2bkh Citations

The structure of the myosin VI motor reveals the mechanism of directionality reversal.

Nature 435 779-85 (2005)
Cited: 146 times
EuropePMC logo PMID: 15944696

Abstract

Here we solve a 2.4-A structure of a truncated version of the reverse-direction myosin motor, myosin VI, that contains the motor domain and binding sites for two calmodulin molecules. The structure reveals only minor differences in the motor domain from that in plus-end directed myosins, with the exception of two unique inserts. The first is near the nucleotide-binding pocket and alters the rates of nucleotide association and dissociation. The second unique insert forms an integral part of the myosin VI converter domain along with a calmodulin bound to a novel target motif within the insert. This serves to redirect the effective 'lever arm' of myosin VI, which includes a second calmodulin bound to an 'IQ motif', towards the pointed (minus) end of the actin filament. This repositioning largely accounts for the reverse directionality of this class of myosin motors. We propose a model incorporating a kinesin-like uncoupling/docking mechanism to provide a full explanation of the movements of myosin VI.

Articles - 2bkh mentioned but not cited (17)

  1. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Ménétrey J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A. Nature 435 779-785 (2005)
  2. Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. Ovchinnikov V, Karplus M, Vanden-Eijnden E. J Chem Phys 134 085103 (2011)
  3. Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mukherjea M, Llinas P, Kim H, Travaglia M, Safer D, Ménétrey J, Franzini-Armstrong C, Selvin PR, Houdusse A, Sweeney HL. Mol Cell 35 305-315 (2009)
  4. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells. Hertzano R, Shalit E, Rzadzinska AK, Dror AA, Song L, Ron U, Tan JT, Shitrit AS, Fuchs H, Hasson T, Ben-Tal N, Sweeney HL, de Angelis MH, Steel KP, Avraham KB. PLoS Genet 4 e1000207 (2008)
  5. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. Ataman ZA, Gakhar L, Sorensen BR, Hell JW, Shea MA. Structure 15 1603-1617 (2007)
  6. Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing. Brownstein Z, Abu-Rayyan A, Karfunkel-Doron D, Sirigu S, Davidov B, Shohat M, Frydman M, Houdusse A, Kanaan M, Avraham KB. Eur J Hum Genet 22 768-775 (2014)
  7. The post-rigor structure of myosin VI and implications for the recovery stroke. Ménétrey J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A. EMBO J 27 244-252 (2008)
  8. A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites. Miller BM, Bloemink MJ, Nyitrai M, Bernstein SI, Geeves MA. J Mol Biol 368 1051-1066 (2007)
  9. A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms. Chandrasekaran SN, Das J, Dokholyan NV, Carter CW. Struct Dyn 3 012101 (2016)
  10. Alternative exon 9-encoded relay domains affect more than one communication pathway in the Drosophila myosin head. Bloemink MJ, Dambacher CM, Knowles AF, Melkani GC, Geeves MA, Bernstein SI. J Mol Biol 389 707-721 (2009)
  11. Processive steps in the reverse direction require uncoupling of the lead head lever arm of myosin VI. Ménétrey J, Isabet T, Ropars V, Mukherjea M, Pylypenko O, Liu X, Perez J, Vachette P, Sweeney HL, Houdusse AM. Mol Cell 48 75-86 (2012)
  12. Myosin VI deafness mutation prevents the initiation of processive runs on actin. Pylypenko O, Song L, Shima A, Yang Z, Houdusse AM, Sweeney HL. Proc Natl Acad Sci U S A 112 E1201-9 (2015)
  13. A conformational transition in the myosin VI converter contributes to the variable step size. Ovchinnikov V, Cecchini M, Vanden-Eijnden E, Karplus M. Biophys J 101 2436-2444 (2011)
  14. Role of insert-1 of myosin VI in modulating nucleotide affinity. Pylypenko O, Song L, Squires G, Liu X, Zong AB, Houdusse A, Sweeney HL. J Biol Chem 286 11716-11723 (2011)
  15. In silico prediction and analysis of Caenorhabditis EF-hand containing proteins. Kumar M, Ahmad S, Ahmad E, Saifi MA, Khan RH. PLoS One 7 e36770 (2012)
  16. X-ray Crystallographic and Molecular Dynamic Analyses of Drosophila melanogaster Embryonic Muscle Myosin Define Domains Responsible for Isoform-Specific Properties. Caldwell JT, Mermelstein DJ, Walker RC, Bernstein SI, Huxford T. J Mol Biol 432 427-447 (2020)
  17. Landscape-Based View on the Stepping Movement of Myosin VI. Terada TP, Nie QM, Sasai M. J Phys Chem B 126 7262-7270 (2022)


Reviews citing this publication (20)

  1. Structural and functional insights into the Myosin motor mechanism. Sweeney HL, Houdusse A. Annu Rev Biophys 39 539-557 (2010)
  2. Myosin VI rewrites the rules for myosin motors. Sweeney HL, Houdusse A. Cell 141 573-582 (2010)
  3. What can myosin VI do in cells? Sweeney HL, Houdusse A. Curr Opin Cell Biol 19 57-66 (2007)
  4. Motor Proteins. Sweeney HL, Holzbaur ELF. Cold Spring Harb Perspect Biol 10 a021931 (2018)
  5. Myosin light chains: Teaching old dogs new tricks. Heissler SM, Sellers JR. Bioarchitecture 4 169-188 (2014)
  6. How are the cellular functions of myosin VI regulated within the cell? Buss F, Kendrick-Jones J. Biochem Biophys Res Commun 369 165-175 (2008)
  7. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions. Heissler SM, Sellers JR. Traffic 17 839-859 (2016)
  8. Myosin at work: motor adaptations for a variety of cellular functions. O'Connell CB, Tyska MJ, Mooseker MS. Biochim Biophys Acta 1773 615-630 (2007)
  9. Single-molecule fluorescence to study molecular motors. Park H, Toprak E, Selvin PR. Q Rev Biophys 40 87-111 (2007)
  10. Poorly understood aspects of striated muscle contraction. Månsson A, Rassier D, Tsiavaliaris G. Biomed Res Int 2015 245154 (2015)
  11. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. Annu Rev Biochem 89 667-693 (2020)
  12. Mechanical design of translocating motor proteins. Hwang W, Lang MJ. Cell Biochem Biophys 54 11-22 (2009)
  13. Lever-arm mechanics of processive myosins. Sun Y, Goldman YE. Biophys J 101 1-11 (2011)
  14. To understand muscle you must take it apart. Batters C, Veigel C, Homsher E, Sellers JR. Front Physiol 5 90 (2014)
  15. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Stefen H, Chaichim C, Power J, Fath T. Neural Plast 2016 2371970 (2016)
  16. Functional studies of individual myosin molecules. Dantzig JA, Liu TY, Goldman YE. Ann N Y Acad Sci 1080 1-18 (2006)
  17. Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers. Linke H, Höcker B, Furuta K, Forde NR, Curmi PMG. Biophys Rev 12 1041-1054 (2020)
  18. Diverse functions of myosin VI in spermiogenesis. Zakrzewski P, Lenartowska M, Buss F. Histochem Cell Biol 155 323-340 (2021)
  19. Functional Role of Class III Myosins in Hair Cells. Cirilo JA, Gunther LK, Yengo CM. Front Cell Dev Biol 9 643856 (2021)
  20. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Johnson CA, Behbehani R, Buss F. Biomolecules 12 1889 (2022)

Articles citing this publication (109)

  1. New insights into myosin evolution and classification. Foth BJ, Goedecke MC, Soldati D. Proc Natl Acad Sci U S A 103 3681-3686 (2006)
  2. Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Park H, Ramamurthy B, Travaglia M, Safer D, Chen LQ, Franzini-Armstrong C, Selvin PR, Sweeney HL. Mol Cell 21 331-336 (2006)
  3. Myosin VI undergoes cargo-mediated dimerization. Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M. Cell 138 537-548 (2009)
  4. A novel role of myosin VI in human prostate cancer. Dunn TA, Chen S, Faith DA, Hicks JL, Platz EA, Chen Y, Ewing CM, Sauvageot J, Isaacs WB, De Marzo AM, Luo J. Am J Pathol 169 1843-1854 (2006)
  5. Long single alpha-helical tail domains bridge the gap between structure and function of myosin VI. Spink BJ, Sivaramakrishnan S, Lipfert J, Doniach S, Spudich JA. Nat Struct Mol Biol 15 591-597 (2008)
  6. Force generation in kinesin hinges on cover-neck bundle formation. Hwang W, Lang MJ, Karplus M. Structure 16 62-71 (2008)
  7. Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Yang Y, Gourinath S, Kovács M, Nyitray L, Reutzel R, Himmel DM, O'Neall-Hennessey E, Reshetnikova L, Szent-Györgyi AG, Brown JH, Cohen C. Structure 15 553-564 (2007)
  8. Cargo binding induces dimerization of myosin VI. Phichith D, Travaglia M, Yang Z, Liu X, Zong AB, Safer D, Sweeney HL. Proc Natl Acad Sci U S A 106 17320-17324 (2009)
  9. A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Endres NF, Yoshioka C, Milligan RA, Vale RD. Nature 439 875-878 (2006)
  10. How actin initiates the motor activity of Myosin. Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse A. Dev Cell 33 401-412 (2015)
  11. Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function. Oguchi Y, Mikhailenko SV, Ohki T, Olivares AO, De La Cruz EM, Ishiwata S. Proc Natl Acad Sci U S A 105 7714-7719 (2008)
  12. The power stroke of myosin VI and the basis of reverse directionality. Bryant Z, Altman D, Spudich JA. Proc Natl Acad Sci U S A 104 772-777 (2007)
  13. Allosteric communication in myosin V: from small conformational changes to large directed movements. Cecchini M, Houdusse A, Karplus M. PLoS Comput Biol 4 e1000129 (2008)
  14. The structural basis for the large powerstroke of myosin VI. Ménétrey J, Llinas P, Mukherjea M, Sweeney HL, Houdusse A. Cell 131 300-308 (2007)
  15. Structure of the light chain-binding domain of myosin V. Terrak M, Rebowski G, Lu RC, Grabarek Z, Dominguez R. Proc Natl Acad Sci U S A 102 12718-12723 (2005)
  16. How myosin VI coordinates its heads during processive movement. Sweeney HL, Park H, Zong AB, Yang Z, Selvin PR, Rosenfeld SS. EMBO J 26 2682-2692 (2007)
  17. Myosin VI walks "wiggly" on actin with large and variable tilting. Sun Y, Schroeder HW, Beausang JF, Homma K, Ikebe M, Goldman YE. Mol Cell 28 954-964 (2007)
  18. The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Park H, Li A, Chen LQ, Houdusse A, Selvin PR, Sweeney HL. Proc Natl Acad Sci U S A 104 778-783 (2007)
  19. Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Nishikawa S, Arimoto I, Ikezaki K, Sugawa M, Ueno H, Komori T, Iwane AH, Yanagida T. Cell 142 879-888 (2010)
  20. Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Fujii T, Namba K. Nat Commun 8 13969 (2017)
  21. Kinetic mechanism of human myosin IIIA. Dosé AC, Ananthanarayanan S, Moore JE, Burnside B, Yengo CM. J Biol Chem 282 216-231 (2007)
  22. ARP2/3-dependent growth in the plant kingdom: SCARs for life. Yanagisawa M, Zhang C, Szymanski DB. Front Plant Sci 4 166 (2013)
  23. Cargo-binding makes a wild-type single-headed myosin-VI move processively. Iwaki M, Tanaka H, Iwane AH, Katayama E, Ikebe M, Yanagida T. Biophys J 90 3643-3652 (2006)
  24. Myosin Va and myosin VI coordinate their steps while engaged in an in vitro tug of war during cargo transport. Ali MY, Kennedy GG, Safer D, Trybus KM, Sweeney HL, Warshaw DM. Proc Natl Acad Sci U S A 108 E535-41 (2011)
  25. Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex. Prochniewicz E, Chin HF, Henn A, Hannemann DE, Olivares AO, Thomas DD, De La Cruz EM. J Mol Biol 396 501-509 (2010)
  26. Kinetic properties and small-molecule inhibition of human myosin-6. Heissler SM, Selvadurai J, Bond LM, Fedorov R, Kendrick-Jones J, Buss F, Manstein DJ. FEBS Lett 586 3208-3214 (2012)
  27. Mouse myosin-19 is a plus-end-directed, high-duty ratio molecular motor. Lu Z, Ma XN, Zhang HM, Ji HH, Ding H, Zhang J, Luo D, Sun Y, Li XD. J Biol Chem 289 18535-18548 (2014)
  28. Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing. Dunn AR, Chuan P, Bryant Z, Spudich JA. Proc Natl Acad Sci U S A 107 7746-7750 (2010)
  29. A vertebrate myosin-I structure reveals unique insights into myosin mechanochemical tuning. Shuman H, Greenberg MJ, Zwolak A, Lin T, Sindelar CV, Dominguez R, Ostap EM. Proc Natl Acad Sci U S A 111 2116-2121 (2014)
  30. Mechanical coupling in myosin V: a simulation study. Ovchinnikov V, Trout BL, Karplus M. J Mol Biol 395 815-833 (2010)
  31. Engineering controllable bidirectional molecular motors based on myosin. Chen L, Nakamura M, Schindler TD, Parker D, Bryant Z. Nat Nanotechnol 7 252-256 (2012)
  32. Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. He F, Wollscheid HP, Nowicka U, Biancospino M, Valentini E, Ehlinger A, Acconcia F, Magistrati E, Polo S, Walters KJ. Cell Rep 14 2683-2694 (2016)
  33. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Heaslip AT, Nelson SR, Warshaw DM. Mol Biol Cell 27 2080-2089 (2016)
  34. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Evans TI, Shea MA. Proteins 76 47-61 (2009)
  35. Head of myosin IX binds calmodulin and moves processively toward the plus-end of actin filaments. Liao W, Elfrink K, Bähler M. J Biol Chem 285 24933-24942 (2010)
  36. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. Gurel PS, Kim LY, Ruijgrok PV, Omabegho T, Bryant Z, Alushin GM. Elife 6 e31125 (2017)
  37. Detailed tuning of structure and intramolecular communication are dispensable for processive motion of myosin VI. Elting MW, Bryant Z, Liao JC, Spudich JA. Biophys J 100 430-439 (2011)
  38. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Astumian RD. Biophys J 108 291-303 (2015)
  39. Mechanochemical tuning of myosin-I by the N-terminal region. Greenberg MJ, Lin T, Shuman H, Ostap EM. Proc Natl Acad Sci U S A 112 E3337-44 (2015)
  40. Structural and functional insights on the Myosin superfamily. Syamaladevi DP, Spudich JA, Sowdhamini R. Bioinform Biol Insights 6 11-21 (2012)
  41. Calcium can mobilize and activate myosin-VI. Batters C, Brack D, Ellrich H, Averbeck B, Veigel C. Proc Natl Acad Sci U S A 113 E1162-9 (2016)
  42. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. Juranic N, Atanasova E, Filoteo AG, Macura S, Prendergast FG, Penniston JT, Strehler EE. J Biol Chem 285 4015-4024 (2010)
  43. Engineered myosin VI motors reveal minimal structural determinants of directionality and processivity. Liao JC, Elting MW, Delp SL, Spudich JA, Bryant Z. J Mol Biol 392 862-867 (2009)
  44. Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides. Naber N, Purcell TJ, Pate E, Cooke R. Biophys J 92 172-184 (2007)
  45. The tail domain of myosin Va modulates actin binding to one head. Olivares AO, Chang W, Mooseker MS, Hackney DD, De La Cruz EM. J Biol Chem 281 31326-31336 (2006)
  46. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. Kollmar M. BMC Genomics 7 183 (2006)
  47. Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm. Reifenberger JG, Toprak E, Kim H, Safer D, Sweeney HL, Selvin PR. Proc Natl Acad Sci U S A 106 18255-18260 (2009)
  48. Conformational distributions of isolated myosin motor domains encode their mechanochemical properties. Porter JR, Meller A, Zimmerman MI, Greenberg MJ, Bowman GR. Elife 9 e55132 (2020)
  49. Functional characterization of the N-terminal region of myosin-2. Fujita-Becker S, Tsiavaliaris G, Ohkura R, Shimada T, Manstein DJ, Sutoh K. J Biol Chem 281 36102-36109 (2006)
  50. Biochemical and bioinformatic analysis of the myosin-XIX motor domain. Adikes RC, Unrath WC, Yengo CM, Quintero OA. Cytoskeleton (Hoboken) 70 281-295 (2013)
  51. Coiled-coil-mediated dimerization is not required for myosin VI to stabilize actin during spermatid individualization in Drosophila melanogaster. Noguchi T, Frank DJ, Isaji M, Miller KG. Mol Biol Cell 20 358-367 (2009)
  52. Formation of salt bridges mediates internal dimerization of myosin VI medial tail domain. Kim H, Hsin J, Liu Y, Selvin PR, Schulten K. Structure 18 1443-1449 (2010)
  53. Myosin VI must dimerize and deploy its unusual lever arm in order to perform its cellular roles. Mukherjea M, Ali MY, Kikuti C, Safer D, Yang Z, Sirkia H, Ropars V, Houdusse A, Warshaw DM, Sweeney HL. Cell Rep 8 1522-1532 (2014)
  54. Myosin cleft closure determines the energetics of the actomyosin interaction. Takács B, O'Neall-Hennessey E, Hetényi C, Kardos J, Szent-Györgyi AG, Kovács M. FASEB J 25 111-121 (2011)
  55. Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. Boucher S, Tai FWJ, Delmaghani S, Lelli A, Singh-Estivalet A, Dupont T, Niasme-Grare M, Michel V, Wolff N, Bahloul A, Bouyacoub Y, Bouccara D, Fraysse B, Deguine O, Collet L, Thai-Van H, Ionescu E, Kemeny JL, Giraudet F, Lavieille JP, Devèze A, Roudevitch-Pujol AL, Vincent C, Vincent C, Renard C, Franco-Vidal V, Thibult-Apt C, Darrouzet V, Bizaguet E, Coez A, Aschard H, Michalski N, Lefevre GM, Aubois A, Avan P, Bonnet C, Petit C. Proc Natl Acad Sci U S A 117 31278-31289 (2020)
  56. A protein-protein interaction of stress-responsive myosin VI endowed to inhibit neural progenitor self-replication with RNA binding protein, TLS, in murine hippocampus. Takarada T, Tamaki K, Takumi T, Ogura M, Ito Y, Nakamichi N, Yoneda Y. J Neurochem 110 1457-1468 (2009)
  57. Myosin VI has a one track mind versus myosin Va when moving on actin bundles or at an intersection. Ali MY, Previs SB, Trybus KM, Sweeney HL, Warshaw DM. Traffic 14 70-81 (2013)
  58. Optical traps to study properties of molecular motors. Spudich JA, Rice SE, Rock RS, Purcell TJ, Warrick HM. Cold Spring Harb Protoc 2011 1305-1318 (2011)
  59. Androcam is a tissue-specific light chain for myosin VI in the Drosophila testis. Frank DJ, Martin SR, Gruender BN, Lee YS, Simonette RA, Bayley PM, Miller KG, Beckingham KM. J Biol Chem 281 24728-24736 (2006)
  60. Flexible light-chain and helical structure of F-actin explain the movement and step size of myosin-VI. Lan G, Sun SX. Biophys J 91 4002-4013 (2006)
  61. Structure of Myosin VI/Tom1 complex reveals a cargo recognition mode of Myosin VI for tethering. Hu S, Guo Y, Wang Y, Li Y, Fu T, Zhou Z, Wang Y, Liu J, Pan L. Nat Commun 10 3459 (2019)
  62. Quantitative structural information from single-molecule FRET. Beckers M, Drechsler F, Eilert T, Nagy J, Michaelis J. Faraday Discuss 184 117-129 (2015)
  63. A novel splice site mutation of myosin VI in mice leads to stereociliary fusion caused by disruption of actin networks in the apical region of inner ear hair cells. Seki Y, Miyasaka Y, Suzuki S, Wada K, Yasuda SP, Matsuoka K, Ohshiba Y, Endo K, Ishii R, Shitara H, Kitajiri SI, Nakagata N, Takebayashi H, Kikkawa Y. PLoS One 12 e0183477 (2017)
  64. Extension of a three-helix bundle domain of myosin VI and key role of calmodulins. Liu Y, Hsin J, Kim H, Selvin PR, Schulten K. Biophys J 100 2964-2973 (2011)
  65. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity. Jana B, Onuchic JN. PLoS Comput Biol 12 e1005035 (2016)
  66. Controllable molecular motors engineered from myosin and RNA. Omabegho T, Gurel PS, Cheng CY, Kim LY, Ruijgrok PV, Das R, Alushin GM, Bryant Z. Nat Nanotechnol 13 34-40 (2018)
  67. Unique sequences and predicted functions of myosins in Tetrahymena thermophila. Sugita M, Iwataki Y, Nakano K, Numata O. Gene 480 10-20 (2011)
  68. Actin filament dynamics in the actomyosin VI complex is regulated allosterically by calcium-calmodulin light chain. Prochniewicz E, Pierre A, McCullough BR, Chin HF, Cao W, Saunders LP, Thomas DD, De La Cruz EM. J Mol Biol 413 584-592 (2011)
  69. Nucleotide-dependent shape changes in the reverse direction motor, myosin VI. Song CF, Sader K, White H, Kendrick-Jones J, Trinick J. Biophys J 99 3336-3344 (2010)
  70. Structural basis of Fusarium myosin I inhibition by phenamacril. Zhou Y, Zhou XE, Gong Y, Zhu Y, Cao X, Brunzelle JS, Xu HE, Zhou M, Melcher K, Zhang F. PLoS Pathog 16 e1008323 (2020)
  71. Binding orientation and specificity of calmodulin to rat olfactory cyclic nucleotide-gated ion channel. Irene D, Huang JW, Chung TY, Li FY, Tzen JT, Lin TH, Chyan CL. J Biomol Struct Dyn 31 414-425 (2013)
  72. Lecture How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009. Llinas P, Pylypenko O, Isabet T, Mukherjea M, Sweeney HL, Houdusse AM. FEBS J 279 551-562 (2012)
  73. Adaptive evolution of the myo6 gene in old world fruit bats (family: pteropodidae). Shen B, Han X, Jones G, Rossiter SJ, Zhang S. PLoS One 8 e62307 (2013)
  74. Case Reports Exome sequencing identifies a novel mutation in the MYH6 gene in a family with early-onset sinus node dysfunction, ventricular arrhythmias, and cardiac arrest. Lam L, Ingles J, Turner C, Kilborn M, Bagnall RD, Semsarian C. HeartRhythm Case Rep 1 141-145 (2015)
  75. Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236. Frye JJ, Klenchin VA, Bagshaw CR, Rayment I. Biochemistry 49 4897-4907 (2010)
  76. Kinematics of the lever arm swing in myosin VI. Mugnai ML, Thirumalai D. Proc Natl Acad Sci U S A 114 E4389-E4398 (2017)
  77. Specialization of the photoreceptor transcriptome by Srrm3-dependent microexons is required for outer segment maintenance and vision. Ciampi L, Mantica F, López-Blanch L, Permanyer J, Rodriguez-Marín C, Zang J, Cianferoni D, Jiménez-Delgado S, Bonnal S, Miravet-Verde S, Ruprecht V, Neuhauss SCF, Banfi S, Carrella S, Serrano L, Head SA, Irimia M. Proc Natl Acad Sci U S A 119 e2117090119 (2022)
  78. A possible mechanism for determining the directionality of myosin molecular motors. Masuda T. Biosystems 93 172-180 (2008)
  79. Simultaneous observation of the lever arm and head explains myosin VI dual function. Ikezaki K, Komori T, Sugawa M, Arai Y, Nishikawa S, Iwane AH, Yanagida T. Small 8 3035-3040 (2012)
  80. A hand-over-hand diffusing model for myosin-VI molecular motors. Xie P, Dou SX, Wang PY. Biophys Chem 122 90-100 (2006)
  81. Identification of a novel MYO6 mutation associated with autosomal dominant non-syndromic hearing loss in a Chinese family by whole-exome sequencing. Tian T, Lu Y, Yao J, Cao X, Wei Q, Li Q. Genes Genet Syst 93 171-179 (2018)
  82. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament. Masuda T. Biosystems 113 144-148 (2013)
  83. The fusion of actin bundles driven by interacting motor proteins. Gillo D, Gilboa B, Gurka R, Bernheim-Groswasser A. Phys Biol 6 036003 (2009)
  84. A deterministic mechanism producing the loose coupling phenomenon observed in an actomyosin system. Masuda T. Biosystems 95 104-113 (2009)
  85. A pre-embedding immunogold approach reveals localization of myosin VI at the ultrastructural level in the actin cones that mediate Drosophila spermatid individualization. Lenartowska M, Isaji M, Miller KG. Protoplasma 249 337-346 (2012)
  86. Membrane-induced lever arm expansion allows myosin VI to walk with large and variable step sizes. Yu C, Lou J, Wu J, Pan L, Feng W, Zhang M. J Biol Chem 287 35021-35035 (2012)
  87. Reverse conformational changes of the light chain-binding domain of myosin V and VI processive motor heads during and after hydrolysis of ATP by small-angle X-ray solution scattering. Sugimoto Y, Sato O, Watanabe S, Ikebe R, Ikebe M, Wakabayashi K. J Mol Biol 392 420-435 (2009)
  88. Dynamic conformational changes due to the ATP hydrolysis in the motor domain of myosin: 10-ns molecular dynamics simulations. Kawakubo T, Okada O, Minami T. Biophys Chem 141 75-86 (2009)
  89. Myosin diversity in the diatom Phaeodactylum tricornutum. Heintzelman MB, Enriquez ME. Cytoskeleton (Hoboken) 67 142-151 (2010)
  90. Myosin individualized: single nucleotide polymorphisms in energy transduction. Burghardt TP, Neff KL, Wieben ED, Ajtai K. BMC Genomics 11 172 (2010)
  91. News Myosin shifts into reverse gear. Walter WJ, Diez S. Nat Nanotechnol 7 213-214 (2012)
  92. Plus-end directed myosins accelerate actin filament sliding by single-headed myosin VI. Ramamurthy B, Cao W, De la Cruz EM, Mooseker MS. Cytoskeleton (Hoboken) 69 59-69 (2012)
  93. Structure of androcam supports specialized interactions with myosin VI. Joshi MK, Moran S, Beckingham KM, MacKenzie KR. Proc Natl Acad Sci U S A 109 13290-13295 (2012)
  94. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Chyan CL, Irene D, Lin SM. Molecules 22 E1584 (2017)
  95. ATPase-coupled release control from polyion complex capsules encapsulating muscle proteins. Sugiura K, Ohkawa K, Hirai T, Fujii T. Macromol Biosci 7 508-516 (2007)
  96. Biased Brownian motion mechanism for processivity and directionality of single-headed myosin-VI. Iwaki M, Iwane AH, Ikebe M, Yanagida T. Biosystems 93 39-47 (2008)
  97. EPR spectra and molecular dynamics agree that the nucleotide pocket of myosin V is closed and that it opens on binding actin. Purcell TJ, Naber N, Sutton S, Cooke R, Pate E. J Mol Biol 411 16-26 (2011)
  98. Ensembles of human myosin-19 bound to calmodulin and regulatory light chain RLC12B drive multimicron transport. Pollard LW, Coscia SM, Rebowski G, Palmer NJ, Holzbaur ELF, Dominguez R, Ostap EM. J Biol Chem 299 102906 (2023)
  99. Expression of Unconventional Myosin VI in Oligodendrocytes. Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. Neurochem Res 42 3372-3381 (2017)
  100. Congress Fifty years on: where have we reached? Offer G. J Muscle Res Cell Motil 27 205-213 (2006)
  101. Molecular motors: a surprising twist in myosin VI translocation. Spudich JA. Curr Biol 18 R68-70 (2008)
  102. NMR chemical shift assignments for androcam, a testis-specific myosin VI light chain in D. melanogaster. Joshi MK, Moran S, MacKenzie KR. Biomol NMR Assign 7 167-169 (2013)
  103. Reconstitution reveals how myosin-VI self-organises to generate a dynamic mechanism of membrane sculpting. Rogez B, Würthner L, Petrova AB, Zierhut FB, Saczko-Brack D, Huergo MA, Batters C, Frey E, Veigel C. Nat Commun 10 3305 (2019)
  104. Comparative Study [A myosin that moves backwards]. Ménétrey J, Bahloul A, Houdusse A. Med Sci (Paris) 22 120-122 (2006)
  105. ¹H, ¹⁵N and ¹³C chemical shifts of the D. melanogaster myosin VI light chain androcam in high calcium. Joshi MK, Moran S, MacKenzie KR. Biomol NMR Assign 7 171-174 (2013)
  106. Functional Characterization of the MYO6 Variant p.E60Q in Non-Syndromic Hearing Loss Patients. Alkowari M, Espino-Guarch M, Daas S, Abdelrahman D, Hasan W, Krishnamoorthy N, Sathappan A, Sheehan P, Panhuys NV, The Qatar Genome Program Research Consortium, Estivill X. Int J Mol Sci 23 3369 (2022)
  107. How myosin VI traps its off-state, is activated and dimerizes. Canon L, Kikuti C, Planelles-Herrero VJ, Lin T, Mayeux F, Sirkia H, Lee YI, Heidsieck L, Velikovsky L, David A, Liu X, Moussaoui D, Forest E, Höök P, Petersen KJ, Morgan TE, Di Cicco A, Sirés-Campos J, Derivery E, Lévy D, Delevoye C, Sweeney HL, Houdusse A. Nat Commun 14 6732 (2023)
  108. Molecular motors: Shifting gears with light. Reck-Peterson SL. Nat Nanotechnol 9 661-662 (2014)
  109. Historical Article Spotlight on...Dietmar Manstein. Interview by Daniela Rufell. Manstein D. FEBS Lett 585 2401-2402 (2011)