2amb Citations

Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity.

Protein Sci 15 987-99 (2006)
Related entries: 2am9, 2ama

Cited: 111 times
EuropePMC logo PMID: 16641486

Abstract

Androgens exert their effects by binding to the highly specific androgen receptor (AR). In addition to natural potent androgens, AR binds a variety of synthetic agonist or antagonist molecules with different affinities. To identify molecular determinants responsible for this selectivity, we have determined the crystal structure of the human androgen receptor ligand-binding domain (hARLBD) in complex with two natural androgens, testosterone (Testo) and dihydrotestosterone (DHT), and with an androgenic steroid used in sport doping, tetrahydrogestrinone (THG), at 1.64, 1.90, and 1.75 A resolution, respectively. Comparison of these structures first highlights the flexibility of several residues buried in the ligand-binding pocket that can accommodate a variety of ligand structures. As expected, the ligand structure itself (dimension, presence, and position of unsaturated bonds that influence the geometry of the steroidal nucleus or the electronic properties of the neighboring atoms, etc.) determines the number of interactions it can make with the hARLBD. Indeed, THG--which possesses the highest affinity--establishes more van der Waals contacts with the receptor than the other steroids, whereas the geometry of the atoms forming electrostatic interactions at both extremities of the steroid nucleus seems mainly responsible for the higher affinity measured experimentally for DHT over Testo. Moreover, estimation of the ligand-receptor interaction energy through modeling confirms that even minor modifications in ligand structure have a great impact on the strength of these interactions. Our crystallographic data combined with those obtained by modeling will be helpful in the design of novel molecules with stronger affinity for the AR.

Articles - 2amb mentioned but not cited (9)

  1. Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Pereira de Jésus-Tran K, Côté PL, Cantin L, Blanchet J, Labrie F, Breton R. Protein Sci 15 987-999 (2006)
  2. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  3. Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Jaundoo R, Bohmann J, Gutierrez GE, Klimas N, Broderick G, Craddock TJA. Int J Mol Sci 19 E3355 (2018)
  4. Synthesis and structure-activity relationship studies of novel dihydropyridones as androgen receptor modulators. Pepe A, Pamment M, Kim YS, Lee S, Lee MJ, Beebe K, Filikov A, Neckers L, Trepel JB, Malhotra SV. J Med Chem 56 8280-8297 (2013)
  5. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-Deficient prostate cancer cells. Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F, Prins GS. Chem Biol Drug Des 97 1059-1078 (2021)
  6. Hits Discovery on the Androgen Receptor: In Silico Approaches to Identify Agonist Compounds. Réau M, Lagarde N, Zagury JF, Montes M. Cells 8 E1431 (2019)
  7. Structure-Based Study to Overcome Cross-Reactivity of Novel Androgen Receptor Inhibitors. Radaeva M, Li H, LeBlanc E, Dalal K, Ban F, Ciesielski F, Chow B, Morin H, Awrey S, Singh K, Rennie PS, Lallous N, Cherkasov A. Cells 11 2785 (2022)
  8. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women's Hormonal Health and Reproductive System Diseases. Sakhteman A, Pasdaran A, Afifi M, Hamedi A. J Evid Based Integr Med 25 2515690X20932527 (2020)
  9. Towards a Treatment for Gulf War Illness: A Consensus Docking Approach. Jaundoo R, Bohmann J, Gutierrez GE, Klimas N, Broderick G, Craddock TJA. Mil Med 185 554-561 (2020)


Reviews citing this publication (27)

  1. Androgen receptor: structure, role in prostate cancer and drug discovery. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Acta Pharmacol Sin 36 3-23 (2015)
  2. Looking at nuclear receptors from a new angle. Helsen C, Claessens F. Mol Cell Endocrinol 382 97-106 (2014)
  3. Androgens in pregnancy: roles in parturition. Makieva S, Saunders PT, Norman JE. Hum Reprod Update 20 542-559 (2014)
  4. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure. Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C. Steroids 74 172-197 (2009)
  5. Androgen receptor antagonists for prostate cancer therapy. Helsen C, Van den Broeck T, Voet A, Prekovic S, Van Poppel H, Joniau S, Claessens F. Endocr Relat Cancer 21 T105-18 (2014)
  6. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  7. Constitutive activity of the androgen receptor. Chan SC, Dehm SM. Adv Pharmacol 70 327-366 (2014)
  8. Recent developments in antiandrogens and selective androgen receptor modulators. Haendler B, Cleve A. Mol Cell Endocrinol 352 79-91 (2012)
  9. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Lallous N, Dalal K, Cherkasov A, Rennie PS. Int J Mol Sci 14 12496-12519 (2013)
  10. Androgen receptor-related diseases: what do we know? Shukla GC, Plaga AR, Shankar E, Gupta S. Andrology 4 366-381 (2016)
  11. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Brand LJ, Dehm SM. Curr Drug Targets 14 441-449 (2013)
  12. Androgen receptor as a therapeutic target. Gao W. Adv Drug Deliv Rev 62 1277-1284 (2010)
  13. Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Estébanez-Perpiñá E, Bevan CL, McEwan IJ. Cancers (Basel) 13 509 (2021)
  14. Hormones and endometrial carcinogenesis. Kamal A, Tempest N, Parkes C, Alnafakh R, Makrydima S, Adishesh M, Hapangama DK. Horm Mol Biol Clin Investig 25 129-148 (2016)
  15. Saponins as modulators of nuclear receptors. Zhang T, Zhong S, Li T, Zhang J. Crit Rev Food Sci Nutr 60 94-107 (2020)
  16. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Roshan-Moniri M, Hsing M, Butler MS, Cherkasov A, Rennie PS. Cancer Treat Rev 40 1137-1152 (2014)
  17. Studies of metabolite-protein interactions: a review. Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS. J Chromatogr B Analyt Technol Biomed Life Sci 966 48-58 (2014)
  18. Different Clinical Presentations and Management in Complete Androgen Insensitivity Syndrome (CAIS). Lanciotti L, Cofini M, Leonardi A, Bertozzi M, Penta L, Esposito S. Int J Environ Res Public Health 16 E1268 (2019)
  19. Advances in the detection of designer steroids in anti-doping. Abushareeda W, Fragkaki A, Vonaparti A, Angelis Y, Tsivou M, Saad K, Kraiem S, Lyris E, Alsayrafi M, Georgakopoulos C. Bioanalysis 6 881-896 (2014)
  20. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Sakkiah S, Ng HW, Tong W, Hong H. Expert Opin Ther Targets 20 1267-1282 (2016)
  21. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. J Biol Chem 296 100240 (2021)
  22. Androgen Receptor Dependence. Chaturvedi AP, Dehm SM. Adv Exp Med Biol 1210 333-350 (2019)
  23. Splice variants in the proteome: a promising and challenging field to targeted drug discovery. Tavares R, Scherer NM, Ferreira CG, Costa FF, Passetti F. Drug Discov Today 20 353-360 (2015)
  24. The androgen receptor and its use in biological assays: looking toward effect-based testing and its applications. Cadwallader AB, Lim CS, Rollins DE, Botrè F. J Anal Toxicol 35 594-607 (2011)
  25. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus. Sakkiah S, Wang T, Zou W, Wang Y, Pan B, Tong W, Hong H. Int J Environ Res Public Health 15 E25 (2017)
  26. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Alemany M. Int J Mol Sci 23 11952 (2022)
  27. [Academic Detailing from the Viewpoint of Chemical Structural Formulas]. Wada T. Yakugaku Zasshi 139 1101-1105 (2019)

Articles citing this publication (75)

  1. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. DeVore NM, Scott EE. Nature 482 116-119 (2012)
  2. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. Askew EB, Gampe RT, Stanley TB, Faggart JL, Wilson EM. J Biol Chem 282 25801-25816 (2007)
  3. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems. Ghanakota P, Carlson HA. J Phys Chem B 120 8685-8695 (2016)
  4. Systematic structure modifications of multitarget prostate cancer drug candidate galeterone to produce novel androgen receptor down-regulating agents as an approach to treatment of advanced prostate cancer. Purushottamachar P, Godbole AM, Gediya LK, Martin MS, Vasaitis TS, Kwegyir-Afful AK, Ramalingam S, Ates-Alagoz Z, Njar VC. J Med Chem 56 4880-4898 (2013)
  5. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Carroll SM, Bridgham JT, Thornton JW. Mol Biol Evol 25 2643-2652 (2008)
  6. Emerging drugs: mechanism of action, mass spectrometry and doping control analysis. Thevis M, Thomas A, Kohler M, Beuck S, Schänzer W. J Mass Spectrom 44 442-460 (2009)
  7. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors. Lakkaraju SK, Yu W, Raman EP, Hershfeld AV, Fang L, Deshpande DA, MacKerell AD. J Chem Inf Model 55 700-708 (2015)
  8. A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). Africander DJ, Storbeck KH, Hapgood JP. J Steroid Biochem Mol Biol 143 404-415 (2014)
  9. Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Wang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I, Sun ZJ, Li XM. Asian J Androl 12 535-547 (2010)
  10. Nuclear hormone receptor signaling in amphioxus. Schubert M, Brunet F, Paris M, Bertrand S, Benoit G, Laudet V. Dev Genes Evol 218 651-665 (2008)
  11. Ultrafast protein structure-based virtual screening with Panther. Niinivehmas SP, Salokas K, Lätti S, Raunio H, Pentikäinen OT. J Comput Aided Mol Des 29 989-1006 (2015)
  12. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD, Jo S, Lakkaraju SK, Lind C, Yu W. Biochim Biophys Acta Gen Subj 1864 129519 (2020)
  13. Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities. Kolšek K, Gobec M, Mlinarič Raščan I, Sollner Dolenc M. Toxicol In Vitro 29 8-15 (2015)
  14. Ecdysteroids: A novel class of anabolic agents? Parr MK, Botrè F, Naß A, Hengevoss J, Diel P, Wolber G. Biol Sport 32 169-173 (2015)
  15. Met909 plays a key role in the activation of the progesterone receptor and also in the high potency of 13-ethyl progestins. Petit-Topin I, Turque N, Fagart J, Fay M, Ulmann A, Gainer E, Rafestin-Oblin ME. Mol Pharmacol 75 1317-1324 (2009)
  16. Nestorone® as a Novel Progestin for Nonoral Contraception: Structure-Activity Relationships and Brain Metabolism Studies. Kumar N, Fagart J, Liere P, Mitchell SJ, Knibb AR, Petit-Topin I, Rame M, El-Etr M, Schumacher M, Lambert JJ, Rafestin-Oblin ME, Sitruk-Ware R. Endocrinology 158 170-182 (2017)
  17. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Lusher SJ, Raaijmakers HC, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. J Biol Chem 287 20333-20343 (2012)
  18. A computational approach to evaluate the androgenic affinity of iprodione, procymidone, vinclozolin and their metabolites. Galli CL, Sensi C, Fumagalli A, Parravicini C, Marinovich M, Eberini I. PLoS One 9 e104822 (2014)
  19. A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches. Bovee TF, Lommerse JP, Peijnenburg AA, Fernandes EA, Nielen MW. J Steroid Biochem Mol Biol 108 121-131 (2008)
  20. Design and synthesis of carborane-containing androgen receptor (AR) antagonist bearing a pyridine ring. Ohta K, Goto T, Fijii S, Suzuki T, Ohta S, Endo Y. Bioorg Med Chem 16 8022-8028 (2008)
  21. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T. Mol Biol Evol 33 228-244 (2016)
  22. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids. Roman M, Roman DL, Ostafe V, Ciorsac A, Isvoran A. Pharm Res 35 41 (2018)
  23. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A, McGuigan C. Eur J Med Chem 118 230-243 (2016)
  24. High-Affinity Nucleic-Acid-Based Receptors for Steroids. Yang KA, Chun H, Zhang Y, Pecic S, Nakatsuka N, Andrews AM, Worgall TS, Stojanovic MN. ACS Chem Biol 12 3103-3112 (2017)
  25. In vitro and in silico hormonal activity studies of di-(2-ethylhexyl)terephthalate, a di-(2-ethylhexyl)phthalate substitute used in medical devices, and its metabolites. Kambia NK, Séverin I, Farce A, Moreau E, Dahbi L, Duval C, Dine T, Sautou V, Chagnon MC. J Appl Toxicol 39 1043-1056 (2019)
  26. Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells. Abdelbaqi K, Lack N, Guns ET, Kotha L, Safe S, Sanderson JT. Prostate 71 1401-1412 (2011)
  27. Deep Learning-Based Structure-Activity Relationship Modeling for Multi-Category Toxicity Classification: A Case Study of 10K Tox21 Chemicals With High-Throughput Cell-Based Androgen Receptor Bioassay Data. Idakwo G, Thangapandian S, Luttrell J, Zhou Z, Zhang C, Gong P. Front Physiol 10 1044 (2019)
  28. MixMD Probeview: Robust Binding Site Prediction from Cosolvent Simulations. Graham SE, Leja N, Carlson HA. J Chem Inf Model 58 1426-1433 (2018)
  29. Fragment-based Shape Signatures: a new tool for virtual screening and drug discovery. Zauhar RJ, Gianti E, Welsh WJ. J Comput Aided Mol Des 27 1009-1036 (2013)
  30. Gartanin, an isoprenylated xanthone from the mangosteen fruit (Garcinia mangostana), is an androgen receptor degradation enhancer. Li G, Petiwala SM, Yan M, Won JH, Petukhov PA, Johnson JJ. Mol Nutr Food Res 60 1458-1469 (2016)
  31. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics. Smith RD, Carlson HA. J Chem Inf Model 61 1287-1299 (2021)
  32. 17(E)-picolinylidene androstane derivatives as potential inhibitors of prostate cancer cell growth: antiproliferative activity and molecular docking studies. Ajduković JJ, Djurendić EA, Petri ET, Klisurić OR, Celić AS, Sakač MN, Jakimov DS, Gaši KM. Bioorg Med Chem 21 7257-7266 (2013)
  33. Genotype-phenotype relations of the von Hippel-Lindau tumor suppressor inferred from a large-scale analysis of disease mutations and interactors. Minervini G, Quaglia F, Tabaro F, Tosatto SCE. PLoS Comput Biol 15 e1006478 (2019)
  34. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding. Faucher F, Cantin L, Pereira de Jésus-Tran K, Lemieux M, Luu-The V, Labrie F, Breton R. J Mol Biol 369 525-540 (2007)
  35. A polyaromatic receptor with high androgen affinity. Yamashina M, Tsutsui T, Sei Y, Akita M, Yoshizawa M. Sci Adv 5 eaav3179 (2019)
  36. Correlated evolution of androgen receptor and aromatase revisited. Reitzel AM, Tarrant AM. Mol Biol Evol 27 2211-2215 (2010)
  37. Free Energies and Entropies of Binding Sites Identified by MixMD Cosolvent Simulations. Ghanakota P, DasGupta D, Carlson HA. J Chem Inf Model 59 2035-2045 (2019)
  38. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. Trisciuzzi D, Alberga D, Mansouri K, Judson R, Novellino E, Mangiatordi GF, Nicolotti O. J Chem Inf Model 57 2874-2884 (2017)
  39. Structural Basis of Altered Potency and Efficacy Displayed by a Major in Vivo Metabolite of the Antidiabetic PPARγ Drug Pioglitazone. Mosure SA, Shang J, Eberhardt J, Brust R, Zheng J, Griffin PR, Forli S, Kojetin DJ. J Med Chem 62 2008-2023 (2019)
  40. Sex hormones and the development of sexual size dimorphism: 5α-dihydrotestosterone inhibits growth in a female-larger lizard (Sceloporus undulatus). Pollock NB, Feigin S, Drazenovic M, John-Alder HB. J Exp Biol 220 4068-4077 (2017)
  41. Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: identification of a selective inhibitor of hormone-independent breast cancer cells. Nikolić AR, Petri ET, Klisurić OR, Ćelić AS, Jakimov DS, Djurendić EA, Penov Gaši KM, Sakač MN. Bioorg Med Chem 23 703-711 (2015)
  42. Chaperones and the maturation of steroid hormone receptor complexes. Tao YJ, Zheng W. Oncotarget 2 104-106 (2011)
  43. Crystal structure, docking study and structure-activity relationship of carborane-containing androgen receptor antagonist 3-(12-hydroxymethyl-1,12-dicarba-closo-dodecaboran-1-yl)benzonitrile. Ohta K, Goto T, Fujii S, Kawahata M, Oda A, Ohta S, Yamaguchi K, Hirono S, Endo Y. Bioorg Med Chem 19 3540-3548 (2011)
  44. Effects of lactone derivatives on aromatase (CYP19) activity in H295R human adrenocortical and (anti)androgenicity in transfected LNCaP human prostate cancer cells. Sanderson T, Renaud M, Scholten D, Nijmeijer S, van den Berg M, Cowell S, Guns E, Nelson C, Mutarapat T, Ruchirawat S. Eur J Pharmacol 593 92-98 (2008)
  45. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Petiwala SM, Li G, Bosland MC, Lantvit DD, Petukhov PA, Johnson JJ. Carcinogenesis 37 827-838 (2016)
  46. How good are AlphaFold models for docking-based virtual screening? Scardino V, Di Filippo JI, Cavasotto CN. iScience 26 105920 (2023)
  47. Iminoenamine based novel androgen receptor antagonist exhibited anti-prostate cancer activity in androgen independent prostate cancer cells through inhibition of AKT pathway. Divakar S, Saravanan K, Karthikeyan P, Elancheran R, Kabilan S, Balasubramanian KK, Devi R, Kotoky J, Ramanathan M. Chem Biol Interact 275 22-34 (2017)
  48. Preliminary investigations into triazole derived androgen receptor antagonists. Altimari JM, Niranjan B, Risbridger GP, Schweiker SS, Lohning AE, Henderson LC. Bioorg Med Chem 22 2692-2706 (2014)
  49. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens. Bobach C, Tennstedt S, Palberg K, Denkert A, Brandt W, de Meijere A, Seliger B, Wessjohann LA. Eur J Med Chem 90 267-279 (2015)
  50. Targeting prostate cancer cells with enzalutamide-HDAC inhibitor hybrid drug 2-75. Hu WY, Xu L, Chen B, Ou S, Muzzarelli KM, Hu DP, Li Y, Yang Z, Vander Griend DJ, Prins GS, Qin Z. Prostate 79 1166-1179 (2019)
  51. Biology and natural history of prostate cancer and the role of chemoprevention. Rosenberg MT, Froehner M, Albala D, Miner MM. Int J Clin Pract 64 1746-1753 (2010)
  52. Chemical synthesis and biological activities of 16alpha-derivatives of 5alpha-androstane-3alpha,17beta-diol as antiandrogens. Roy J, Breton R, Martel C, Labrie F, Poirier D. Bioorg Med Chem 15 3003-3018 (2007)
  53. Perspectives on designs of antiandrogens for prostate cancer. Estébanez-Perpiñá E, Jouravel N, Fletterick RJ. Expert Opin Drug Discov 2 1341-1355 (2007)
  54. X-ray crystal structure of the ancestral 3-ketosteroid receptor-progesterone-mifepristone complex shows mifepristone bound at the coactivator binding interface. Colucci JK, Ortlund EA. PLoS One 8 e80761 (2013)
  55. Biological activity and ligand binding mode to the progesterone receptor of A-homo analogues of progesterone. Alvarez LD, Dansey MV, Martí MA, Bertucci PY, Di Chenna PH, Pecci A, Burton G. Bioorg Med Chem 19 1683-1691 (2011)
  56. 20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Ben-Eltriki M, Deb S, Hassona M, Meckling G, Fazli L, Chin MY, Lallous N, Yamazaki T, Jia W, Rennie PS, Cherkasov A, Tomlinson Guns ES. Oncotarget 9 20965-20978 (2018)
  57. Functional characterisation of a natural androgen receptor missense mutation (N771H) causing human androgen insensitivity syndrome. Cai J, Cai LQ, Hong Y, Zhu YS. Andrologia 44 Suppl 1 523-529 (2012)
  58. Specific interactions between androgen receptor and its ligand: ab initio molecular orbital calculations in water. Kobayashi I, Takeda R, Suzuki R, Shimamura K, Ishimura H, Kadoya R, Kawai K, Takimoto-Kamimura M, Kurita N. J Mol Graph Model 75 383-389 (2017)
  59. Structural basis for computational screening of non-steroidal androgen receptor ligands. Nyrönen TH, Söderholm AA. Expert Opin Drug Discov 5 5-20 (2010)
  60. Systematic Investigation of Docking Failures in Large-Scale Structure-Based Virtual Screening. Xu M, Shen C, Yang J, Wang Q, Huang N. ACS Omega 7 39417-39428 (2022)
  61. The T850D Phosphomimetic Mutation in the Androgen Receptor Ligand Binding Domain Enhances Recruitment at Activation Function 2. Helsen C, Nguyen T, Vercruysse T, Wouters S, Daelemans D, Voet A, Claessens F. Int J Mol Sci 23 1557 (2022)
  62. Functional Effects In Silico Prediction for Androgen Receptor Ligand-Binding Domain Novel I836S Mutation. Rayevsky A, Sirokha D, Samofalova D, Lozhko D, Gorodna O, Prokopenko I, Livshits L. Life (Basel) 11 659 (2021)
  63. SARS-Cov2 S Protein Features Potential Estrogen Binding Site. Tomasović A, Stanzer D, Krešimir Svetec I, Svetec Miklenić M. Food Technol Biotechnol 59 24-30 (2021)
  64. A meta-analysis: Effect of androgens on reproduction in sows. Guo Z, Lv L, Liu D, Ma H, Radovic C. Front Endocrinol (Lausanne) 14 1094466 (2023)
  65. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. Acta Crystallogr F Struct Biol Commun 79 95-104 (2023)
  66. Crystallization and preliminary X-ray analysis of the human androgen receptor ligand-binding domain with a coactivator-like peptide and selective androgen receptor modulators. Thauvin M, Robin-Jagerschmidt C, Nique F, Mollat P, Fleury D, Prangé T. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 1159-1162 (2008)
  67. Does the oestrogen receptor encourage oestrogenicity in environmental pollutants? The case of 4-nonylphenol. Graham LA, Shaw IC. SAR QSAR Environ Res 22 329-350 (2011)
  68. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. J Cell Commun Signal 17 793-811 (2023)
  69. Evaluation of (Anti)androgenic Activities of Environmental Xenobiotics in Milk Using a Human Liver Cell Line and Androgen Receptor-Based Promoter-Reporter Assay. Agrawal H, Thakur K, Mitra S, Mitra D, Keswani C, Sircar D, Onteru S, Singh D, Singh SP, Tyagi RK, Roy P. ACS Omega 7 41531-41547 (2022)
  70. Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis. Miyagawa S, Yatsu R, Kohno S, Doheny BM, Ogino Y, Ishibashi H, Katsu Y, Ohta Y, Guillette LJ, Iguchi T. Endocrinology 156 2795-2806 (2015)
  71. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish. Pradhan A, Asnake S, Kharlyngdoh JB, Modig C, Olsson PE. Chem Biol Interact 233 35-45 (2015)
  72. In-silico and in-vivo evaluation of sesamol and its derivatives for benign prostatic hypertrophy. Shah A, Shah AA, Nandakumar K, Kumar A, Pai A, Lobo R. 3 Biotech 11 411 (2021)
  73. Phytoecdysteroids and Anabolic Effect of Atriplex dimorphostegia: UPLC-PDA-MS/MS Profiling, In Silico and In Vivo Models. Zaghloul E, Handousa H, Singab ANB, Elmazar MM, Ayoub IM, Swilam N. Plants (Basel) 12 206 (2023)
  74. Pinostilbene inhibits full-length and splice variant of androgen receptor in prostate cancer. Shin WS, Han SH, Jo KW, Cho Y, Kim KT. Sci Rep 13 16663 (2023)
  75. Yeast-based evolutionary modeling of androgen receptor mutations and natural selection. Zhang H, Zhang L, Chen S, Yao M, Ma Z, Yuan Y. PLoS Genet 18 e1010518 (2022)