1zrz Citations

Crystal structure of the catalytic domain of human atypical protein kinase C-iota reveals interaction mode of phosphorylation site in turn motif.

Abstract

Atypical protein kinases C (aPKCs) play critical roles in signaling pathways that control cell growth, differentiation and survival. Therefore, they constitute attractive targets for the development of novel therapeutics against cancer. The crystal structure of the catalytic domain of atypical PKCiota in complex with the bis(indolyl)maleimide inhibitor BIM1 has been determined at 3.0A resolution within the frame of the European Structural Proteomics Project SPINE. The overall structure exhibits the classical bilobal kinase fold and is in its fully activated form. Both phosphorylation sites (Thr403 in the activation loop, and Thr555 in the turn motif) are well defined in the structure and form intramolecular ionic contacts that make an important contribution in stabilizing the active conformation of the catalytic subunit. The phosphorylation site in the hydrophobic motif of atypical PKCs is replaced by the phosphorylation mimic glutamate and this is also clearly seen in the structure of PKCiota (residue 574). This structure determination for the first time provides the architecture of the turn motif phosphorylation site, which is characteristic for PKCs and PKB/AKT, and is completely different from that in PKA. The bound BIM1 inhibitor blocks the ATP-binding site and puts the kinase domain into an intermediate open conformation. The PKCiota-BIM1 complex is the first kinase domain crystal structure of any atypical PKC and constitutes the basis for rational drug design for selective PKCiota inhibitors.

Reviews - 1zrz mentioned but not cited (3)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  2. Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Kheifets V, Mochly-Rosen D. Pharmacol Res 55 467-476 (2007)
  3. Bisindolyl Maleimides and Indolylmaleimide Derivatives-A Review of Their Synthesis and Bioactivity. Cooney LN, O'Shea KD, Winfield HJ, Cahill MM, Pierce LT, McCarthy FO. Pharmaceuticals (Basel) 16 1191 (2023)

Articles - 1zrz mentioned but not cited (11)

  1. Sequence and structural analyses of nuclear export signals in the NESdb database. Xu D, Farmer A, Collett G, Grishin NV, Chook YM. Mol Biol Cell 23 3677-3693 (2012)
  2. The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. Yunta C, Martínez-Ripoll M, Zhu JK, Albert A. J Mol Biol 414 135-144 (2011)
  3. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Verma N, Rai AK, Kaushik V, Brünnert D, Chahar KR, Pandey J, Goyal P. Sci Rep 6 33949 (2016)
  4. Cycloartanes from Euphorbia aellenii Rech. f. and their Antiproliferative Activity. Ayatollahi AM, Ghanadian M, Afsharypuor S, Mesaik MA, Abdalla OM, Shahlaei M, Farzandi G, Mostafavi H. Iran J Pharm Res 10 105-112 (2011)
  5. Knowledge-based fragment binding prediction. Tang GW, Altman RB. PLoS Comput Biol 10 e1003589 (2014)
  6. A Novel Atypical PKC-Iota Inhibitor, Echinochrome A, Enhances Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Kim HK, Cho SW, Heo HJ, Jeong SH, Kim M, Ko KS, Rhee BD, Mishchenko NP, Vasileva EA, Fedoreyev SA, Stonik VA, Han J. Mar Drugs 16 E192 (2018)
  7. Automated protein motif generation in the structure-based protein function prediction tool ProMOL. Osipovitch M, Lambrecht M, Baker C, Madha S, Mills JL, Craig PA, Bernstein HJ. J Struct Funct Genomics 16 101-111 (2015)
  8. Fragment-based Discovery of a Small-Molecule Protein Kinase C-iota Inhibitor Binding Post-kinase Domain Residues. Kwiatkowski J, Baburajendran N, Poulsen A, Liu B, Tee DHY, Wong YX, Poh ZY, Ong EH, Dinie N, Cherian J, Jansson AE, Hill J, Keller TH, Hung AW. ACS Med Chem Lett 10 318-323 (2019)
  9. Novel Antifungal Compound Z-705 Specifically Inhibits Protein Kinase C of Filamentous Fungi. Sugahara A, Yoshimi A, Shoji F, Fujioka T, Kawai K, Umeyama H, Komatsu K, Enomoto M, Kuwahara S, Hagiwara D, Katayama T, Horiuchi H, Miyazawa K, Nakayama M, Abe K. Appl Environ Microbiol 85 e02923-18 (2019)
  10. 13-amino derivatives of dehydrocostus lactone display greatly enhanced selective toxicity against breast cancer cells and improved binding energies to protein kinases in silico. Kemboi D, Langat MK, Siwe-Noundou X, Tshiwawa T, Krause RWM, Davison C, Smit CJ, de la Mare JA, Tembu VJ. PLoS One 17 e0271389 (2022)
  11. Possible prognostic impact of PKCι genetic variants in prostate cancer. Hafeez A, Shabbir M, Khan K, Trembley JH, Badshah Y, Zafar S, Shahid K, Shah H, Ashraf NM, Hamid A, Afsar T, Almajwal A, Marium A, Razak S. Cancer Cell Int 24 24 (2024)


Reviews citing this publication (14)

  1. Structural basis of protein kinase C isoform function. Steinberg SF. Physiol Rev 88 1341-1378 (2008)
  2. Protein kinase C: poised to signal. Newton AC. Am J Physiol Endocrinol Metab 298 E395-402 (2010)
  3. The life and death of protein kinase C. Gould CM, Newton AC. Curr Drug Targets 9 614-625 (2008)
  4. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. Biochim Biophys Acta 1834 1302-1321 (2013)
  5. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Corbalán-García S, Gómez-Fernández JC. Biochim Biophys Acta 1761 633-654 (2006)
  6. Regulation of Protein Kinase C function by phosphorylation on conserved and non-conserved sites. Freeley M, Kelleher D, Long A. Cell Signal 23 753-762 (2011)
  7. Lining the pockets of kinases and phosphatases. Gold MG, Barford D, Komander D. Curr Opin Struct Biol 16 693-701 (2006)
  8. Mammalian TOR signaling to the AGC kinases. Su B, Jacinto E. Crit Rev Biochem Mol Biol 46 527-547 (2011)
  9. Dynamics and Membrane Interactions of Protein Kinase C. Igumenova TI. Biochemistry 54 4953-4968 (2015)
  10. Metabolic functions of atypical protein kinase C: "good" and "bad" as defined by nutritional status. Farese RV, Sajan MP. Am J Physiol Endocrinol Metab 298 E385-94 (2010)
  11. Protein kinase C (PKC) isozyme-specific substrates and their design. Kang JH, Toita R, Kim CW, Katayama Y. Biotechnol Adv 30 1662-1672 (2012)
  12. The Novel PKCθ from Benchtop to Clinic. Hage-Sleiman R, Hamze AB, Reslan L, Kobeissy H, Dbaibo G. J Immunol Res 2015 348798 (2015)
  13. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling. Dowling CM, Kiely PA. Cancers (Basel) 7 1271-1291 (2015)
  14. Protein kinase Calpha and epsilon small-molecule targeted therapeutics: a new roadmap to two Holy Grails in drug discovery? O'Brian CA, Chu F, Bornmann WG, Maxwell DS. Expert Rev Anticancer Ther 6 175-186 (2006)

Articles citing this publication (42)

  1. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E. EMBO J 27 1932-1943 (2008)
  2. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE. Cell 137 635-646 (2009)
  3. Crystal structure and allosteric activation of protein kinase C βII. Leonard TA, Różycki B, Saidi LF, Hummer G, Hurley JH. Cell 144 55-66 (2011)
  4. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Sim CH, Lio DS, Mok SS, Masters CL, Hill AF, Culvenor JG, Cheng HC. Hum Mol Genet 15 3251-3262 (2006)
  5. PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Cameron AJ, Escribano C, Saurin AT, Kostelecky B, Parker PJ. Nat Struct Mol Biol 16 624-630 (2009)
  6. Phosphorylation of AKT: a mutational analysis. Hart JR, Vogt PK. Oncotarget 2 467-476 (2011)
  7. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jørgensen TJ, Biondi RM, Frödin M. EMBO J 26 2251-2261 (2007)
  8. Determinants for activation of the atypical AGC kinase Greatwall during M phase entry. Blake-Hodek KA, Williams BC, Zhao Y, Castilho PV, Chen W, Mao Y, Yamamoto TM, Goldberg ML. Mol Cell Biol 32 1337-1353 (2012)
  9. Regulation of PKC-θ function by phosphorylation in T cell receptor signaling. Wang X, Chuang HC, Li JP, Tan TH. Front Immunol 3 197 (2012)
  10. Regulation of glioblastoma cell invasion by PKC iota and RhoB. Baldwin RM, Parolin DA, Lorimer IA. Oncogene 27 3587-3595 (2008)
  11. Adenosine-binding motif mimicry and cellular effects of a thieno[2,3-d]pyrimidine-based chemical inhibitor of atypical protein kinase C isoenzymes. Kjær S, Linch M, Purkiss A, Kostelecky B, Knowles PP, Rosse C, Riou P, Soudy C, Kaye S, Patel B, Soriano E, Murray-Rust J, Barton C, Dillon C, Roffey J, Parker PJ, McDonald NQ. Biochem J 451 329-342 (2013)
  12. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis. Paul A, Gunewardena S, Stecklein SR, Saha B, Parelkar N, Danley M, Rajendran G, Home P, Ray S, Jokar I, Vielhauer GA, Jensen RA, Tawfik O, Paul S. Cell Death Differ 21 1469-1481 (2014)
  13. Structures of the PKC-iota kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533-551 in the C-terminal tail and their roles in ATP binding. Takimura T, Kamata K, Fukasawa K, Ohsawa H, Komatani H, Yoshizumi T, Takahashi I, Kotani H, Iwasawa Y. Acta Crystallogr D Biol Crystallogr 66 577-583 (2010)
  14. 2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: design and synthesis of a potent and isoform selective PKC-zeta inhibitor. Trujillo JI, Kiefer JR, Huang W, Thorarensen A, Xing L, Caspers NL, Day JE, Mathis KJ, Kretzmer KK, Reitz BA, Weinberg RA, Stegeman RA, Wrightstone A, Christine L, Compton R, Li X. Bioorg Med Chem Lett 19 908-911 (2009)
  15. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Schad JF, Meltzer KR, Hicks MR, Beutler DS, Cao TV, Standley PR. Vasc Cell 3 21 (2011)
  16. SmPKC1, a new protein kinase C identified in the platyhelminth parasite Schistosoma mansoni. Bahia D, Avelar L, Mortara RA, Khayath N, Yan Y, Noël C, Capron M, Dissous C, Pierce RJ, Oliveira G. Biochem Biophys Res Commun 345 1138-1148 (2006)
  17. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion. Gont A, Daneshmand M, Woulfe J, Lavictoire SJ, Lorimer IA. Oncotarget 8 8559-8573 (2017)
  18. A cancer-associated mutation in atypical protein kinase Cι occurs in a substrate-specific recruitment motif. Linch M, Sanz-Garcia M, Soriano E, Zhang Y, Riou P, Rosse C, Cameron A, Knowles P, Purkiss A, Kjaer S, McDonald NQ, Parker PJ. Sci Signal 6 ra82 (2013)
  19. Development of selective bisubstrate-based inhibitors against protein kinase C (PKC) isozymes by using dynamic peptide microarrays. Poot AJ, van Ameijde J, Slijper M, van den Berg A, Hilhorst R, Ruijtenbeek R, Rijkers DT, Liskamp RM. Chembiochem 10 2042-2051 (2009)
  20. ATP competitive protein kinase C inhibitors demonstrate distinct state-dependent inhibition. Smith IM, Hoshi N. PLoS One 6 e26338 (2011)
  21. The last 10 amino acid residues beyond the hydrophobic motif are critical for the catalytic competence and function of protein kinase Calpha. Yeong SS, Zhu Y, Smith D, Verma C, Lim WG, Tan BJ, Li QT, Cheung NS, Cai M, Zhu YZ, Zhou SF, Tan SL, Duan W. J Biol Chem 281 30768-30781 (2006)
  22. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis. Cassidy CE, Setzer WN. J Mol Model 16 311-326 (2010)
  23. The C-terminal V5 domain of Protein Kinase Cα is intrinsically disordered, with propensity to associate with a membrane mimetic. Yang Y, Igumenova TI. PLoS One 8 e65699 (2013)
  24. Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y. J Biol Chem 285 25522-25530 (2010)
  25. Structure of dystrophia myotonica protein kinase. Elkins JM, Amos A, Niesen FH, Pike AC, Fedorov O, Knapp S. Protein Sci 18 782-791 (2009)
  26. Crystal structures of PRK1 in complex with the clinical compounds lestaurtinib and tofacitinib reveal ligand induced conformational changes. Chamberlain P, Delker S, Pagarigan B, Mahmoudi A, Jackson P, Abbasian M, Muir J, Raheja N, Cathers B. PLoS One 9 e103638 (2014)
  27. Protein kinase C isozymes and their selectivity towards ruboxistaurin. Tang S, Xiao V, Wei L, Whiteside CI, Kotra LP. Proteins 72 447-460 (2008)
  28. Identification of 3-hydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-ones as isoform-selective PKC-zeta inhibitors and potential therapeutics for psychostimulant abuse. Yuan L, Seo JS, Kang NS, Keinan S, Steele SE, Michelotti GA, Wetsel WC, Beratan DN, Gong YD, Lee TH, Hong J. Mol Biosyst 5 927-930 (2009)
  29. Initial three-dimensional reconstructions of protein kinase C delta from two-dimensional crystals on lipid monolayers. Solodukhin AS, Kretsinger RH, Sando JJ. Cell Signal 19 2035-2045 (2007)
  30. Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Al-Ali H, Ragan TJ, Gao X, Harris TK. Bioconjug Chem 18 1294-1302 (2007)
  31. The C-terminus of PRK2/PKNgamma is required for optimal activation by RhoA in a GTP-dependent manner. Lim WG, Chen X, Liu JP, Tan BJ, Zhou S, Smith A, Lees N, Hou L, Gu F, Yu XY, Du Y, Smith D, Verma C, Liu K, Duan W. Arch Biochem Biophys 479 170-178 (2008)
  32. The Role of pkc-3 and Genetic Suppressors in Caenorhabditis elegans Epithelial Cell Junction Formation. Montoyo-Rosario JG, Armenti ST, Zilberman Y, Nance J. Genetics 214 941-959 (2020)
  33. Preparation of novel alkylated arginine derivatives suitable for click-cycloaddition chemistry and their incorporation into pseudosubstrate- and bisubstrate-based kinase inhibitors. van Ameijde J, Poot AJ, van Wandelen LT, Wammes AE, Ruijtenbeek R, Rijkers DT, Liskamp RM. Org Biomol Chem 8 1629-1639 (2010)
  34. Mechanism of membrane redistribution of protein kinase C by its ATP-competitive inhibitors. Takahashi H, Namiki H. Biochem J 405 331-340 (2007)
  35. Functional implications of assigned, assumed and assembled PKC structures. Linch M, Riou P, Claus J, Cameron AJ, de Naurois J, Larijani B, Ng T, McDonald NQ, Parker PJ. Biochem Soc Trans 42 35-41 (2014)
  36. Isoform Specificity of PKMs during Long-Term Facilitation in Aplysia Is Mediated through Stabilization by KIBRA. Ferguson L, Hu J, Cai D, Chen S, Dunn TW, Pearce K, Glanzman DL, Schacher S, Sossin WS. J Neurosci 39 8632-8644 (2019)
  37. Structural Basis of Protein Kinase Cα Regulation by the C-Terminal Tail. Yang Y, Shu C, Li P, Igumenova TI. Biophys J 114 1590-1603 (2018)
  38. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study. Thangsunan P, Tateing S, Hannongbua S, Suree N. J Biomol Struct Dyn 34 1561-1575 (2016)
  39. Crystal structure of the complex between 4-hydroxybutyrate CoA-transferase from Clostridium aminobutyricum and CoA. Macieira S, Zhang J, Buckel W, Messerschmidt A. Arch Microbiol 194 157-166 (2012)
  40. Structural Models for the Design of PKMzeta Inhibitors with Neurobiological Indications. Purkayastha P, Alokam R, Malapati A, Sriram D, Yogeeswari P. Mol Inform 34 665-678 (2015)
  41. Structural study of the catalytic domain of PKCzeta using infrared spectroscopy and two-dimensional infrared correlation spectroscopy. Sánchez-Bautista S, Kazaks A, Beaulande M, Torrecillas A, Corbalán-García S, Gómez-Fernández JC. FEBS J 273 3273-3286 (2006)
  42. Structural basis of conformational variance in phosphorylated and non-phosphorylated states of PKCβII. Grewal BK, Krishnan RV, Sobhia ME. Proteins 82 1332-1347 (2014)