1zh7 Citations

Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner.

Proc Natl Acad Sci U S A 102 9505-10 (2005)
Cited: 62 times
EuropePMC logo PMID: 15976031

Abstract

The functional interaction between the orphan nuclear receptors small heterodimer partner (SHP) and liver receptor homolog 1 (LRH-1), where SHP binds to LRH-1 and represses its constitutive transcriptional activity, is crucial for regulating genes involved in cholesterol homeostasis. Here, we report structural and biochemical analyses of the LRH-1/SHP interaction. The crystal structure and modeling studies of the LRH-1 ligand-binding domain bound to either of the two LXXLL-related motifs of SHP show that the receptor undergoes conformational changes to accommodate the SHP docking and reveal key residues that determine the potency and selectivity of SHP binding. Through a combination of mutagenesis and binding studies, we demonstrate that only the second SHP LXXLL motif is required for repressing LRH-1, and this motif displays a strong preference for binding to LRH-1 over the closely related receptor steroidogeneic factor 1 (SF-1). Structural comparisons indicate that this binding selectivity is determined by residues flanking the core LXXLL motifs. These results establish a structural model for understanding how SHP interacts with LRH-1 to regulate cholesterol homeostasis and provide new insights into how nuclear receptor/coregulator selectivity is achieved.

Articles - 1zh7 mentioned but not cited (1)

  1. Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner. Li Y, Choi M, Suino K, Kovach A, Daugherty J, Kliewer SA, Xu HE. Proc Natl Acad Sci U S A 102 9505-9510 (2005)


Reviews citing this publication (10)

  1. Molecular basis of endocrine regulation by orphan nuclear receptor Small Heterodimer Partner. Chanda D, Park JH, Choi HS. Endocr J 55 253-268 (2008)
  2. FXR and PXR: potential therapeutic targets in cholestasis. Jonker JW, Liddle C, Downes M. J Steroid Biochem Mol Biol 130 147-158 (2012)
  3. Structural and functional insights into nuclear receptor signaling. Jin L, Li Y. Adv Drug Deliv Rev 62 1218-1226 (2010)
  4. The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Gilardi F, Mitro N, Godio C, Scotti E, Caruso D, Crestani M, De Fabiani E. Pharmacol Ther 116 449-472 (2007)
  5. Extra-Adrenal Glucocorticoid Synthesis in the Intestinal Mucosa: Between Immune Homeostasis and Immune Escape. Ahmed A, Schmidt C, Brunner T. Front Immunol 10 1438 (2019)
  6. Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Nadolny C, Dong X. Cancer Biol Ther 16 997-1004 (2015)
  7. Advances in our structural understanding of orphan nuclear receptors. Gallastegui N, Mackinnon JA, Fletterick RJ, Estébanez-Perpiñá E. Trends Biochem Sci 40 25-35 (2015)
  8. Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. Ehrlund A, Treuter E. J Steroid Biochem Mol Biol 130 169-179 (2012)
  9. Targeting nuclear receptors with marine natural products. Yang C, Li Q, Li Y. Mar Drugs 12 601-635 (2014)
  10. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer. Aesoy R, Clyne CD, Chand AL. Front Endocrinol (Lausanne) 6 115 (2015)

Articles citing this publication (51)

  1. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK, Lee CH, Choi HS. Diabetes 57 306-314 (2008)
  2. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE. PLoS Biol 6 e227 (2008)
  3. Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Lee YK, Schmidt DR, Cummins CL, Choi M, Peng L, Zhang Y, Goodwin B, Hammer RE, Mangelsdorf DJ, Kliewer SA. Mol Endocrinol 22 1345-1356 (2008)
  4. The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Volle DH, Duggavathi R, Magnier BC, Houten SM, Cummins CL, Lobaccaro JM, Verhoeven G, Schoonjans K, Auwerx J. Genes Dev 21 303-315 (2007)
  5. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Sablin EP, Woods A, Krylova IN, Hwang P, Ingraham HA, Fletterick RJ. Proc Natl Acad Sci U S A 105 18390-18395 (2008)
  6. Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Sanyal S, Båvner A, Haroniti A, Nilsson LM, Lundåsen T, Rehnmark S, Witt MR, Einarsson C, Talianidis I, Gustafsson JA, Treuter E. Proc Natl Acad Sci U S A 104 15665-15670 (2007)
  7. PPAR-gamma coactivator-1alpha regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Yazawa T, Inaoka Y, Okada R, Mizutani T, Yamazaki Y, Usami Y, Kuribayashi M, Orisaka M, Umezawa A, Miyamoto K. Mol Endocrinol 24 485-496 (2010)
  8. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation. Musille PM, Pathak M, Lauer JL, Hudson WH, Griffin PR, Ortlund EA. Nat Struct Mol Biol 19 532-S2 (2012)
  9. Structure of SF-1 bound by different phospholipids: evidence for regulatory ligands. Sablin EP, Blind RD, Krylova IN, Ingraham JG, Cai F, Williams JD, Fletterick RJ, Ingraham HA. Mol Endocrinol 23 25-34 (2009)
  10. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. Zhou XE, Suino-Powell KM, Li J, He Y, Mackeigan JP, Melcher K, Yong EL, Xu HE. J Biol Chem 285 9161-9171 (2010)
  11. Novel polymorphisms of nuclear receptor SHP associated with functional and structural changes. Zhou T, Zhang Y, Macchiarulo A, Yang Z, Cellanetti M, Coto E, Xu P, Pellicciari R, Wang L. J Biol Chem 285 24871-24881 (2010)
  12. Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Yumoto F, Nguyen P, Sablin EP, Baxter JD, Webb P, Fletterick RJ. Proc Natl Acad Sci U S A 109 143-148 (2012)
  13. Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferator-activated receptor gamma. Ambrosio ALB, Dias SMG, Polikarpov I, Zurier RB, Burstein SH, Garratt RC. J Biol Chem 282 18625-18633 (2007)
  14. Current Screens Based on the AlphaScreen Technology for Deciphering Cell Signalling Pathways. Taouji S, Dahan S, Bossé R, Chevet E. Curr Genomics 10 93-101 (2009)
  15. Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket. Sablin EP, Blind RD, Uthayaruban R, Chiu HJ, Deacon AM, Das D, Ingraham HA, Fletterick RJ. J Struct Biol 192 342-348 (2015)
  16. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. Solomon IH, Hager JM, Safi R, McDonnell DP, Redinbo MR, Ortlund EA. J Mol Biol 354 1091-1102 (2005)
  17. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis. Kim DH, Kwon S, Byun S, Xiao Z, Park S, Wu SY, Chiang CM, Kemper B, Kemper JK. Nat Commun 7 12179 (2016)
  18. Communication between the ERRalpha homodimer interface and the PGC-1alpha binding surface via the helix 8-9 loop. Greschik H, Althage M, Flaig R, Sato Y, Chavant V, Peluso-Iltis C, Choulier L, Cronet P, Rochel N, Schüle R, Strömstedt PE, Moras D. J Biol Chem 283 20220-20230 (2008)
  19. Ligand-escape pathways from the ligand-binding domain of PPARgamma receptor as probed by molecular dynamics simulations. Genest D, Garnier N, Arrault A, Marot C, Morin-Allory L, Genest M. Eur Biophys J 37 369-379 (2008)
  20. Structural conservation of ligand binding reveals a bile acid-like signaling pathway in nematodes. Zhi X, Zhou XE, Melcher K, Motola DL, Gelmedin V, Hawdon J, Kliewer SA, Mangelsdorf DJ, Xu HE. J Biol Chem 287 4894-4903 (2012)
  21. Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1) and small heterodimer partner (SHP) (NR0B2) form homodimers individually, as well as DAX1-SHP heterodimers. Iyer AK, Zhang YH, McCabe ER. Mol Endocrinol 20 2326-2342 (2006)
  22. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha activation of CYP7A1 during food restriction and diabetes is still inhibited by small heterodimer partner. Shin DJ, Osborne TF. J Biol Chem 283 15089-15096 (2008)
  23. Structural insights into gene repression by the orphan nuclear receptor SHP. Zhi X, Zhou XE, He Y, Zechner C, Suino-Powell KM, Kliewer SA, Melcher K, Mangelsdorf DJ, Xu HE. Proc Natl Acad Sci U S A 111 839-844 (2014)
  24. Design, Synthesis, and Actions of an Innovative Bispecific Designer Peptide. Meems LMG, Andersen IA, Pan S, Harty G, Chen Y, Zheng Y, Harders GE, Ichiki T, Heublein DM, Iyer SR, Sangaralingham SJ, McCormick DJ, Burnett JC. Hypertension 73 900-909 (2019)
  25. Discovery of a new class of liver receptor homolog-1 (LRH-1) antagonists: virtual screening, synthesis and biological evaluation. Rey J, Hu H, Kyle F, Lai CF, Buluwela L, Coombes RC, Ortlund EA, Ali S, Snyder JP, Barrett AG. ChemMedChem 7 1909-1914 (2012)
  26. Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. Perna AM, Reisen F, Schmidt TP, Geppert T, Pillong M, Weisel M, Hoy B, Simister PC, Feller SM, Wessler S, Schneider G. Chem Sci 5 3583-3590 (2014)
  27. Structure-based virtual screening and discovery of New PPARδ/γ dual agonist and PPARδ and γ agonists. Maltarollo VG, Togashi M, Nascimento AS, Honorio KM. PLoS One 10 e0118790 (2015)
  28. Chiglitazar Preferentially Regulates Gene Expression via Configuration-Restricted Binding and Phosphorylation Inhibition of PPARγ. Pan DS, Wang W, Liu NS, Yang QJ, Zhang K, Zhu JZ, Shan S, Li ZB, Ning ZQ, Huang L, Lu XP. PPAR Res 2017 4313561 (2017)
  29. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein. Fidelak J, Ferrer S, Oberlin M, Moras D, Dejaegere A, Stote RH. Eur Biophys J 39 1503-1512 (2010)
  30. Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Zhi X, Zhou XE, He Y, Searose-Xu K, Zhang CL, Tsai CC, Melcher K, Xu HE. Genes Dev 29 440-450 (2015)
  31. Structure and Dynamics of the Liver Receptor Homolog 1-PGC1α Complex. Mays SG, Okafor CD, Tuntland ML, Whitby RJ, Dharmarajan V, Stec J, Griffin PR, Ortlund EA. Mol Pharmacol 92 1-11 (2017)
  32. The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A. Mol Pharmacol 71 473-482 (2007)
  33. Virtual Screening as a Technique for PPAR Modulator Discovery. Lewis SN, Bassaganya-Riera J, Bevan DR. PPAR Res 2010 861238 (2010)
  34. Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO. Eur J Med Chem 46 2513-2529 (2011)
  35. MicroRNA-210 Promotes Bile Acid-Induced Cholestatic Liver Injury by Targeting Mixed-Lineage Leukemia-4 Methyltransferase in Mice. Kim YC, Jung H, Seok S, Zhang Y, Ma J, Li T, Kemper B, Kemper JK. Hepatology 71 2118-2134 (2020)
  36. Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Tsakovska I, Al Sharif M, Alov P, Diukendjieva A, Fioravanzo E, Cronin MT, Pajeva I. Int J Mol Sci 15 7651-7666 (2014)
  37. Predicting the toxic potential of drugs and chemicals in silico: a model for the peroxisome proliferator-activated receptor gamma (PPAR gamma). Vedani A, Descloux AV, Spreafico M, Ernst B. Toxicol Lett 173 17-23 (2007)
  38. Structure-based pharmacophore screening for natural-product-derived PPARgamma agonists. Tanrikulu Y, Rau O, Schwarz O, Proschak E, Siems K, Müller-Kuhrt L, Schubert-Zsilavecz M, Schneider G. Chembiochem 10 75-78 (2009)
  39. LXXLL motifs and AF-2 domain mediate SHP (NR0B2) homodimerization and DAX1 (NR0B1)-DAX1A heterodimerization. Iyer AK, Zhang YH, McCabe ER. Mol Genet Metab 92 151-159 (2007)
  40. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. J Comput Aided Mol Des 29 421-439 (2015)
  41. Transcriptional regulation of adipocyte formation by the liver receptor homologue 1 (Lrh1)-Small hetero-dimerization partner (Shp) network. Mrosek N, Meissburger B, Mataki C, Roeder E, Ukropec J, Klimes I, Gasperikova D, Nawroth PP, Rudofsky G, Auwerx J, Schoonjans K, Wolfrum C. Mol Metab 2 314-323 (2013)
  42. Effects of Tocotrienols on Insulin Secretion-Associated Genes Expression of Rat Pancreatic Islets in a Dynamic Culture. Chia LL, Jantan I, Chua KH, Lam KW, Rullah K, Aluwi MF. Front Pharmacol 7 291 (2016)
  43. Immune escape of colorectal tumours via local LRH-1/Cyp11b1-mediated synthesis of immunosuppressive glucocorticoids. Ahmed A, Reinhold C, Breunig E, Phan TS, Dietrich L, Kostadinova F, Urwyler C, Merk VM, Noti M, Toja da Silva I, Bode K, Nahle F, Plazzo AP, Koerner J, Stuber R, Menche C, Karamitopoulou E, Farin HF, Gollob KJ, Brunner T. Mol Oncol 17 1545-1566 (2023)
  44. Postprandial response and tissue distribution of the bile acid synthesis-related genes, cyp7a1, cyp8b1 and shp, in rainbow trout Oncorhynchus mykiss. Murashita K, Yoshiura Y, Chisada S, Furuita H, Sugita T, Matsunari H, Yamamoto T. Comp Biochem Physiol A Mol Integr Physiol 166 361-369 (2013)
  45. Solution Nuclear Magnetic Resonance Studies of the Ligand-Binding Domain of an Orphan Nuclear Receptor Reveal a Dynamic Helix in the Ligand-Binding Pocket. Daffern N, Chen Z, Zhang Y, Pick L, Radhakrishnan I. Biochemistry 57 1977-1986 (2018)
  46. Insights into the binding mode and mechanism of action of some atypical retinoids as ligands of the small heterodimer partner (SHP). Cellanetti M, Gunda V, Wang L, Macchiarulo A, Pellicciari R. J Comput Aided Mol Des 24 943-956 (2010)
  47. Microarray analysis of gene-expression profile in hepatocellular carcinoma cell, BEL-7402, with stable suppression of hLRH-1 via a DNA vector-based RNA interference. Wang SL, Lan FH, Zhuang YP, Li HZ, Huang LH, Zheng DZ, Zeng J, Dong LH, Zhu ZY, Fu JL. Yi Chuan Xue Bao 33 881-891 (2006)
  48. Analysis of PPAR-α/γ Activity by Combining 2-D QSAR and Molecular Simulation. Vallianatou T, Lambrinidis G, Giaginis C, Mikros E, Tsantili-Kakoulidou A. Mol Inform 32 431-445 (2013)
  49. Molecular dynamics simulation study for LRH-1: interaction with fragments of SHP and function of phospholipid ligand. Zhang T, Zhou JH, Shi LW, Zhu RX, Chen MB. Proteins 70 1527-1539 (2008)
  50. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)
  51. Pharmacophore alignment search tool: influence of the third dimension on text-based similarity searching. Hähnke V, Klenner A, Rippmann F, Schneider G. J Comput Chem 32 1618-1634 (2011)