1yvb Citations

Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease.

Proc Natl Acad Sci U S A 103 11503-8 (2006)
Cited: 77 times
EuropePMC logo PMID: 16864794

Abstract

Falcipain-2 (FP2), the major cysteine protease of the human malaria parasite Plasmodium falciparum, is a hemoglobinase and promising drug target. Here we report the crystal structure of FP2 in complex with a protease inhibitor, cystatin. The FP2 structure reveals two previously undescribed cysteine protease structural motifs, designated FP2(nose) and FP2(arm), in addition to details of the active site that will help focus inhibitor design. Unlike most cysteine proteases, FP2 does not require a prodomain but only the short FP2(nose) motif to correctly fold and gain catalytic activity. Our structure and mutagenesis data suggest a molecular basis for this unique mechanism by highlighting the functional role of two Tyr within FP2(nose) and a conserved Glu outside this motif. The FP2(arm) motif is required for hemoglobinase activity. The structure reveals topographic features and a negative charge cluster surrounding FP2(arm) that suggest it may serve as an exo-site for hemoglobin binding. Motifs similar to FP2(nose) and FP2(arm) are found only in related plasmodial proteases, suggesting that they confer malaria-specific functions.

Reviews - 1yvb mentioned but not cited (3)

Articles - 1yvb mentioned but not cited (32)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Tuncbag N, Gursoy A, Nussinov R, Keskin O. Nat Protoc 6 1341-1354 (2011)
  3. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  4. Host pathogen protein interactions predicted by comparative modeling. Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A. Protein Sci 16 2585-2596 (2007)
  5. SwarmDock and the use of normal modes in protein-protein docking. Moal IH, Bates PA. Int J Mol Sci 11 3623-3648 (2010)
  6. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, Rosenthal PJ, Brinen LS. J Med Chem 52 852-857 (2009)
  7. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Wang SX, Pandey KC, Somoza JR, Sijwali PS, Kortemme T, Brinen LS, Fletterick RJ, Rosenthal PJ, McKerrow JH. Proc Natl Acad Sci U S A 103 11503-11508 (2006)
  8. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Salát J, Paesen GC, Rezácová P, Kotsyfakis M, Kovárová Z, Sanda M, Majtán J, Grunclová L, Horká H, Andersen JF, Brynda J, Horn M, Nunn MA, Kopácek P, Kopecký J, Mares M. Biochem J 429 103-112 (2010)
  9. Regulatory elements within the prodomain of Falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Pandey KC, Barkan DT, Sali A, Rosenthal PJ. PLoS One 4 e5694 (2009)
  10. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y. Protein Pept Lett 21 766-778 (2014)
  11. Application of Enhanced Sampling Monte Carlo Methods for High-Resolution Protein-Protein Docking in Rosetta. Zhang Z, Schindler CE, Lange OF, Zacharias M. PLoS One 10 e0125941 (2015)
  12. Protein Docking Model Evaluation by Graph Neural Networks. Wang X, Flannery ST, Kihara D. Front Mol Biosci 8 647915 (2021)
  13. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  14. Potent and selective inhibition of cysteine proteases from Plasmodium falciparum and Trypanosoma brucei. Ehmke V, Heindl C, Rottmann M, Freymond C, Schweizer WB, Brun R, Stich A, Schirmeister T, Diederich F. ChemMedChem 6 273-278 (2011)
  15. Native or Non-Native Protein-Protein Docking Models? Molecular Dynamics to the Rescue. Jandova Z, Vargiu AV, Bonvin AMJJ. J Chem Theory Comput 17 5944-5954 (2021)
  16. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  17. Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites. Ponsuwanna P, Kochakarn T, Bunditvorapoom D, Kümpornsin K, Otto TD, Ridenour C, Chotivanich K, Wilairat P, White NJ, Miotto O, Chookajorn T. Malar J 15 51 (2016)
  18. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. Boudreaux DA, Chaney J, Maiti TK, Das C. FEBS J 279 1106-1118 (2012)
  19. The Ionic and hydrophobic interactions are required for the auto activation of cysteine proteases of Plasmodium falciparum. Sundararaj S, Singh D, Saxena AK, Vashisht K, Sijwali PS, Dixit R, Pandey KC. PLoS One 7 e47227 (2012)
  20. VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy. Segura J, Marín-López MA, Jones PF, Oliva B, Fernandez-Fuentes N. PLoS One 10 e0118107 (2015)
  21. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  22. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  23. Computational investigation of conformational variability and allostery in cathepsin K and other related peptidases. Novinec M. PLoS One 12 e0182387 (2017)
  24. The complex of Plasmodium falciparum falcipain-2 protease with an (E)-chalcone-based inhibitor highlights a novel, small, molecule-binding site. Machin JM, Kantsadi AL, Vakonakis I. Malar J 18 388 (2019)
  25. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study. A Santos JC, Nassif H, Page D, Muggleton SH, E Sternberg MJ. BMC Bioinformatics 13 162 (2012)
  26. Comparative analysis of cystatin superfamily in platyhelminths. Guo A. PLoS One 10 e0124683 (2015)
  27. Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target. Sundararaj S, Saxena AK, Sharma R, Vashisht K, Sharma S, Anvikar A, Dixit R, Rosenthal PJ, Pandey KC. PLoS One 9 e93008 (2014)
  28. Accurate Prediction of Docked Protein Structure Similarity. Akbal-Delibas B, Pomplun M, Haspel N. J Comput Biol 22 892-904 (2015)
  29. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. Su C, Nguyen TD, Zheng J, Kwoh CK. BMC Bioinformatics 15 Suppl 16 S9 (2014)
  30. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge. Nassif H, Al-Ali H, Khuri S, Keirouz W, Page D. Inductive Log Program 5989 149-165 (2010)
  31. Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach. Akash S, Abdelkrim G, Bayil I, Hosen ME, Mukerjee N, Shater AF, Saleh FM, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, Tok TT. J Cell Mol Med 27 3168-3188 (2023)
  32. In Silico Analysis of Homologous Heterodimers of Cruzipain-Chagasin from Structural Models Built by Homology. Reyes-Espinosa F, Juárez-Saldivar A, Palos I, Herrera-Mayorga V, García-Pérez C, Rivera G. Int J Mol Sci 20 E1320 (2019)


Reviews citing this publication (6)

  1. Molecular recognition in chemical and biological systems. Persch E, Dumele O, Diederich F. Angew Chem Int Ed Engl 54 3290-3327 (2015)
  2. Falcipain-2 inhibitors. Ettari R, Bova F, Zappalà M, Grasso S, Micale N. Med Res Rev 30 136-167 (2010)
  3. Opportunities for structure-based design of protease-directed drugs. Mittl PR, Grütter MG. Curr Opin Struct Biol 16 769-775 (2006)
  4. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges. Roy KK. Int J Antimicrob Agents 50 287-302 (2017)
  5. From crystal to compound: structure-based antimalarial drug discovery. Drinkwater N, McGowan S. Biochem J 461 349-369 (2014)
  6. Structural biology of plasmodial proteins. Gayathri P, Balaram H, Murthy MR. Curr Opin Struct Biol 17 744-754 (2007)

Articles citing this publication (36)

  1. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  2. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, McKerrow JH, Craik CS, Rosenthal PJ, Brinen LS. J Biol Chem 284 25697-25703 (2009)
  3. The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Wang SX, Pandey KC, Scharfstein J, Whisstock J, Huang RK, Jacobelli J, Fletterick RJ, Rosenthal PJ, Abrahamson M, Brinen LS, Rossi A, Sali A, McKerrow JH. Structure 15 535-543 (2007)
  4. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3. Subramanian S, Hardt M, Choe Y, Niles RK, Johansen EB, Legac J, Gut J, Kerr ID, Craik CS, Rosenthal PJ. PLoS One 4 e5156 (2009)
  5. Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. Nissen MS, Kumar GN, Youn B, Knowles DB, Lam KS, Ballinger WJ, Knowles NR, Kang C. Plant Cell 21 861-875 (2009)
  6. Screening of protease inhibitors as antiplasmodial agents. Part I: Aziridines and epoxides. Schulz F, Gelhaus C, Degel B, Vicik R, Heppner S, Breuning A, Leippe M, Gut J, Rosenthal PJ, Schirmeister T. ChemMedChem 2 1214-1224 (2007)
  7. Synthesis of novel alpha-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Wanare G, Aher R, Kawathekar N, Ranjan R, Kaushik NK, Sahal D. Bioorg Med Chem Lett 20 4675-4678 (2010)
  8. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4. Na BK, Bae YA, Zo YG, Choe Y, Kim SH, Desai PV, Avery MA, Craik CS, Kim TS, Rosenthal PJ, Kong Y. PLoS Negl Trop Dis 4 e849 (2010)
  9. Plasmodium falciparum Falcipain-2a Polymorphisms in Southeast Asia and Their Association With Artemisinin Resistance. Siddiqui FA, Cabrera M, Wang M, Brashear A, Kemirembe K, Wang Z, Miao J, Chookajorn T, Yang Z, Cao Y, Dong G, Rosenthal PJ, Cui L. J Infect Dis 218 434-442 (2018)
  10. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium. Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, Heussler VT, Rennenberg A, Hilgenfeld R. Structure 19 919-929 (2011)
  11. Synthesis and structure-activity-relationship studies of thiazolidinediones as antiplasmodial inhibitors of the Plasmodium falciparum cysteine protease falcipain-2. Sharma RK, Younis Y, Mugumbate G, Njoroge M, Gut J, Rosenthal PJ, Chibale K. Eur J Med Chem 90 507-518 (2015)
  12. High-level expression of Falcipain-2 in Escherichia coli by codon optimization and auto-induction. Sarduy ES, Muñoz AC, Trejo SA, de los A Chavéz Planes M. Protein Expr Purif 83 59-69 (2012)
  13. Structure-function of falcipains: malarial cysteine proteases. Pandey KC, Dixit R. J Trop Med 2012 345195 (2012)
  14. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. Prasad R, Atul, Soni A, Puri SK, Sijwali PS. PLoS One 7 e51619 (2012)
  15. In silico Guided Drug Repurposing: Discovery of New Competitive and Non-competitive Inhibitors of Falcipain-2. Alberca LN, Chuguransky SR, Álvarez CL, Talevi A, Salas-Sarduy E. Front Chem 7 534 (2019)
  16. Falcipain-2 inhibition by suramin and suramin analogues. Marques AF, Esser D, Rosenthal PJ, Kassack MU, Lima LM. Bioorg Med Chem 21 3667-3673 (2013)
  17. Cloning and characterisation of novel cystatins from elapid snake venom glands. Richards R, St Pierre L, Trabi M, Johnson LA, de Jersey J, Masci PP, Lavin MF. Biochimie 93 659-668 (2011)
  18. Non-specific interactions between soluble and induce irreversible changes in the properties of bilayers. Ruggeri F, Zhang F, Lind T, Bruce ED, Lau BL, Cárdenas M. Soft Matter 9 4219-4226 (2013)
  19. Synthesis and molecular modeling studies of derivatives of a highly potent peptidomimetic vinyl ester as falcipain-2 inhibitors. Ettari R, Micale N, Grazioso G, Bova F, Schirmeister T, Grasso S, Zappalà M. ChemMedChem 7 1594-1600 (2012)
  20. A chimeric cysteine protease of Plasmodium berghei engineered to resemble the Plasmodium falciparum protease falcipain-2. Singh A, Walker KJ, Sijwali PS, Lau AL, Rosenthal PJ. Protein Eng Des Sel 20 171-177 (2007)
  21. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. Arai R, Fukui S, Kobayashi N, Sekiguchi J. J Biol Chem 287 44736-44748 (2012)
  22. Centenary celebrations article: Cysteine proteases of human malaria parasites. Pandey KC. J Parasit Dis 35 94-103 (2011)
  23. Design and synthesis of protein-protein interaction mimics as Plasmodium falciparum cysteine protease, falcipain-2 inhibitors. Rizzi L, Sundararaman S, Cendic K, Vaiana N, Korde R, Sinha D, Mohmmed A, Malhotra P, Romeo S. Eur J Med Chem 46 2083-2090 (2011)
  24. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Chakka SK, Kalamuddin M, Sundararaman S, Wei L, Mundra S, Mahesh R, Malhotra P, Mohmmed A, Kotra LP. Bioorg Med Chem 23 2221-2240 (2015)
  25. Substrate specificity studies of the cysteine peptidases falcipain-2 and falcipain-3 from Plasmodium falciparum and demonstration of their kininogenase activity. Cotrin SS, Gouvêa IE, Melo PM, Bagnaresi P, Assis DM, Araújo MS, Juliano MA, Gazarini ML, Rosenthal PJ, Juliano L, Carmona AK. Mol Biochem Parasitol 187 111-116 (2013)
  26. Allosteric regulation of the Plasmodium falciparum cysteine protease falcipain-2 by heme. Marques AF, Gomes PS, Oliveira PL, Rosenthal PJ, Pascutti PG, Lima LM. Arch Biochem Biophys 573 92-99 (2015)
  27. Synthesis, biological evaluation, hydration site thermodynamics, and chemical reactivity analysis of α-keto substituted peptidomimetics for the inhibition of Plasmodium falciparum. Weldon DJ, Shah F, Chittiboyina AG, Sheri A, Chada RR, Gut J, Rosenthal PJ, Shivakumar D, Sherman W, Desai P, Jung JC, Avery MA. Bioorg Med Chem Lett 24 1274-1279 (2014)
  28. Allosteric Site Inhibitor Disrupting Auto-Processing of Malarial Cysteine Proteases. Pant A, Kumar R, Wani NA, Verma S, Sharma R, Pande V, Saxena AK, Dixit R, Rai R, Pandey KC. Sci Rep 8 16193 (2018)
  29. Identification of lead compounds targeting the cathepsin B-like enzyme of Eimeria tenella. Schaeffer M, Schroeder J, Heckeroth AR, Noack S, Gassel M, Mottram JC, Selzer PM, Coombs GH. Antimicrob Agents Chemother 56 1190-1201 (2012)
  30. 2-(3,4-dihydro-4-oxothieno[2,3-d]pyrimidin-2-ylthio) acetamides as a new class of falcipain-2 inhibitors. 3. design, synthesis and biological evaluation. Zhu J, Chen T, Liu J, Ma R, Lu W, Huang J, Li H, Li J, Jiang H. Molecules 14 785-797 (2009)
  31. 2-amido-3-(1H-indol-3-yl)-N-substituted-propanamides as a new class of falcipain-2 inhibitors. 1. Design, synthesis, biological evaluation and binding model studies. Zhu J, Chen T, Chen L, Lu W, Che P, Huang J, Li H, Li J, Jiang H. Molecules 14 494-508 (2009)
  32. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, Charlier P, Kerff F. Sci Rep 10 19570 (2020)
  33. Dynamical footprint of falcipain-2 catalytic triad in hemoglobin-β-bound state. Omotuyi IO, Hamada T. J Biomol Struct Dyn 33 1027-1036 (2015)
  34. Independent amino acid residues in the S2 pocket of falcipain-3 determine its specificity for P2 residues in substrates. Kolla VK, Prasad R, Sayyad Z, Atul, Shah AY, Allanki AD, Navale R, Singhal N, Tanneru N, Sudhakar R, Venkatesan V, Deshmukh MV, Sijwali PS. Mol Biochem Parasitol 202 11-22 (2015)
  35. Is dihydrolipoic acid among the reductive activators of parasite CysHis proteases? Lockwood TD. Exp Parasitol 118 604-613 (2008)
  36. Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host. Martins LA, Buša M, Chlastáková A, Kotál J, Beránková Z, Stergiou N, Jmel MA, Schmitt E, Chmelař J, Mareš M, Kotsyfakis M. Cell Mol Life Sci 80 339 (2023)