1z81 Citations

Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms.

Abstract

Parasites from the protozoan phylum Apicomplexa are responsible for diseases, such as malaria, toxoplasmosis and cryptosporidiosis, all of which have significantly higher rates of mortality and morbidity in economically underdeveloped regions of the world. Advances in vaccine development and drug discovery are urgently needed to control these diseases and can be facilitated by production of purified recombinant proteins from Apicomplexan genomes and determination of their 3D structures. To date, both heterologous expression and crystallization of Apicomplexan proteins have seen only limited success. In an effort to explore the effectiveness of producing and crystallizing proteins on a genome-scale using a standardized methodology, over 400 distinct Plasmodium falciparum target genes were chosen representing different cellular classes, along with select orthologues from four other Plasmodium species as well as Cryptosporidium parvum and Toxoplasma gondii. From a total of 1008 genes from the seven genomes, 304 (30.2%) produced purified soluble proteins and 97 (9.6%) crystallized, culminating in 36 crystal structures. These results demonstrate that, contrary to previous findings, a standardized platform using Escherichia coli can be effective for genome-scale production and crystallography of Apicomplexan proteins. Predictably, orthologous proteins from different Apicomplexan genomes behaved differently in expression, purification and crystallization, although the overall success rates of Plasmodium orthologues do not differ significantly. Their differences were effectively exploited to elevate the overall productivity to levels comparable to the most successful ongoing structural genomics projects: 229 of the 468 target genes produced purified soluble protein from one or more organisms, with 80 and 32 of the purified targets, respectively, leading to crystals and ultimately structures from one or more orthologues.

Reviews - 1z81 mentioned but not cited (1)

  1. Structural insights into Plasmodium PPIases. Rajan S, Yoon HS. Front Cell Infect Microbiol 12 931635 (2022)

Articles - 1z81 mentioned but not cited (2)

  1. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. Ramanathan A, Agarwal PK. PLoS Biol 9 e1001193 (2011)
  2. Structural Basis for Cyclosporin Isoform-Specific Inhibition of Cyclophilins from Toxoplasma gondii. Favretto F, Jiménez-Faraco E, Conter C, Dominici P, Hermoso JA, Astegno A. ACS Infect Dis 9 365-377 (2023)


Reviews citing this publication (33)

  1. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Hall A, Nelson K, Poole LB, Karplus PA. Antioxid Redox Signal 15 795-815 (2011)
  2. ClpP: a distinctive family of cylindrical energy-dependent serine proteases. Yu AY, Houry WA. FEBS Lett 581 3749-3757 (2007)
  3. Structural biology of the purine biosynthetic pathway. Zhang Y, Morar M, Ealick SE. Cell Mol Life Sci 65 3699-3724 (2008)
  4. Malaria research in the post-genomic era. Winzeler EA. Nature 455 751-756 (2008)
  5. ATP-binding cassette transporters in Escherichia coli. Moussatova A, Kandt C, O'Mara ML, Tieleman DP. Biochim Biophys Acta 1778 1757-1771 (2008)
  6. DYNLL/LC8: a light chain subunit of the dynein motor complex and beyond. Rapali P, Szenes Á, Radnai L, Bakos A, Pál G, Nyitray L. FEBS J 278 2980-2996 (2011)
  7. 21st century natural product research and drug development and traditional medicines. Ngo LT, Okogun JI, Folk WR. Nat Prod Rep 30 584-592 (2013)
  8. Plasmodium immunomics. Doolan DL. Int J Parasitol 41 3-20 (2011)
  9. The structure and function of the retromer protein complex. Collins BM. Traffic 9 1811-1822 (2008)
  10. Global phenotypic screening for antimalarials. Guiguemde WA, Shelat AA, Garcia-Bustos JF, Diagana TT, Gamo FJ, Guy RK. Chem Biol 19 116-129 (2012)
  11. Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs. An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Annu Rev Med 68 317-330 (2017)
  12. Peroxiredoxins in parasites. Gretes MC, Poole LB, Karplus PA. Antioxid Redox Signal 17 608-633 (2012)
  13. Toward the development of effective transmission-blocking vaccines for malaria. Nikolaeva D, Draper SJ, Biswas S. Expert Rev Vaccines 14 653-680 (2015)
  14. The wheat germ cell-free protein synthesis system: a key tool for novel malaria vaccine candidate discovery. Tsuboi T, Takeo S, Arumugam TU, Otsuki H, Torii M. Acta Trop 114 171-176 (2010)
  15. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Liu K, Ologbenla A, Houry WA. Crit Rev Biochem Mol Biol 49 400-412 (2014)
  16. Heterologous expression of plasmodial proteins for structural studies and functional annotation. Birkholtz LM, Blatch G, Coetzer TL, Hoppe HC, Human E, Morris EJ, Ngcete Z, Oldfield L, Roth R, Shonhai A, Stephens L, Louw AI. Malar J 7 197 (2008)
  17. The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Docampo R, Moreno SN. Curr Pharm Des 14 882-888 (2008)
  18. Large screen approaches to identify novel malaria vaccine candidates. Davies DH, Duffy P, Bodmer JL, Felgner PL, Doolan DL. Vaccine 33 7496-7505 (2015)
  19. Biophysical characterization of recombinant proteins: a key to higher structural genomics success. Vedadi M, Arrowsmith CH, Allali-Hassani A, Senisterra G, Wasney GA. J Struct Biol 172 107-119 (2010)
  20. Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii. Moreno SN, Li ZH. Expert Opin Ther Targets 12 253-263 (2008)
  21. Production of recombinant proteins from protozoan parasites. Fernández-Robledo JA, Vasta GR. Trends Parasitol 26 244-254 (2010)
  22. Structural genomics and drug discovery: all in the family. Weigelt J, McBroom-Cerajewski LD, Schapira M, Zhao Y, Arrowsmith CH. Curr Opin Chem Biol 12 32-39 (2008)
  23. Target identification and validation of novel antimalarials. McNamara C, Winzeler EA. Future Microbiol 6 693-704 (2011)
  24. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. J Inflamm Res 14 527-550 (2021)
  25. Vaccine candidate discovery for the next generation of malaria vaccines. Tuju J, Kamuyu G, Murungi LM, Osier FHA. Immunology 152 195-206 (2017)
  26. Hydroxychloroquine and Covid-19: A Cellular and Molecular Biology Based Update. Pal A, Pawar A, Goswami K, Sharma P, Prasad R. Indian J Clin Biochem 35 274-284 (2020)
  27. Screening for small molecule inhibitors of Toxoplasma gondii. Kortagere S. Expert Opin Drug Discov 7 1193-1206 (2012)
  28. From crystal to compound: structure-based antimalarial drug discovery. Drinkwater N, McGowan S. Biochem J 461 349-369 (2014)
  29. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Ogungbe IV, Setzer WN. Molecules 21 E1389 (2016)
  30. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Ord RL, Rodriguez M, Lobo CA. Hum Vaccin Immunother 11 1465-1473 (2015)
  31. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Stofberg ML, Caillet C, de Villiers M, Zininga T. Cells 10 2849 (2021)
  32. Structural biology of plasmodial proteins. Gayathri P, Balaram H, Murthy MR. Curr Opin Struct Biol 17 744-754 (2007)
  33. Structural atlas of dynein motors at atomic resolution. Toda A, Tanaka H, Kurisu G. Biophys Rev 10 677-686 (2018)

Articles citing this publication (113)

  1. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL. Proteomics 8 4680-4694 (2008)
  2. Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Tsuboi T, Takeo S, Iriko H, Jin L, Tsuchimochi M, Matsuda S, Han ET, Otsuki H, Kaneko O, Sattabongkot J, Udomsangpetch R, Sawasaki T, Torii M, Endo Y. Infect Immun 76 1702-1708 (2008)
  3. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Wernimont AK, Artz JD, Finerty P, Lin YH, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, Mackenzie F, Chau I, Lourido S, Sibley LD, Hui R. Nat Struct Mol Biol 17 596-601 (2010)
  4. Combining functional and structural genomics to sample the essential Burkholderia structome. Baugh L, Gallagher LA, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Fox D, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Van Voorhis WC. PLoS One 8 e53851 (2013)
  5. A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Crosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, Wright GJ. Mol Cell Proteomics 12 3976-3986 (2013)
  6. Structures of parasitic CDPK domains point to a common mechanism of activation. Wernimont AK, Amani M, Qiu W, Pizarro JC, Artz JD, Lin YH, Lew J, Hutchinson A, Hui R. Proteins 79 803-820 (2011)
  7. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Cole AR, Lewis LP, Walden H. Nat Struct Mol Biol 17 294-298 (2010)
  8. In situ proteolysis to generate crystals for structure determination: an update. Wernimont A, Edwards A. PLoS One 4 e5094 (2009)
  9. Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii. Qiu W, Wernimont A, Tang K, Taylor S, Lunin V, Schapira M, Fentress S, Hui R, Sibley LD. EMBO J 28 969-979 (2009)
  10. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success. Choi R, Kelley A, Leibly D, Hewitt SN, Napuli A, Van Voorhis W. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 998-1005 (2011)
  11. Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Eichhorn T, Winter D, Büchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Efferth T, Efferth T. Biochem Pharmacol 85 38-45 (2013)
  12. Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein. Gersch M, List A, Groll M, Sieber SA. J Biol Chem 287 9484-9494 (2012)
  13. Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer. Krachler AM, Sharma A, Kleanthous C. Proteins 78 2131-2143 (2010)
  14. Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations. Kimber MS, Yu AY, Borg M, Leung E, Chan HS, Houry WA. Structure 18 798-808 (2010)
  15. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC. PLoS Negl Trop Dis 9 e0004264 (2015)
  16. Molecular characterization of a novel geranylgeranyl pyrophosphate synthase from Plasmodium parasites. Artz JD, Wernimont AK, Dunford JE, Schapira M, Dong A, Zhao Y, Lew J, Russell RG, Ebetino FH, Oppermann U, Hui R. J Biol Chem 286 3315-3322 (2011)
  17. Crystal structures of the human G3BP1 NTF2-like domain visualize FxFG Nup repeat specificity. Vognsen T, Møller IR, Kristensen O. PLoS One 8 e80947 (2013)
  18. Phylogenetic and structural analysis of translationally controlled tumor proteins. Hinojosa-Moya J, Xoconostle-Cázares B, Piedra-Ibarra E, Méndez-Tenorio A, Lucas WJ, Ruiz-Medrano R. J Mol Evol 66 472-483 (2008)
  19. Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Feng Y, Liu D, Yao H, Yao H, Wang J. Arch Biochem Biophys 467 48-57 (2007)
  20. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. Dufe VT, Qiu W, Müller IB, Hui R, Walter RD, Al-Karadaghi S. J Mol Biol 373 167-177 (2007)
  21. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. Vu H, Pedro L, Mak T, McCormick B, Rowley J, Liu M, Di Capua A, Williams-Noonan B, Pham NB, Pouwer R, Nguyen B, Andrews KT, Skinner-Adams T, Kim J, Hol WGJ, Hui R, Crowther GJ, Van Voorhis WC, Quinn RJ. ACS Infect Dis 4 431-444 (2018)
  22. The ClpP N-terminus coordinates substrate access with protease active site reactivity. Jennings LD, Bohon J, Chance MR, Licht S. Biochemistry 47 11031-11040 (2008)
  23. Buffer optimization of thermal melt assays of Plasmodium proteins for detection of small-molecule ligands. Crowther GJ, Napuli AJ, Thomas AP, Chung DJ, Kovzun KV, Leibly DJ, Castaneda LJ, Bhandari J, Damman CJ, Hui R, Hol WG, Buckner FS, Verlinde CL, Zhang Z, Fan E, van Voorhis WC. J Biomol Screen 14 700-707 (2009)
  24. Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development. Aguiar JC, Bolton J, Wanga J, Sacci JB, Iriko H, Mazeika JK, Han ET, Limbach K, Patterson NB, Sedegah M, Cruz AM, Tsuboi T, Hoffman SL, Carucci D, Hollingdale MR, Villasante ED, Richie TL. PLoS One 10 e0136109 (2015)
  25. Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum. Bowyer PW, Gunaratne RS, Grainger M, Withers-Martinez C, Wickramsinghe SR, Tate EW, Leatherbarrow RJ, Brown KA, Holder AA, Smith DF. Biochem J 408 173-180 (2007)
  26. Targeting a uniquely nonspecific prenyl synthase with bisphosphonates to combat cryptosporidiosis. Artz JD, Dunford JE, Arrowood MJ, Dong A, Chruszcz M, Kavanagh KL, Minor W, Russell RG, Ebetino FH, Oppermann U, Hui R. Chem Biol 15 1296-1306 (2008)
  27. Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda. Kanoi BN, Takashima E, Morita M, White MT, Palacpac NM, Ntege EH, Balikagala B, Yeka A, Egwang TG, Horii T, Tsuboi T. Vaccine 35 873-881 (2017)
  28. Meta-analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine-related issues. Vaughan K, Blythe M, Greenbaum J, Zhang Q, Peters B, Doolan DL, Sette A. Parasite Immunol 31 78-97 (2009)
  29. A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Rathore S, Sinha D, Asad M, Böttcher T, Afrin F, Chauhan VS, Gupta D, Sieber SA, Mohmmed A. Mol Microbiol 77 873-890 (2010)
  30. Characterization of Plasmodium falciparum serine hydroxymethyltransferase-A potential antimalarial target. Maenpuen S, Sopitthummakhun K, Yuthavong Y, Chaiyen P, Leartsakulpanich U. Mol Biochem Parasitol 168 63-73 (2009)
  31. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. Pizarro JC, Hills T, Senisterra G, Wernimont AK, Mackenzie C, Norcross NR, Ferguson MA, Wyatt PG, Gilbert IH, Hui R. PLoS Negl Trop Dis 7 e2492 (2013)
  32. Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase. Johansson P, Mulinacci B, Koestler C, Vollrath R, Oesterhelt D, Grininger M. Structure 17 1063-1074 (2009)
  33. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector. Hliscs M, Sattler JM, Tempel W, Artz JD, Dong A, Hui R, Matuschewski K, Schüler H. J Biol Chem 285 11572-11583 (2010)
  34. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL. Elife 3 (2014)
  35. Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. Mariño K, Güther ML, Wernimont AK, Qiu W, Hui R, Ferguson MA. Eukaryot Cell 10 985-997 (2011)
  36. Crystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis. Liew CW, Nilsson M, Chen MW, Sun H, Cornvik T, Liang ZX, Lescar J. J Biol Chem 287 23203-23215 (2012)
  37. Reduced ribosomes of the apicoplast and mitochondrion of Plasmodium spp. and predicted interactions with antibiotics. Gupta A, Shah P, Haider A, Gupta K, Siddiqi MI, Ralph SA, Habib S. Open Biol 4 140045 (2014)
  38. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds. Crowther GJ, Hillesland HK, Keyloun KR, Reid MC, Lafuente-Monasterio MJ, Ghidelli-Disse S, Leonard SE, He P, Jones JC, Krahn MM, Mo JS, Dasari KS, Fox AM, Boesche M, El Bakkouri M, Rivas KL, Leroy D, Hui R, Drewes G, Maly DJ, Van Voorhis WC, Ojo KK. PLoS One 11 e0149996 (2016)
  39. Crystal structure of Lsm3 octamer from Saccharomyces cerevisiae: implications for Lsm ring organisation and recruitment. Naidoo N, Harrop SJ, Sobti M, Haynes PA, Szymczyna BR, Williamson JR, Curmi PM, Mabbutt BC. J Mol Biol 377 1357-1371 (2008)
  40. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. Koo BK, Park CJ, Fernandez CF, Chim N, Ding Y, Chanfreau G, Feigon J. J Mol Biol 411 927-942 (2011)
  41. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Zenonos ZA, Rayner JC, Wright GJ. Malar J 13 93 (2014)
  42. Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity. Larson ET, Deng W, Krumm BE, Napuli A, Mueller N, Van Voorhis WC, Buckner FS, Fan E, Lauricella A, DeTitta G, Luft J, Zucker F, Hol WG, Verlinde CL, Merritt EA. J Mol Biol 381 975-988 (2008)
  43. The human transporter associated with antigen processing: molecular models to describe peptide binding competent states. Corradi V, Singh G, Tieleman DP. J Biol Chem 287 28099-28111 (2012)
  44. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs. Choveaux DL, Przyborski JM, Goldring JP. Malar J 11 397 (2012)
  45. Characterization of a new phosphatase from Plasmodium. Hills T, Srivastava A, Ayi K, Wernimont AK, Kain K, Waters AP, Hui R, Pizarro JC. Mol Biochem Parasitol 179 69-79 (2011)
  46. Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases. Pulicherla N, Pogorzala LA, Xu Z, O Farrell HC, Musayev FN, Scarsdale JN, Sia EA, Culver GM, Rife JP. J Mol Biol 391 884-893 (2009)
  47. Structure of a yeast Dyn2-Nup159 complex and molecular basis for dynein light chain-nuclear pore interaction. Romes EM, Tripathy A, Slep KC. J Biol Chem 287 15862-15873 (2012)
  48. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris. Avril M, Hathaway MJ, Cartwright MM, Gose SO, Narum DL, Smith JD. Malar J 8 143 (2009)
  49. Crystallographic structure of the tetratricopeptide repeat domain of Plasmodium falciparum FKBP35 and its molecular interaction with Hsp90 C-terminal pentapeptide. Alag R, Bharatham N, Dong A, Hills T, Harikishore A, Widjaja AA, Shochat SG, Hui R, Yoon HS. Protein Sci 18 2115-2124 (2009)
  50. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. Wu H, Gong W, Yao X, Wang J, Perrett S, Feng Y. J Biol Chem 290 8694-8710 (2015)
  51. Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, Moon RW, Blackman MJ, Drakeley CJ, Tetteh KKA. PLoS Negl Trop Dis 12 e0006457 (2018)
  52. Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase. Fujihashi M, Ishida T, Kuroda S, Kotra LP, Pai EF, Miki K. J Am Chem Soc 135 17432-17443 (2013)
  53. The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers. Smeets A, Loumaye E, Clippe A, Rees JF, Knoops B, Declercq JP. Protein Sci 17 700-710 (2008)
  54. Dynein light chain 8a of Toxoplasma gondii, a unique conoid-localized β-strand-swapped homodimer, is required for an efficient parasite growth. Qureshi BM, Hofmann NE, Arroyo-Olarte RD, Nickl B, Hoehne W, Jungblut PR, Lucius R, Scheerer P, Gupta N. FASEB J 27 1034-1047 (2013)
  55. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale. Cardoso FC, Roddick JS, Groves P, Doolan DL. PLoS One 6 e27666 (2011)
  56. Identification of novel inhibitors of the translationally controlled tumor protein (TCTP): insights from molecular dynamics. Kumar R, Maurya R, Saran S. Mol Biosyst 13 510-524 (2017)
  57. Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEX™ bioreactor. Miethe S, Meyer T, Wöhl-Bruhn S, Frenzel A, Schirrmann T, Dübel S, Hust M. J Biotechnol 163 105-111 (2013)
  58. Sequence and structural evolution of the KsgA/Dim1 methyltransferase family. O'Farrell HC, Xu Z, Culver GM, Rife JP. BMC Res Notes 1 108 (2008)
  59. The crystal structure of Toxoplasma gondii pyruvate kinase 1. Bakszt R, Wernimont A, Allali-Hassani A, Mok MW, Hills T, Hui R, Pizarro JC. PLoS One 5 e12736 (2010)
  60. Characterization of 14-3-3 proteins from Cryptosporidium parvum. Brokx SJ, Wernimont AK, Dong A, Wasney GA, Lin YH, Lew J, Vedadi M, Lee WH, Hui R. PLoS One 6 e14827 (2011)
  61. Selection of yeast strains with enhanced expression of Plasmodium falciparum proteins. LaCount DJ, Schoenfeld LW, Fields S. Mol Biochem Parasitol 163 119-122 (2009)
  62. Molecular cloning, expression, characterization and mutation of Plasmodium falciparum guanylate kinase. Kandeel M, Nakanishi M, Ando T, El-Shazly K, Yosef T, Ueno Y, Kitade Y. Mol Biochem Parasitol 159 130-133 (2008)
  63. Annotation of proteins of unknown function: initial enzyme results. McKay T, Hart K, Horn A, Kessler H, Dodge G, Bardhi K, Bardhi K, Mills JL, Bernstein HJ, Craig PA. J Struct Funct Genomics 16 43-54 (2015)
  64. CSGID Solves Structures and Identifies Phenotypes for Five Enzymes in Toxoplasma gondii. Lykins JD, Filippova EV, Halavaty AS, Minasov G, Zhou Y, Dubrovska I, Flores KJ, Shuvalova LA, Ruan J, El Bissati K, Dovgin S, Roberts CW, Woods S, Moulton JD, Moulton H, McPhillie MJ, Muench SP, Fishwick CWG, Sabini E, Shanmugam D, Roos DS, McLeod R, Anderson WF, Ngô HM. Front Cell Infect Microbiol 8 352 (2018)
  65. First crystallographic models of human TBC domains in the context of a family-wide structural analysis. Tempel W, Tong Y, Dimov S, Bochkarev A, Park H. Proteins 71 497-502 (2008)
  66. SARS-CoV-2 Nucleocapsid Protein Targets a Conserved Surface Groove of the NTF2-like Domain of G3BP1. Biswal M, Lu J, Song J. J Mol Biol 434 167516 (2022)
  67. Topoisomerase II from Human Malaria Parasites: EXPRESSION, PURIFICATION, AND SELECTIVE INHIBITION. Mudeppa DG, Kumar S, Kokkonda S, White J, Rathod PK. J Biol Chem 290 20313-20324 (2015)
  68. Cryptococcus neoformans ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design. Chitty JL, Blake KL, Blundell RD, Koh YQAE, Thompson M, Robertson AAB, Butler MS, Cooper MA, Kappler U, Williams SJ, Kobe B, Fraser JA. J Biol Chem 292 11829-11839 (2017)
  69. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase. Cook WJ, Senkovich O, Hernandez A, Speed H, Chattopadhyay D. Int J Biol Macromol 74 608-619 (2015)
  70. Evaluation of broad spectrum protein kinase inhibitors to probe the architecture of the malarial cyclin dependent protein kinase Pfmrk. Woodard CL, Keenan SM, Gerena L, Welsh WJ, Geyer JA, Waters NC. Bioorg Med Chem Lett 17 4961-4966 (2007)
  71. Structures of the nucleotide-binding domain of the human ABCB6 transporter and its complexes with nucleotides. Haffke M, Menzel A, Carius Y, Jahn D, Heinz DW. Acta Crystallogr D Biol Crystallogr 66 979-987 (2010)
  72. A panel of recombinant proteins from human-infective Plasmodium species for serological surveillance. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, Ngasala B, Singh B, Färnert A, Wright GJ. Malar J 19 31 (2020)
  73. Biochemical characterization of FIKK8--A unique protein kinase from the malaria parasite Plasmodium falciparum and other apicomplexans. Osman KT, Lou HJ, Qiu W, Brand V, Edwards AM, Turk BE, Hui R. Mol Biochem Parasitol 201 85-89 (2015)
  74. Crystal structures of murine and human Histamine-Releasing Factor (HRF/TCTP) and a model for HRF dimerisation in mast cell activation. Doré KA, Kashiwakura JI, McDonnell JM, Gould HJ, Kawakami T, Sutton BJ, Davies AM. Mol Immunol 93 216-222 (2018)
  75. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes. Victor ME, Bengtsson A, Andersen G, Bengtsson D, Lusingu JP, Vestergaard LS, Arnot DE, Theander TG, Joergensen L, Jensen AT. Malar J 9 325 (2010)
  76. Structural divergence of plant TCTPs. Gutiérrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. Front Plant Sci 5 361 (2014)
  77. Biochemical characterization of pea ornithine-delta-aminotransferase: substrate specificity and inhibition by di- and polyamines. Stránská J, Tylichová M, Kopecný D, Snégaroff J, Sebela M. Biochimie 92 940-948 (2010)
  78. Identification of target proteins of clinical immunity to Plasmodium falciparum in a region of low malaria transmission. Sakamoto H, Takeo S, Takashima E, Miura K, Kanoi BN, Kaneko T, Han ET, Tachibana M, Matsuoka K, Sattabongkot J, Udomsangpetch R, Ishino T, Tsuboi T. Parasitol Int 67 203-208 (2018)
  79. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs). Wang Z, Yin P, Lee JS, Parasuram R, Somarowthu S, Ondrechen MJ. BMC Bioinformatics 14 Suppl 3 S13 (2013)
  80. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. Khan N, Shah PP, Ban D, Trigo-Mouriño P, Carneiro MG, DeLeeuw L, Dean WL, Trent JO, Beverly LJ, Konrad M, Lee D, Sabo TM. J Biol Chem 294 11920-11933 (2019)
  81. Structural and functional divergence of the aldolase fold in Toxoplasma gondii. Tonkin ML, Halavaty AS, Ramaswamy R, Ruan J, Igarashi M, Ngô HM, Boulanger MJ. J Mol Biol 427 840-852 (2015)
  82. Structural and kinetic analysis of Schistosoma mansoni Adenylosuccinate Lyase (SmADSL). Romanello L, Serrão VHB, Torini JR, Bird LE, Nettleship JE, Rada H, Reddivari Y, Owens RJ, DeMarco R, Brandão-Neto J, Pereira HD. Mol Biochem Parasitol 214 27-35 (2017)
  83. Atypical caseinolytic protease homolog from Plasmodium falciparum possesses unusual substrate preference and a functional nuclear localization signal. Lin W, Chan M, Sim TS. Parasitol Res 105 1715-1722 (2009)
  84. Crystal structures from the Plasmodium peroxiredoxins: new insights into oligomerization and product binding. Qiu W, Dong A, Pizarro JC, Botchkarsev A, Min J, Wernimont AK, Hills T, Hui R, Artz JD. BMC Struct Biol 12 2 (2012)
  85. Identification and initial characterisation of a Plasmodium falciparum Cox17 copper metallochaperone. Choveaux DL, Krause RG, Przyborski JM, Goldring JP. Exp Parasitol 148 30-39 (2015)
  86. Identification of putative steroid-binding sites in human ABCB1 and ABCG2. Mares-Sámano S, Badhan R, Penny J. Eur J Med Chem 44 3601-3611 (2009)
  87. Virtual ligand screening against comparative protein structure models. Fan H, Irwin JJ, Sali A. Methods Mol Biol 819 105-126 (2012)
  88. Auranofin Resistance in Toxoplasma gondii Decreases the Accumulation of Reactive Oxygen Species but Does Not Target Parasite Thioredoxin Reductase. Ma CI, Tirtorahardjo JA, Jan S, Schweizer SS, Rosario SAC, Du Y, Zhang JJ, Morrissette NS, Andrade RM. Front Cell Infect Microbiol 11 618994 (2021)
  89. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama). Van Ekert E, Shatters RG, Rougé P, Powell CA, Smagghe G, Borovsky D. FEBS Open Bio 5 264-275 (2015)
  90. Oligomeric interfaces as a tool in drug discovery: Specific interference with activity of malate dehydrogenase of Plasmodium falciparum in vitro. Lunev S, Butzloff S, Romero AR, Linzke M, Batista FA, Meissner KA, Müller IB, Adawy A, Wrenger C, Groves MR. PLoS One 13 e0195011 (2018)
  91. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli. Guerra ÁP, Calvo EP, Wasserman M, Chaparro-Olaya J. Biomedica 36 97-108 (2016)
  92. Purification, crystallization and preliminary X-ray diffraction of the G3BP1 NTF2-like domain. Vognsen T, Möller IR, Kristensen O. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 48-50 (2011)
  93. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer. Rungsardthong K, Mares-Sámano S, Penny J. Bioinformation 8 907-911 (2012)
  94. Active-site plasticity revealed in the asymmetric dimer of AnPrx6 the 1-Cys peroxiredoxin and molecular chaperone from Anabaena sp. PCC 7210. Mishra Y, Hall M, Locmelis R, Nam K, Söderberg CAG, Storm P, Chaurasia N, Rai LC, Jansson S, Schröder WP, Sauer UH. Sci Rep 7 17151 (2017)
  95. Alteration of molecular assembly of peroxiredoxins from hyperthermophilic archaea. Nakamura T, Oshima M, Yasuda M, Shimamura A, Morita J, Uegaki K. J Biochem 162 415-422 (2017)
  96. Contribution of Non-Canonical Interactions to the Stability of Sm/LSm Oligomeric Assemblies. Stojanović SĐ, Isenović ER, Zarić BL. Mol Inform 30 430-442 (2011)
  97. Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum. Wrenger C, Müller IB, Butzloff S, Jordanova R, Lunev S, Groves MR. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 659-662 (2012)
  98. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. Daniyan MO. Adv Exp Med Biol 1340 205-236 (2021)
  99. Protein subunit interfaces: A statistical analysis of hot spots in Sm proteins. Stojanović SD, Zarić BL, Zarić SD. J Mol Model 16 1743-1751 (2010)
  100. Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis. Cao TP, Kim JS, Woo MH, Choi JM, Jun Y, Lee KH, Lee SH. J Microbiol 54 311-321 (2016)
  101. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. Nielsen MH, Kidmose RT, Jenner LB. Acta Crystallogr D Struct Biol 72 158-167 (2016)
  102. Development of an HPLC-based guanosine monophosphate kinase assay and application to Plasmodium vivax guanylate kinase. Pedro L, Cross M, Hofmann A, Mak T, Quinn RJ. Anal Biochem 575 63-69 (2019)
  103. Disassembly of the ring-type decameric structure of peroxiredoxin from Aeropyrum pernix K1 by amino acid mutation. Himiyama T, Nakamura T. Protein Sci 29 1138-1147 (2020)
  104. Expression of functional Plasmodium falciparum enzymes using a wheat germ cell-free system. Mudeppa DG, Rathod PK. Eukaryot Cell 12 1653-1663 (2013)
  105. 1H, 13C and 15N resonance assignment of human guanylate kinase. Khan N, Ban D, Trigo-Mourino P, Carneiro MG, Konrad M, Lee D, Sabo TM. Biomol NMR Assign 12 11-14 (2018)
  106. Identification of P218 as a potent inhibitor of Mycobacterium ulcerans DHFR. Riboldi GP, Zigweid R, Myler PJ, Mayclin SJ, Couñago RM, Staker BL. RSC Med Chem 12 103-109 (2021)
  107. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. PLoS One 17 e0273106 (2022)
  108. Single mutation in Shine-Dalgarno-like sequence present in the amino terminal of lactate dehydrogenase of Plasmodium effects the production of an eukaryotic protein expressed in a prokaryotic system. Cicek M, Mutlu O, Erdemir A, Ozkan E, Saricay Y, Turgut-Balik D. Mol Biotechnol 54 602-608 (2013)
  109. Tyrosine substitution of a conserved active-site histidine residue activates Plasmodium falciparum peroxiredoxin 6. Feld K, Geissel F, Liedgens L, Schumann R, Specht S, Deponte M. Protein Sci 28 100-110 (2019)
  110. Wheat germ cell-free technology for accelerating the malaria vaccine research. Takeo S, Arumugam TU, Torii M, Tsuboi T. Expert Opin Drug Discov 4 1191-1199 (2009)
  111. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CWG, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. iScience 27 108477 (2024)
  112. Perkinsus marinus in bioreactor: growth and a cost-reduced growth medium. Murphy C, Fernández Robledo JA, van Walsum GP. J Ind Microbiol Biotechnol 50 kuad023 (2023)
  113. Random acceleration and steered molecular dynamics simulations reveal the (un)binding tunnels in adenosine deaminase and critical residues in tunnels. Pan Y, Qi R, Li M, Wang B, Huang H, Han W. RSC Adv 10 43994-44002 (2020)