer G, Fercher C, Arends K, Birner-Gruenberger R, Grohmann E, Keller W. Acta Crystallogr D Biol Crystallogr 70 2376-2389 (2014)
  65. The GCN4 bZIP can bind to noncognate gene regulatory sequences. Fedorova AV, Chan IS, Shin JA. Biochim Biophys Acta 1764 1252-1259 (2006)
  66. Nickel-Promoted Recognition of Long DNA Sites by Designed Peptide Derivatives. Rodríguez J, Mosquera J, Vázquez ME, Mascareñas JL. Chemistry 22 13474-13477 (2016)
  67. Specific down-regulation of an engineered human cyclin D1 promoter by a novel DNA-binding ligand in intact cells. Laurance ME, Starr DB, Michelotti EF, Cheung E, Gonzalez C, Tam AW, Deikman J, Edwards CA, Bardwell AJ. Nucleic Acids Res 29 652-661 (2001)
  68. A novel feature of DNA recognition: a mutant Gcn4p bZip peptide with dual DNA binding specificities dependent of half-site spacing. Suckow M, Kisters-Woike B, Hollenberg CP. J Mol Biol 286 983-987 (1999)
  69. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro. Chow HK, Xu J, Shahravan SH, De Jong AT, Chen G, Shin JA. PLoS One 3 e3514 (2008)
  70. Specificity determinants for the abscisic acid response element. Sarkar AK, Lahiri A. FEBS Open Bio 3 101-105 (2013)
  71. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity. Amaral C, Pimentel C, Matos RG, Arraiano CM, Matzapetakis M, Rodrigues-Pousada C. PLoS One 8 e83328 (2013)
  72. DNA-binding domain of GCN4 induces bending of both the ATF/CREB and AP-1 binding sites of DNA. Dragan AI, Liu Y, Makeyeva EN, Privalov PL. Nucleic Acids Res 32 5192-5197 (2004)
  73. DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains. Guarnaccia C, Raman B, Zahariev S, Simoncsits A, Pongor S. Nucleic Acids Res 32 4992-5002 (2004)
  74. Electrostatic control of half-site spacing preferences by the cyclic AMP response element-binding protein CREB. Montclare JK, Sloan LS, Schepartz A. Nucleic Acids Res 29 3311-3319 (2001)
  75. Expression, purification, crystallization and preliminary X-ray analysis of a C-terminal fragment of the Epstein-Barr virus ZEBRA protein. Morand P, Budayova-Spano M, Perrissin M, Müller CW, Petosa C. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 210-214 (2006)
  76. Interaction of a bZip oligopeptide model with oligodeoxyribonucleotides modelling DNA binding sites. The effect of flanking sequences. Votavová H, Hodanová K, Arnold L, Sponar J. J Biomol Struct Dyn 15 587-596 (1997)
  77. Rational design of a DNA sequence-specific modular protein tag by tuning the alkylation kinetics. Nguyen TM, Nakata E, Zhang Z, Saimura M, Dinh H, Morii T. Chem Sci 10 9315-9325 (2019)
  78. Simultaneous binding of a polyamide dimer and an oligonucleotide in the minor and major grooves of DNA. Parks ME, Dervan PB. Bioorg Med Chem 4 1045-1050 (1996)
  79. Solution structure and dynamics of GCN4 cognate DNA: NMR investigations. Khandelwal P, Panchal SC, Radha PK, Hosur RV. Nucleic Acids Res 29 499-505 (2001)
  80. Deactivation of a dimeric DNA-binding peptide through a palladium-mediated self-immolative cleavage. Rodríguez J, Pérez-González C, Martínez-Calvo M, Mosquera J, Mascareñas JL. RSC Adv 12 3500-3504 (2022)
  81. Forced homodimerization of the c-Fos leucine zipper in designed bHLHZ-like hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos. Chen G, De Jong AT, Shin JA. Mol Biosyst 8 1286-1296 (2012)
  82. Minimalist proteins: Design of new molecular recognition scaffolds. Shin JA. Pure Appl Chem 76 1579-1590 (2004)
  83. The bZIP targets overlapping DNA subsites within a half-site, resulting in increased binding affinities. Chan IS, Shahravan SH, Fedorova AV, Shin JA. Biochemistry 47 9646-9652 (2008)
  84. Dual DNA recognition codes of a short peptide derived from the basic leucine zipper protein EmBP1. Hirata A, Ueno M, Aizawa Y, Ohkubo K, Morii T, Yoshikawa S. Bioorg Med Chem 13 3107-3116 (2005)


Related citations provided by authors (2)