2cet Citations

Structural, kinetic, and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors.

Biochemistry 45 11879-84 (2006)
Related entries: 2ceq, 2cer, 2ces, 2j75, 2j77, 2j78, 2j79, 2j7b, 2j7c, 2j7d, 2j7e, 2j7f, 2j7g, 2j7h

Cited: 30 times
EuropePMC logo PMID: 17002288

Abstract

Inhibition of glycosidases has great potential in the quest for highly potent and specific drugs to treat diseases such as diabetes, cancer, and viral infections. One of the most effective ways of designing such compounds is by mimicking the transition state. Here we describe the structural, kinetic, and thermodynamic dissection of binding of two glucoimidazole-derived compounds, which are among the most potent glycosidase inhibitors reported to date, with two family 1 beta-glycosidases. Provocatively, while inclusion of the phenethyl moiety improves binding by a factor of 20-80-fold, this does not appear to result from better noncovalent interactions with the enzyme; instead, improved affinity may be derived from significantly better entropic contributions to binding displayed by the phenethyl-substituted imidazole compound.

Articles - 2cet mentioned but not cited (6)

  1. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Bikadi Z, Hazai E. J Cheminform 1 15 (2009)
  2. Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Anand K, Mathur D, Anant A, Garg LC. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 490-497 (2010)
  3. Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse Protein-Ligand Complexes in Cognate Docking. Ajani H, Pecina A, Eyrilmez SM, Fanfrlík J, Haldar S, Řezáč J, Hobza P, Lepšík M. ACS Omega 2 4022-4029 (2017)
  4. Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking. Li C, Sun J, Palade V. BMC Bioinformatics 21 286 (2020)
  5. Divide-and-conquer strategy for large-scale Eulerian solvent excluded surface. Zhao R, Wang M, Tong Y, Wei GW. Commun Inf Syst 18 299-329 (2018)
  6. GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction. Wang K, Zhou R, Tang J, Li M. Bioinformatics 39 btad340 (2023)


Reviews citing this publication (5)

  1. β-Glucosidases. Ketudat Cairns JR, Esen A. Cell Mol Life Sci 67 3389-3405 (2010)
  2. Mechanistic insights into glycosidase chemistry. Vocadlo DJ, Davies GJ. Curr Opin Chem Biol 12 539-555 (2008)
  3. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Park CS, Yoo MH, Noh KH, Oh DK. Appl Microbiol Biotechnol 87 9-19 (2010)
  4. Glycosidase inhibition: assessing mimicry of the transition state. Gloster TM, Davies GJ. Org Biomol Chem 8 305-320 (2010)
  5. Development of inhibitors as research tools for carbohydrate-processing enzymes. Gloster TM. Biochem Soc Trans 40 913-928 (2012)

Articles citing this publication (19)

  1. GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels. Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DM. J Am Chem Soc 128 16484-16485 (2006)
  2. Structural and biochemical evidence for a boat-like transition state in beta-mannosidases. Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Blériot Y, Vasella A, Gilbert HJ, Davies GJ. Nat Chem Biol 4 306-312 (2008)
  3. Insight into a strategy for attenuating AmpC-mediated beta-lactam resistance: structural basis for selective inhibition of the glycoside hydrolase NagZ. Balcewich MD, Stubbs KA, He Y, James TW, Davies GJ, Vocadlo DJ, Mark BL. Protein Sci 18 1541-1551 (2009)
  4. Designing allosteric control into enzymes by chemical rescue of structure. Deckert K, Budiardjo SJ, Brunner LC, Lovell S, Karanicolas J. J Am Chem Soc 134 10055-10060 (2012)
  5. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Tseng PS, Ande C, Moremen KW, Crich D. Angew Chem Int Ed Engl 62 e202217809 (2023)
  6. Molecular basis for beta-glucosidase inhibition by ring-modified calystegine analogues. Aguilar M, Gloster TM, García-Moreno MI, Ortiz Mellet C, Davies GJ, Llebaria A, Casas J, Egido-Gabás M, García Fernandez JM. Chembiochem 9 2612-2618 (2008)
  7. Computational analysis of glycoside hydrolase family 1 specificities. Hill AD, Reilly PJ. Biopolymers 89 1021-1031 (2008)
  8. Structural basis of alpha-fucosidase inhibition by iminocyclitols with K(i) values in the micro- to picomolar range. Wu HJ, Ho CW, Ko TP, Popat SD, Lin CH, Wang AH. Angew Chem Int Ed Engl 49 337-340 (2010)
  9. Structural Basis of Specific Glucoimidazole and Mannoimidazole Binding by Os3BGlu7. Nutho B, Pengthaisong S, Tankrathok A, Lee VS, Ketudat Cairns JR, Rungrotmongkol T, Hannongbua S. Biomolecules 10 E907 (2020)
  10. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. Khan S, Pozzo T, Megyeri M, Lindahl S, Sundin A, Turner C, Karlsson EN. BMC Biochem 12 11 (2011)
  11. Improved conversion of ginsenoside Rb1 to compound K by semi-rational design of Sulfolobus solfataricus β-glycosidase. Shin KC, Choi HY, Seo MJ, Oh DK. AMB Express 7 186 (2017)
  12. Gluco-1 H-imidazole: A New Class of Azole-Type β-Glucosidase Inhibitor. Schröder SP, Wu L, Artola M, Hansen T, Offen WA, Ferraz MJ, Li KY, Aerts JMFG, van der Marel GA, Codée JDC, Davies GJ, Overkleeft HS. J Am Chem Soc 140 5045-5048 (2018)
  13. Discovery of new β-D-galactosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. Abdula AM, Khalaf RA, Mubarak MS, Taha MO. J Comput Chem 32 463-482 (2011)
  14. Study on binding modes between cellobiose and β-glucosidases from glycoside hydrolase family 1. Liu L, Zeng Z, Zeng G, Chen M, Zhang Y, Zhang J, Fang X, Jiang M, Lu L. Bioorg Med Chem Lett 22 837-843 (2012)
  15. Discovery of new β-D-glucosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. Abu Khalaf R, Abdula AM, Mubarak MS, Taha MO. J Mol Model 17 443-464 (2011)
  16. Heterologous expression in Pichia pastoris and characterization of a β-glucosidase from the xylophagous cockroach Panesthia angustipennis spadica displaying high specific activity for cellobiose. Li Y, Arakawa G, Tokuda G, Watanabe H, Arioka M. Enzyme Microb Technol 97 104-113 (2017)
  17. Binding interactions of hydrophobically-modified flavonols with β-glucosidase: fluorescence spectroscopy and molecular modelling study. Chepeleva LV, Demidov OO, Snizhko AD, Tarasenko DO, Chumak AY, Kolomoitsev OO, Kotliar VM, Gladkov ES, Kyrychenko A, Roshal AD. RSC Adv 13 34107-34121 (2023)
  18. Probing the role of an invariant active site His in family GH1 β-glycosidases. Strazzulli A, Perugino G, Mazzone M, Rossi M, Withers SG, Moracci M. J Enzyme Inhib Med Chem 34 973-980 (2019)
  19. Reaction Mechanism of Glycoside Hydrolase Family 116 Utilizes Perpendicular Protonation. Pengthaisong S, Piniello B, Davies GJ, Rovira C, Ketudat Cairns JR. ACS Catal 13 5850-5863 (2023)


Related citations provided by authors (1)

  1. Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics.. Gloster TM, Meloncelli P, Stick RV, Zechel D, Vasella A, Davies GJ J Am Chem Soc 129 2345-54 (2007)