2bhg Citations

Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity.

J Biol Chem 280 11520-7 (2005)
Cited: 91 times
EuropePMC logo PMID: 15654079

Abstract

Foot-and-mouth disease virus (FMDV) causes a widespread and economically devastating disease of domestic livestock. Although FMDV vaccines are available, political and technical problems associated with their use are driving a renewed search for alternative methods of disease control. The viral RNA genome is translated as a single polypeptide precursor that must be cleaved into functional proteins by virally encoded proteases. 10 of the 13 cleavages are performed by the highly conserved 3C protease (3C(pro)), making the enzyme an attractive target for antiviral drugs. We have developed a soluble, recombinant form of FMDV 3C(pro), determined the crystal structure to 1.9-angstroms resolution, and analyzed the cleavage specificity of the enzyme. The structure indicates that FMDV 3C(pro) adopts a chymotrypsin-like fold and possesses a Cys-His-Asp catalytic triad in a similar conformation to the Ser-His-Asp triad conserved in almost all serine proteases. This observation suggests that the dyad-based mechanisms proposed for this class of cysteine proteases need to be reassessed. Peptide cleavage assays revealed that the recognition sequence spans at least four residues either side of the scissile bond (P4-P4') and that FMDV 3C(pro) discriminates only weakly in favor of P1-Gln over P1-Glu, in contrast to other 3C(pro) enzymes that strongly favor P1-Gln. The relaxed specificity may be due to the unexpected absence in FMDV 3C(pro) of an extended beta-ribbon that folds over the substrate binding cleft in other picornavirus 3C(pro) structures. Collectively, these results establish a valuable framework for the development of FMDV 3C(pro) inhibitors.

Reviews - 2bhg mentioned but not cited (3)

  1. Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3C-like protease? Ng CS, Stobart CC, Luo H. Rev Med Virol 31 1-22 (2021)
  2. Viral enzymes. Mesters JR, Tan J, Hilgenfeld R. Curr. Opin. Struct. Biol. 16 776-786 (2006)
  3. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Mondal S, Sarvari G, Boehr DD. Viruses 15 2413 (2023)

Articles - 2bhg mentioned but not cited (7)

  1. Dual modes of modification of hepatitis A virus 3C protease by a serine-derived beta-lactone: selective crystallization and formation of a functional catalytic triad in the active site. Yin J, Bergmann EM, Cherney MM, Lall MS, Jain RP, Vederas JC, James MN. J. Mol. Biol. 354 854-871 (2005)
  2. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting. Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS. PLoS ONE 8 e79687 (2013)
  3. Crystal structure of the serine protease domain of Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket. Gayathri P, Satheshkumar PS, Prasad K, Nair S, Savithri HS, Murthy MR. Virology 346 440-451 (2006)
  4. Shifts in the selection-drift balance drive the evolution and epidemiology of foot-and-mouth disease virus. Tully DC, Fares MA. J. Virol. 83 781-790 (2009)
  5. The effects of the synonymous codon usage and tRNA abundance on protein folding of the 3C protease of foot-and-mouth disease virus. Zhou JH, You YN, Chen HT, Zhang J, Ma LN, Ding YZ, Pejsak Z, Liu YS. Infect. Genet. Evol. 16 270-274 (2013)
  6. Toward development of generic inhibitors against the 3C proteases of picornaviruses. Banerjee K, Bhat R, Rao VUB, Nain A, Rallapalli KL, Gangopadhyay S, Singh RP, Banerjee M, Jayaram B. FEBS J 286 765-787 (2019)
  7. Structure of Senecavirus A 3C Protease Revealed the Cleavage Pattern of 3C Protease in Picornaviruses. Meng K, Zhang L, Xue X, Xue Q, Sun M, Meng G. J Virol 96 e0073622 (2022)


Reviews citing this publication (10)

  1. Antiviral drug discovery for the treatment of enterovirus 71 infections. Shang L, Xu M, Yin Z. Antiviral Res. 97 183-194 (2013)
  2. Foot-and-mouth disease virus 3C protease: recent structural and functional insights into an antiviral target. Curry S, Roqué-Rosell N, Zunszain PA, Leatherbarrow RJ. Int. J. Biochem. Cell Biol. 39 1-6 (2007)
  3. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Sun D, Chen S, Cheng A, Wang M. Viruses 8 82 (2016)
  4. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Gao Y, Sun SQ, Guo HC. Virol. J. 13 107 (2016)
  5. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Han SC, Guo HC, Sun SQ. Arch. Virol. 160 1-16 (2015)
  6. Advances in Foot-and-Mouth Disease Virus Proteins Regulating Host Innate Immunity. Peng J, Yi J, Yang W, Ren J, Wen Y, Zheng H, Li D. Front Microbiol 11 2046 (2020)
  7. Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins. Pascal SM, Garimella R, Warden MS, Ponniah K. Microbiol Mol Biol Rev 84 e00062-19 (2020)
  8. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Medina GN, Segundo FD, Stenfeldt C, Arzt J, de Los Santos T. Front Microbiol 9 2644 (2018)
  9. The peptidases from fungi and viruses. James MN. Biol. Chem. 387 1023-1029 (2006)
  10. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Sarry M, Vitour D, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Viruses 14 2129 (2022)

Articles citing this publication (71)

  1. Pandemic strain of foot-and-mouth disease virus serotype O. Knowles NJ, Samuel AR, Davies PR, Midgley RJ, Valarcher JF. Emerging Infect. Dis. 11 1887-1893 (2005)
  2. X-ray crystallographic structure of the Norwalk virus protease at 1.5-A resolution. Zeitler CE, Estes MK, Venkataram Prasad BV. J. Virol. 80 5050-5058 (2006)
  3. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. Wang D, Fang L, Li K, Zhong H, Fan J, Ouyang C, Zhang H, Duan E, Luo R, Zhang Z, Liu X, Chen H, Xiao S. J. Virol. 86 9311-9322 (2012)
  4. A norovirus protease structure provides insights into active and substrate binding site integrity. Nakamura K, Someya Y, Kumasaka T, Ueno G, Yamamoto M, Sato T, Takeda N, Miyamura T, Tanaka N. J. Virol. 79 13685-13693 (2005)
  5. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO. J. Virol. 86 11754-11762 (2012)
  6. Crystal structure of human enterovirus 71 3C protease. Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. J. Mol. Biol. 408 449-461 (2011)
  7. Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis. Sweeney TR, Roqué-Rosell N, Birtley JR, Leatherbarrow RJ, Curry S. J. Virol. 81 115-124 (2007)
  8. Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. Nayak A, Goodfellow IG, Woolaway KE, Birtley J, Curry S, Belsham GJ. J. Virol. 80 9865-9875 (2006)
  9. Crystal structures of enterovirus 71 3C protease complexed with rupintrivir reveal the roles of catalytically important residues. Wang J, Fan T, Yao X, Wu Z, Guo L, Lei X, Wang J, Wang M, Jin Q, Cui S. J. Virol. 85 10021-10030 (2011)
  10. Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, Yang S, Chen SJ, Chen HC, Hsu MC, Shih SR, Liang PH, Wang AH. J. Biol. Chem. 284 7646-7655 (2009)
  11. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. Zunszain PA, Knox SR, Sweeney TR, Yang J, Roqué-Rosell N, Belsham GJ, Leatherbarrow RJ, Curry S. J. Mol. Biol. 395 375-389 (2010)
  12. Evolution and conservation in human parechovirus genomes. Williams CH, Panayiotou M, Girling GD, Peard CI, Oikarinen S, Hyöty H, Stanway G. J. Gen. Virol. 90 1702-1712 (2009)
  13. 3C protease of enterovirus 68: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. Tan J, George S, Kusov Y, Perbandt M, Anemüller S, Mesters JR, Norder H, Coutard B, Lacroix C, Leyssen P, Neyts J, Hilgenfeld R. J. Virol. 87 4339-4351 (2013)
  14. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. Du Y, Bi J, Liu J, Liu X, Wu X, Jiang P, Yoo D, Zhang Y, Wu J, Wan R, Zhao X, Guo L, Sun W, Cong X, Chen L, Wang J. J. Virol. 88 4908-4920 (2014)
  15. Foot-and-mouth disease virus assembly: processing of recombinant capsid precursor by exogenous protease induces self-assembly of pentamers in vitro in a myristoylation-dependent manner. Goodwin S, Tuthill TJ, Arias A, Killington RA, Rowlands DJ. J. Virol. 83 11275-11282 (2009)
  16. Structure and cleavage specificity of the chymotrypsin-like serine protease (3CLSP/nsp4) of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Tian X, Lu G, Gao F, Peng H, Feng Y, Ma G, Bartlam M, Tian K, Yan J, Hilgenfeld R, Gao GF. J. Mol. Biol. 392 977-993 (2009)
  17. Foot-and-mouth disease virus 3C protease induces fragmentation of the Golgi compartment and blocks intra-Golgi transport. Zhou Z, Mogensen MM, Powell PP, Curry S, Wileman T. J. Virol. 87 11721-11729 (2013)
  18. Two distinct conformations of a rinderpest virus epitope presented by bovine major histocompatibility complex class I N*01801: a host strategy to present featured peptides. Li X, Liu J, Qi J, Gao F, Li Q, Li X, Zhang N, Xia C, Gao GF. J. Virol. 85 6038-6048 (2011)
  19. An episulfide cation (thiiranium ring) trapped in the active site of HAV 3C proteinase inactivated by peptide-based ketone inhibitors. Yin J, Cherney MM, Bergmann EM, Zhang J, Huitema C, Pettersson H, Eltis LD, Vederas JC, James MN. J. Mol. Biol. 361 673-686 (2006)
  20. Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation. Leen EN, Baeza G, Curry S. PLoS ONE 7 e38723 (2012)
  21. Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of "self-tagged" particles. Gullberg M, Polacek C, Bøtner A, Belsham GJ. J. Virol. 87 11591-11603 (2013)
  22. A continuous assay for foot-and-mouth disease virus 3C protease activity. Jaulent AM, Fahy AS, Knox SR, Birtley JR, Roqué-Rosell N, Curry S, Leatherbarrow RJ. Anal. Biochem. 368 130-137 (2007)
  23. Identification of tolerated insertion sites in poliovirus non-structural proteins. Teterina NL, Lauber C, Jensen KS, Levenson EA, Gorbalenya AE, Ehrenfeld E. Virology 409 1-11 (2011)
  24. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. Gullberg M, Muszynski B, Organtini LJ, Ashley RE, Hafenstein SL, Belsham GJ, Polacek C. J. Gen. Virol. 94 1769-1779 (2013)
  25. Conformational plasticity of the 2A proteinase from enterovirus 71. Cai Q, Yameen M, Liu W, Gao Z, Li Y, Peng X, Cai Y, Wu C, Zheng Q, Li J, Lin T. J. Virol. 87 7348-7356 (2013)
  26. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Li C, Zhu Z, Du X, Cao W, Yang F, Zhang X, Feng H, Li D, Zhang K, Liu X, Zheng H. Virology 509 222-231 (2017)
  27. Structures of Enterovirus 71 3C proteinase (strain E2004104-TW-CDC) and its complex with rupintrivir. Wu C, Cai Q, Chen C, Li N, Peng X, Cai Y, Yin K, Chen X, Wang X, Zhang R, Liu L, Chen S, Li J, Lin T. Acta Crystallogr. D Biol. Crystallogr. 69 866-871 (2013)
  28. Comparative complete genome analysis of Indian type A foot-and-mouth disease virus field isolates. Subramaniam S, Sanyal A, Mohapatra JK, Hemadri D, Pattnaik B. Virus Genes 43 224-233 (2011)
  29. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells. Gullberg M, Polacek C, Belsham GJ. J. Gen. Virol. 95 2402-2410 (2014)
  30. Inhibition of Enterovirus 71 replication by 7-hydroxyflavone and diisopropyl-flavon7-yl Phosphate. Wang J, Su H, Zhang T, Du J, Cui S, Yang F, Jin Q. PLoS ONE 9 e92565 (2014)
  31. A Novel Enterovirus 71 (EV71) Virulence Determinant: The 69th Residue of 3C Protease Modulates Pathogenicity. Li B, Yue Y, Zhang Y, Yuan Z, Li P, Song N, Lin W, Liu Y, Gu L, Meng H. Front Cell Infect Microbiol 7 26 (2017)
  32. Heteroaromatic ester inhibitors of hepatitis A virus 3C proteinase: Evaluation of mode of action. Huitema C, Zhang J, Yin J, James MN, Vederas JC, Eltis LD. Bioorg. Med. Chem. 16 5761-5777 (2008)
  33. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity. Herod MR, Prince CA, Skilton RJ, Ward VK, Cooper JB, Clarke IN. Biochem. J. 464 461-472 (2014)
  34. Foot-and-Mouth Disease Virus Evades Innate Immune Response by 3C-Targeting of MDA5. Kim H, Kim AY, Choi J, Park SY, Park SH, Kim JS, Lee SI, Park JH, Park CK, Ko YJ. Cells 10 271 (2021)
  35. Functional binding of hexanucleotides to 3C protease of hepatitis A virus. Blaum BS, Wünsche W, Benie AJ, Kusov Y, Peters H, Gauss-Müller V, Peters T, Sczakiel G. Nucleic Acids Res. 40 3042-3055 (2012)
  36. Genetic heterogeneity in the leader and P1-coding regions of foot-and-mouth disease virus serotypes A and O in Africa. Chitray M, de Beer TA, Vosloo W, Maree FF. Arch. Virol. 159 947-961 (2014)
  37. Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus-infected cells. Kristensen T, Normann P, Gullberg M, Fahnøe U, Polacek C, Rasmussen TB, Belsham GJ. J. Gen. Virol. 98 385-395 (2017)
  38. Specific N-terminal protein labelling: use of FMDV 3C pro protease and native chemical ligation. Busch GK, Tate EW, Gaffney PR, Rosivatz E, Woscholski R, Leatherbarrow RJ. Chem. Commun. (Camb.) 3369-3371 (2008)
  39. The DDX23 Negatively Regulates Translation and Replication of Foot-and-Mouth Disease Virus and Is Degraded by 3C Proteinase. Abdullah SW, Han S, Wu J, Zhang Y, Bai M, Jin Y, Zhi X, Guan J, Sun S, Guo H. Viruses 12 E1348 (2020)
  40. An Engineered Maturation Cleavage Provides a Recombinant Mimic of Foot-and-Mouth Disease Virus Capsid Assembly-Disassembly. Newman J, Rowlands DJ, Tuthill TJ. Life (Basel) 11 500 (2021)
  41. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. Herod MR, Ferrer-Orta C, Loundras EA, Ward JC, Verdaguer N, Rowlands DJ, Stonehouse NJ. J. Virol. 90 6864-6883 (2016)
  42. Crystal structure of the 3C protease from Southern African Territories type 2 foot-and-mouth disease virus. Yang J, Leen EN, Maree FF, Curry S. PeerJ 4 e1964 (2016)
  43. Design and synthesis of irreversible inhibitors of foot-and-mouth disease virus 3C protease. Roqué Rosell NR, Mokhlesi L, Milton NE, Sweeney TR, Zunszain PA, Curry S, Leatherbarrow RJ. Bioorg. Med. Chem. Lett. 24 490-494 (2014)
  44. Effect of foot-and-mouth disease virus capsid precursor protein and 3C protease expression on bovine herpesvirus 1 replication. Klopfleisch C, Minh LQ, Giesow K, Curry S, Keil GM. Arch. Virol. 155 723-731 (2010)
  45. Foot-and-Mouth Disease Virus Counteracts on Internal Ribosome Entry Site Suppression by G3BP1 and Inhibits G3BP1-Mediated Stress Granule Assembly via Post-Translational Mechanisms. Ye X, Pan T, Wang D, Fang L, Ma J, Zhu X, Shi Y, Zhang K, Zheng H, Chen H, Li K, Xiao S. Front Immunol 9 1142 (2018)
  46. Functional advantages of triplication of the 3B coding region of the FMDV genome. Adeyemi OO, Ward JC, Snowden JS, Herod MR, Rowlands DJ, Stonehouse NJ. FASEB J 35 e21215 (2021)
  47. Generation and genetic stability of tick-borne encephalitis virus mutants dependent on processing by the foot-and-mouth disease virus 3C protease. Schrauf S, Kurz M, Taucher C, Mandl CW, Skern T. J. Gen. Virol. 93 504-515 (2012)
  48. Genetic economy in picornaviruses: Foot-and-mouth disease virus replication exploits alternative precursor cleavage pathways. Herod MR, Gold S, Lasecka-Dykes L, Wright C, Ward JC, McLean TC, Forrest S, Jackson T, Tuthill TJ, Rowlands DJ, Stonehouse NJ. PLoS Pathog. 13 e1006666 (2017)
  49. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy. Miles LA, Brennen WN, Rudin CM, Poirier JT. PLoS ONE 10 e0129103 (2015)
  50. 3Cpro of FMDV inhibits type II interferon-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. Wu X, Chen L, Sui C, Hu Y, Jiang D, Yang F, Miller LC, Li J, Cong X, Hrabchenko N, Lee C, Du Y, Qi J. Virol Sin 38 387-397 (2023)
  51. In Vitro and In Silico Anti-Picornavirus Triterpene Alkanoic Acid Ester from Saudi Collection of Rhazya stricta Decne. Abdel-Kader MS, Almutib FS, Aldosari AF, Soliman GA, Elzorba HY, Alqarni MH, Ibrahim RS, Zaatout HH. Metabolites 13 750 (2023)
  52. In crystallo-screening for discovery of human norovirus 3C-like protease inhibitors. Guo J, Douangamath A, Song W, Coker AR, Chan AWE, Wood SP, Cooper JB, Resnick E, London N, Delft FV. J Struct Biol X 4 100031 (2020)
  53. Allosteric regulation of Senecavirus A 3Cpro proteolytic activity by an endogenous phospholipid. Zhao HF, Meng L, Geng Z, Gao ZQ, Dong YH, Wang HW, Zhang H. PLoS Pathog 19 e1011411 (2023)
  54. An intermolecular salt bridge linking substrate binding and P1 substrate specificity switch of arterivirus 3C-like proteases. Chen Q, Zhou J, Yang Z, Guo J, Liu Z, Sun X, Jiang Q, Fang L, Wang D, Xiao S. Comput Struct Biotechnol J 20 3409-3421 (2022)
  55. DWV 3C Protease Uncovers the Diverse Catalytic Triad in Insect RNA Viruses. Yuan X, Kadowaki T. Microbiol Spectr 10 e0006822 (2022)
  56. Determination of common genetic variants within the non-structural proteins of foot-and-mouth disease viruses isolated in sub-Saharan Africa. Nsamba P, de Beer TA, Chitray M, Scott K, Vosloo W, Maree FF. Vet. Microbiol. 177 106-122 (2015)
  57. Effect of foot-and-mouth disease virus 3C protease B2 β-strand proline mutagenesis on expression and processing of the P1 polypeptide using a plasmid expression vector. Martel E, Forzono E, Kurker R, Clark BA, Neilan JG, Puckette M. J Gen Virol 100 446-456 (2019)
  58. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development. Puckette M, Clark BA, Smith JD, Turecek T, Martel E, Gabbert L, Pisano M, Hurtle W, Pacheco JM, Barrera J, Neilan JG, Rasmussen M. J. Virol. 91 (2017)
  59. Foot-and-Mouth Disease Virus 3C Protease Antagonizes Interferon Signaling and C142T Substitution Attenuates the FMD Virus. Ekanayaka P, Shin SH, Weeratunga P, Lee H, Kim TH, Chathuranga K, Subasinghe A, Park JH, Lee JS. Front Microbiol 12 737031 (2021)
  60. From head to toe of the norovirus 3C-like protease. Someya Y. Biomol Concepts 3 41-56 (2012)
  61. Genetic Determinants of Virulence between Two Foot-and-Mouth Disease Virus Isolates Which Caused Outbreaks of Differing Severity. Nishi T, Morioka K, Saito N, Yamakawa M, Kanno T, Fukai K. mSphere 4 (2019)
  62. Glutamyl Endopeptidases: The Puzzle of Substrate Specificity. Demidyuk IV, Chukhontseva KN, Kostrov SV. Acta Naturae 9 17-33 (2017)
  63. Immunogenicity of the capsid precursor and a nine-amino-acid site-directed mutant of the 3C protease of foot-and-mouth disease virus coexpressed by a recombinant goatpox virus. Ma W, Wei J, Wei Y, Guo H, Jin Y, Xue Y, Wang Y, Yi Z, Liu L, Huang J, Wang L. Arch. Virol. 159 1715-1722 (2014)
  64. Insights into Polyprotein Processing and RNA-Protein Interactions in Foot-and-Mouth Disease Virus Genome Replication. Pierce DM, Hayward C, Rowlands DJ, Stonehouse NJ, Herod MR. J Virol 97 e0017123 (2023)
  65. Multiple-Site SUMOylation of FMDV 3C Protease and Its Negative Role in Viral Replication. Wu X, Hu Y, Sui C, Pan L, Yoo D, Miller LC, Lee C, Cong X, Li J, Du Y, Qi J. J Virol 96 e0061222 (2022)
  66. Natural Phytochemicals, Luteolin and Isoginkgetin, Inhibit 3C Protease and Infection of FMDV, In Silico and In Vitro. Theerawatanasirikul S, Thangthamniyom N, Kuo CJ, Semkum P, Phecharat N, Chankeeree P, Lekcharoensuk P. Viruses 13 2118 (2021)
  67. Preventive effects of quercetin against foot-and-mouth disease virus in vitro and in vivo by inducing type I interferon. Lee G, Kang HR, Kim A, Park JH, Lee MJ, Kim SM. Front Microbiol 14 1121830 (2023)
  68. Senecavirus A 3C Protease Mediates Host Cell Apoptosis Late in Infection. Fernandes MHV, Maggioli MF, Otta J, Joshi LR, Lawson S, Diel DG. Front Immunol 10 363 (2019)
  69. Small Molecules Targeting 3C Protease Inhibit FMDV Replication and Exhibit Virucidal Effect in Cell-Based Assays. Theerawatanasirikul S, Lueangaramkul V, Pantanam A, Mana N, Semkum P, Lekcharoensuk P. Viruses 15 1887 (2023)
  70. Synthesis and Initial Evaluation of a Novel Fluorophore for Selective FMDV 3C Protease Detection. Malik S, Sinclair A, Ryan A, Le Gresley A. Molecules 25 (2020)
  71. hnRNP K Is a Novel Internal Ribosomal Entry Site-Transacting Factor That Negatively Regulates Foot-and-Mouth Disease Virus Translation and Replication and Is Antagonized by Viral 3C Protease. Liu W, Yang D, Sun C, Wang H, Zhao B, Zhou G, Yu L. J Virol 94 (2020)