2b9i Citations

The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network.

Mol Cell 20 951-62 (2005)
Related entries: 2b9f, 2b9h, 2b9j

Cited: 109 times
EuropePMC logo PMID: 16364919

Abstract

Cells use a network of mitogen-activated protein kinases (MAPKs) to coordinate responses to diverse extracellular signals. Here, we examine the role of docking interactions in determining connectivity of the yeast MAPKs Fus3 and Kss1. These closely related kinases are activated by the common upstream MAPK kinase Ste7 yet generate distinct output responses, mating and filamentous growth, respectively. We find that docking interactions are necessary for communication with the kinases and that they can encode subtle differences in pathway-specific input and output. The cell cycle arrest mediator Far1, a mating-specific substrate, has a docking motif that selectively binds Fus3. In contrast, the shared partner Ste7 has a promiscuous motif that binds both Fus3 and Kss1. Structural analysis reveals that Fus3 interacts with specific and promiscuous peptides in conformationally distinct modes. Induced fit recognition may allow docking peptides to achieve discrimination by exploiting subtle differences in kinase flexibility.

Reviews - 2b9i mentioned but not cited (1)

  1. Molecular basis of MAP kinase regulation. Peti W, Page R. Protein Sci 22 1698-1710 (2013)

Articles - 2b9i mentioned but not cited (2)

  1. Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Kelil A, Levy ED, Michnick SW. Proc Natl Acad Sci U S A 113 E3862-71 (2016)
  2. Insights into Protein Sequence and Structure-Derived Features Mediating 3D Domain Swapping Mechanism using Support Vector Machine Based Approach. Shameer K, Pugalenthi G, Kandaswamy KK, Suganthan PN, Archunan G, Sowdhamini R. Bioinform Biol Insights 4 33-42 (2010)


Reviews citing this publication (20)

  1. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat Rev Mol Cell Biol 8 530-541 (2007)
  2. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. Junttila MR, Li SP, Westermarck J. FASEB J 22 954-965 (2008)
  3. Scaffold proteins: hubs for controlling the flow of cellular information. Good MC, Zalatan JG, Lim WA. Science 332 680-686 (2011)
  4. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Rose BA, Force T, Wang Y. Physiol Rev 90 1507-1546 (2010)
  5. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Chen RE, Thorner J. Biochim Biophys Acta 1773 1311-1340 (2007)
  6. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Annu Rev Biochem 75 655-680 (2006)
  7. Response to hyperosmotic stress. Saito H, Posas F. Genetics 192 289-318 (2012)
  8. Intrinsic disorder in scaffold proteins: getting more from less. Cortese MS, Uversky VN, Dunker AK. Prog Biophys Mol Biol 98 85-106 (2008)
  9. The regulation of filamentous growth in yeast. Cullen PJ, Sprague GF. Genetics 190 23-49 (2012)
  10. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Whitmarsh AJ. Biochim Biophys Acta 1773 1285-1298 (2007)
  11. Regulation of cross-talk in yeast MAPK signaling pathways. Saito H. Curr Opin Microbiol 13 677-683 (2010)
  12. p38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. Grossi V, Peserico A, Tezil T, Simone C. World J Gastroenterol 20 9744-9758 (2014)
  13. Docking interactions in protein kinase and phosphatase networks. Reményi A, Good MC, Lim WA. Curr Opin Struct Biol 16 676-685 (2006)
  14. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  15. Unique MAP Kinase binding sites. Akella R, Moon TM, Goldsmith EJ. Biochim Biophys Acta 1784 48-55 (2008)
  16. Identification of protein interactions involved in cellular signaling. Westermarck J, Ivaska J, Corthals GL. Mol Cell Proteomics 12 1752-1763 (2013)
  17. Analysis of mitogen-activated protein kinase activation and interactions with regulators and substrates. Bardwell L, Shah K. Methods 40 213-223 (2006)
  18. The post-translational regulation of 17,20 lyase activity. Miller WL, Tee MK. Mol Cell Endocrinol 408 99-106 (2015)
  19. Ser or Leu: structural snapshots of mistranslation in Candida albicans. Sárkány Z, Silva A, Pereira PJ, Macedo-Ribeiro S. Front Mol Biosci 1 27 (2014)
  20. Sequence patches on MAPK surfaces define protein-protein interactions. Johnson GL, Gomez SM. Genome Biol 10 222 (2009)

Articles citing this publication (86)

  1. Systematic discovery of in vivo phosphorylation networks. Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Russell RB, Bork P, Yaffe MB, Pawson T. Cell 129 1415-1426 (2007)
  2. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. J Exp Med 210 2071-2086 (2013)
  3. Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M. Nat Cell Biol 9 1319-1326 (2007)
  4. Mechanisms of MAPK signalling specificity. Bardwell L. Biochem Soc Trans 34 837-841 (2006)
  5. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Good M, Tang G, Singleton J, Reményi A, Lim WA. Cell 136 1085-1097 (2009)
  6. Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Zhou T, Sun L, Humphreys J, Goldsmith EJ. Structure 14 1011-1019 (2006)
  7. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S. Plant Cell 20 602-613 (2008)
  8. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Sci Signal 5 ra74 (2012)
  9. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Stewart AF, Reményi A, Turner JM, Tóth A. Genes Dev 26 958-973 (2012)
  10. Selectivity of docking sites in MAPK kinases. Bardwell AJ, Frankson E, Bardwell L. J Biol Chem 284 13165-13173 (2009)
  11. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. PLoS Genet 10 e1004384 (2014)
  12. Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. Francis DM, Różycki B, Koveal D, Hummer G, Page R, Peti W. Nat Chem Biol 7 916-924 (2011)
  13. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG. J Biol Chem 287 4904-4913 (2012)
  14. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O. PLoS Comput Biol 13 e1005905 (2017)
  15. Unmasking determinants of specificity in the human kinome. Creixell P, Palmeri A, Miller CJ, Lou HJ, Santini CC, Nielsen M, Turk BE, Linding R. Cell 163 187-201 (2015)
  16. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. Jonkers W, Leeder AC, Ansong C, Wang Y, Yang F, Starr TL, Camp DG, Smith RD, Glass NL. PLoS Genet 10 e1004783 (2014)
  17. Harnessing protein folding neural networks for peptide-protein docking. Tsaban T, Varga JK, Avraham O, Ben-Aharon Z, Khramushin A, Schueler-Furman O. Nat Commun 13 176 (2022)
  18. PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer's disease-related cognitive enhancement. Jahrling JB, Hernandez CM, Denner L, Dineley KT. J Neurosci 34 4054-4063 (2014)
  19. Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase. Murakami Y, Tatebayashi K, Saito H. Mol Cell Biol 28 2481-2494 (2008)
  20. Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Des Marais DL, Auchincloss LC, Sukamtoh E, McKay JK, Logan T, Richards JH, Juenger TE. Proc Natl Acad Sci U S A 111 2836-2841 (2014)
  21. Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase. Catania S, Dumesic PA, Pimentel H, Nasif A, Stoddard CI, Burke JE, Diedrich JK, Cook S, Shea T, Geinger E, Lintner R, Yates JR, Hajkova P, Narlikar GJ, Cuomo CA, Pritchard JK, Madhani HD. Cell 180 263-277.e20 (2020)
  22. Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation. Truman AW, Kim KY, Levin DE. Mol Cell Biol 29 6449-6461 (2009)
  23. Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. Zhou B, Zhang J, Liu S, Reddy S, Wang F, Zhang ZY. J Biol Chem 281 38834-38844 (2006)
  24. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Coyle SM, Flores J, Lim WA. Cell 154 875-887 (2013)
  25. A distinct interaction mode revealed by the crystal structure of the kinase p38α with the MAPK binding domain of the phosphatase MKP5. Zhang YY, Wu JW, Wang ZX. Sci Signal 4 ra88 (2011)
  26. Letter Modularity of MAP kinases allows deformation of their signalling pathways. Mody A, Weiner J, Ramanathan S. Nat Cell Biol 11 484-491 (2009)
  27. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Haq T, Richards MW, Burgess SG, Gallego P, Yeoh S, O'Regan L, Reverter D, Roig J, Fry AM, Bayliss R. Nat Commun 6 8771 (2015)
  28. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Mol Syst Biol 11 837 (2015)
  29. A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Tiger CF, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S, Kitano H, Krantz M. Mol Syst Biol 8 578 (2012)
  30. WRKY transcription factor genes in wild rice Oryza nivara. Xu H, Watanabe KA, Zhang L, Shen QJ. DNA Res 23 311-323 (2016)
  31. Allosteric enhancement of MAP kinase p38α's activity and substrate selectivity by docking interactions. Tokunaga Y, Takeuchi K, Takahashi H, Shimada I. Nat Struct Mol Biol 21 704-711 (2014)
  32. Recruitment interactions can override catalytic interactions in determining the functional identity of a protein kinase. Won AP, Garbarino JE, Lim WA. Proc Natl Acad Sci U S A 108 9809-9814 (2011)
  33. Solution NMR insights into docking interactions involving inactive ERK2. Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R. Biochemistry 50 3660-3672 (2011)
  34. The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution. Akella R, Min X, Wu Q, Gardner KH, Goldsmith EJ. Structure 18 1571-1578 (2010)
  35. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. Howard CJ, Hanson-Smith V, Kennedy KJ, Miller CJ, Lou HJ, Johnson AD, Turk BE, Holt LJ. Elife 3 (2014)
  36. Evolutionary reshaping of fungal mating pathway scaffold proteins. Côte P, Sulea T, Dignard D, Wu C, Whiteway M. mBio 2 e00230-10 (2011)
  37. Structural mechanism for the specific assembly and activation of the extracellular signal regulated kinase 5 (ERK5) module. Glatz G, Gógl G, Alexa A, Reményi A. J Biol Chem 288 8596-8609 (2013)
  38. Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors. Durandau E, Aymoz D, Pelet S. BMC Biol 13 55 (2015)
  39. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry. Bhaduri S, Valk E, Winters MJ, Gruessner B, Loog M, Pryciak PM. Curr Biol 25 316-325 (2015)
  40. Phosphorylation of human cytochrome P450c17 by p38α selectively increases 17,20 lyase activity and androgen biosynthesis. Tee MK, Miller WL. J Biol Chem 288 23903-23913 (2013)
  41. Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1. Yan C, Kaoud T, Lee S, Dalby KN, Ren P. J Phys Chem B 115 1491-1502 (2011)
  42. Engineering dynamical control of cell fate switching using synthetic phospho-regulons. Gordley RM, Williams RE, Bashor CJ, Toettcher JE, Yan S, Lim WA. Proc Natl Acad Sci U S A 113 13528-13533 (2016)
  43. The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. Min X, Akella R, He H, Humphreys JM, Tsutakawa SE, Lee SJ, Tainer JA, Cobb MH, Goldsmith EJ. Structure 17 96-104 (2009)
  44. Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5. Marín MJ, Flández M, Bermejo C, Arroyo J, Martín H, Molina M. Mol Genet Genomics 281 345-359 (2009)
  45. Molecular imaging of c-Met tyrosine kinase activity. Zhang L, Virani S, Zhang Y, Bhojani MS, Burgess TL, Coxon A, Galban CJ, Ross BD, Rehemtulla A. Anal Biochem 412 1-8 (2011)
  46. Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase. Ma W, Shang Y, Wei Z, Wen W, Wang W, Zhang M. Structure 18 1502-1511 (2010)
  47. Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells. Ryu J, Park SH. Sci Signal 8 ra66 (2015)
  48. The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest. Côte P, Whiteway M. Mol Microbiol 68 392-404 (2008)
  49. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach. Lee S, Warthaka M, Yan C, Kaoud TS, Piserchio A, Ghose R, Ren P, Dalby KN. PLoS One 6 e18594 (2011)
  50. MAPKs in development: insights from Dictyostelium signaling pathways. Hadwiger JA, Nguyen HN. Biomol Concepts 2 39-46 (2011)
  51. Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK. Nagiec MJ, McCarter PC, Kelley JB, Dixit G, Elston TC, Dohlman HG. Mol Biol Cell 26 3359-3371 (2015)
  52. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. Bardwell AJ, Bardwell L. J Biol Chem 290 26661-26674 (2015)
  53. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae. Palacios L, Dickinson RJ, Sacristán-Reviriego A, Didmon MP, Marín MJ, Martín H, Keyse SM, Molina M. J Biol Chem 286 42037-42050 (2011)
  54. Interface analysis of the complex between ERK2 and PTP-SL. Balasu MC, Spiridon LN, Miron S, Craescu CT, Scheidig AJ, Petrescu AJ, Szedlacsek SE. PLoS One 4 e5432 (2009)
  55. The Galpha4 G protein subunit interacts with the MAP kinase ERK2 using a D-motif that regulates developmental morphogenesis in Dictyostelium. Nguyen HN, Hadwiger JA. Dev Biol 335 385-395 (2009)
  56. Revisiting the Role of Transcription Factors in Coordinating the Defense Response Against Citrus Bark Cracking Viroid Infection in Commercial Hop (Humulus Lupulus L.). Sukumari Nath V, Kumar Mishra A, Kumar A, Matoušek J, Jakše J. Viruses 11 E419 (2019)
  57. Mitogenic Signals Stimulate the CREB Coactivator CRTC3 through PP2A Recruitment. Sonntag T, Ostojić J, Vaughan JM, Moresco JJ, Yoon YS, Yates JR, Montminy M. iScience 11 134-145 (2019)
  58. Oxytocin and arginine vasopressin receptor evolution: implications for adaptive novelties in placental mammals. Paré P, Paixão-Côrtes VR, Tovo-Rodrigues L, Vargas-Pinilla P, Viscardi LH, Salzano FM, Henkes LE, Bortolini MC. Genet Mol Biol 39 646-657 (2016)
  59. A mechanism for the coordination of proliferation and differentiation by spatial regulation of Fus2p in budding yeast. Kim J, Rose MD. Genes Dev 26 1110-1121 (2012)
  60. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans. Deng FS, Lin CH. Med Mycol 56 242-252 (2018)
  61. Hierarchical Organization Endows the Kinase Domain with Regulatory Plasticity. Creixell P, Pandey JP, Palmeri A, Bhattacharyya M, Creixell M, Ranganathan R, Pincus D, Yaffe MB. Cell Syst 7 371-383.e4 (2018)
  62. In silico-prediction of protein-protein interactions network about MAPKs and PP2Cs reveals a novel docking site variants in Brachypodium distachyon. Jiang M, Niu C, Cao J, Ni DA, Chu Z. Sci Rep 8 15083 (2018)
  63. Structure prediction and validation of the ERK8 kinase domain. Strambi A, Mori M, Rossi M, Colecchia D, Manetti F, Carlomagno F, Botta M, Chiariello M. PLoS One 8 e52011 (2013)
  64. Correlated mutation analysis on the catalytic domains of serine/threonine protein kinases. Xu F, Du P, Shen H, Hu H, Wu Q, Xie J, Yu L. PLoS One 4 e5913 (2009)
  65. Epitope-guided engineering of monobody binders for in vivo inhibition of Erk-2 signaling. Mann JK, Wood JF, Stephan AF, Tzanakakis ES, Ferkey DM, Park S. ACS Chem Biol 8 608-616 (2013)
  66. Identifying functional mechanisms of gene and protein regulatory networks in response to a broader range of environmental stresses. Li CW, Chen BS. Comp Funct Genomics 408705 (2010)
  67. RNA-binding protein IMP3 is a novel regulator of MEK1/ERK signaling pathway in the progression of colorectal Cancer through the stabilization of MEKK1 mRNA. Zhang M, Zhao S, Tan C, Gu Y, He X, Du X, Li D, Wei P. J Exp Clin Cancer Res 40 200 (2021)
  68. Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1. Winters MJ, Pryciak PM. Mol Biol Cell 29 669-682 (2018)
  69. G{alpha}5 subunit-mediated signalling requires a D-motif and the MAPK ERK1 in Dictyostelium. Raisley B, Nguyen HN, Hadwiger JA. Microbiology (Reading) 156 789-797 (2010)
  70. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Elife 5 e15200 (2016)
  71. The Relationship between Effective Molarity and Affinity Governs Rate Enhancements in Tethered Kinase-Substrate Reactions. Speltz EB, Zalatan JG. Biochemistry 59 2182-2193 (2020)
  72. Nuclear relocation of Kss1 contributes to the specificity of the mating response. Pelet S. Sci Rep 7 43636 (2017)
  73. The adaptor protein Ste50 directly modulates yeast MAPK signaling specificity through differential connections of its RA domain. Sharmeen N, Sulea T, Whiteway M, Wu C. Mol Biol Cell 30 794-807 (2019)
  74. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. Biochemistry 58 5160-5172 (2019)
  75. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Winters MJ, Pryciak PM. Mol Biol Cell 30 1037-1049 (2019)
  76. The expression and purification of the N-terminal activation domain of the transcription factor c-Myc: a model substrate for exploring ERK2 docking interactions. Waas WF, Dalby KN. Protein Expr Purif 53 80-86 (2007)
  77. Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors. Ma M, Bordignon P, Dotto GP, Pelet S. Heliyon 6 e05574 (2020)
  78. A biochemical genomics screen for substrates of Ste20p kinase enables the in silico prediction of novel substrates. Annan RB, Lee AY, Reid ID, Sayad A, Whiteway M, Hallett M, Thomas DY. PLoS One 4 e8279 (2009)
  79. Mitogen-activated protein kinase regulation of the phosphodiesterase RegA in early Dictyostelium development. Adhikari N, Kuburich NA, Hadwiger JA. Microbiology (Reading) 166 129-140 (2020)
  80. Co-expression and co-localization of hub proteins and their partners are encoded in protein sequence. Feiglin A, Ashkenazi S, Schlessinger A, Rost B, Ofran Y. Mol Biosyst 10 787-794 (2014)
  81. Strain-dependent differences in coordination of yeast signalling networks. Scott TD, Xu P, McClean MN. FEBS J 290 2097-2114 (2023)
  82. Cell cycle and protein complex dynamics in discovering signaling pathways. Inostroza D, Hernández C, Seco D, Navarro G, Olivera-Nappa A. J Bioinform Comput Biol 17 1950011 (2019)
  83. Discovery of Spatially Cohesive Itemsets in Three-Dimensional Protein Structures. Zhou C, Meysman P, Cule B, Laukens K, Goethals B. IEEE/ACM Trans Comput Biol Bioinform 11 814-825 (2014)
  84. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. iScience 26 107817 (2023)
  85. Linear motif specificity in signaling through p38α and ERK2 mitogen-activated protein kinases. Torres Robles J, Lou HJ, Shi G, Pan PL, Turk BE. Proc Natl Acad Sci U S A 120 e2316599120 (2023)
  86. The Axin scaffold protects the kinase GSK3β from cross-pathway inhibition. Gavagan M, Jameson N, Zalatan JG. Elife 12 e85444 (2023)