1yi3 Citations

Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.

J Biol Chem 280 13728-34 (2005)
Related entries: 1yhs, 1yi4

Cited: 105 times
EuropePMC logo PMID: 15657054

Abstract

Pim-1 is an oncogene-encoded serine/threonine kinase primarily expressed in hematopoietic and germ cell lines. Pim-1 kinase was originally identified in Maloney murine leukemia virus-induced T-cell lymphomas and is associated with multiple cellular functions such as proliferation, survival, differentiation, apoptosis, and tumorigenesis (Wang, Z., Bhattacharya, N., Weaver, M., Petersen, K., Meyer, M., Gapter, L., and Magnuson, N. S. (2001) J. Vet. Sci. 2, 167-179). The crystal structures of Pim-1 complexed with staurosporine and adenosine were determined. Although a typical two-domain serine/threonine protein kinase fold is observed, the inter-domain hinge region is unusual in both sequence and conformation; a two-residue insertion causes the hinge to bulge away from the ATP-binding pocket, and a proline residue in the hinge removes a conserved main chain hydrogen bond donor. Without this hydrogen bond, van der Waals interactions with the hinge serve to position the ligand. The hinge region of Pim-1 resembles that of phosphatidylinositol 3-kinase more closely than it does other protein kinases. Although the phosphatidylinositol 3-kinase inhibitor LY294002 also inhibits Pim-1, the structure of the LY294002.Pim-1 complex reveals a new binding mode that may be general for Ser/Thr kinases.

Articles - 1yi3 mentioned but not cited (2)

  1. Binding of protein kinase inhibitors to synapsin I inferred from pair-wise binding site similarity measurements. Defranchi E, Schalon C, Messa M, Onofri F, Benfenati F, Rognan D. PLoS One 5 e12214 (2010)
  2. Identification of the first inhibitor of the GBP1:PIM1 interaction. Implications for the development of a new class of anticancer agents against paclitaxel resistant cancer cells. Andreoli M, Persico M, Kumar A, Orteca N, Kumar V, Pepe A, Mahalingam S, Alegria AE, Petrella L, Sevciunaite L, Camperchioli A, Mariani M, Di Dato A, Novellino E, Scambia G, Malhotra SV, Ferlini C, Fattorusso C. J. Med. Chem. 57 7916-7932 (2014)


Reviews citing this publication (30)

  1. Fuel feeds function: energy metabolism and the T-cell response. Fox CJ, Hammerman PS, Thompson CB. Nat. Rev. Immunol. 5 844-852 (2005)
  2. The survival kinases Akt and Pim as potential pharmacological targets. Amaravadi R, Thompson CB. J. Clin. Invest. 115 2618-2624 (2005)
  3. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nawijn MC, Alendar A, Berns A. Nat. Rev. Cancer 11 23-34 (2011)
  4. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. Haematologica 95 1004-1015 (2010)
  5. Myocardial AKT: the omnipresent nexus. Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Physiol. Rev. 91 1023-1070 (2011)
  6. Metabolism, migration and memory in cytotoxic T cells. Finlay D, Cantrell DA. Nat. Rev. Immunol. 11 109-117 (2011)
  7. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Sánchez C, Méndez C, Salas JA. Nat Prod Rep 23 1007-1045 (2006)
  8. PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. So L, Fruman DA. Biochem. J. 442 465-481 (2012)
  9. Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Eur. J. Cancer 44 2144-2151 (2008)
  10. New players in TLR-mediated innate immunity: PI3K and small Rho GTPases. Ruse M, Knaus UG. Immunol. Res. 34 33-48 (2006)
  11. Why target PIM1 for cancer diagnosis and treatment? Magnuson NS, Wang Z, Ding G, Reeves R. Future Oncol 6 1461-1478 (2010)
  12. PIM1 kinase as a target for cancer therapy. Merkel AL, Meggers E, Ocker M. Expert Opin Investig Drugs 21 425-436 (2012)
  13. Nuclear and mitochondrial signalling Akts in cardiomyocytes. Miyamoto S, Rubio M, Sussman MA. Cardiovasc. Res. 82 272-285 (2009)
  14. Pim kinase inhibitors: a survey of the patent literature. Morwick T. Expert Opin Ther Pat 20 193-212 (2010)
  15. PI3Ks in lymphocyte signaling and development. Okkenhaug K, Fruman DA. Curr. Top. Microbiol. Immunol. 346 57-85 (2010)
  16. The PIM kinases in hematological cancers. Alvarado Y, Giles FJ, Swords RT. Expert Rev Hematol 5 81-96 (2012)
  17. Serine-threonine kinases in TCR signaling. Navarro MN, Cantrell DA. Nat. Immunol. 15 808-814 (2014)
  18. Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Sussman MA. Expert Rev Cardiovasc Ther 7 929-938 (2009)
  19. The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Isaac M, Siu A, Jongstra J. Drug Resist. Updat. 14 203-211 (2011)
  20. Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update. Arunesh GM, Shanthi E, Krishna MH, Sooriya Kumar J, Viswanadhan VN. Expert Opin Ther Pat 24 5-17 (2014)
  21. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. Li YY, Mukaida N. World J. Gastroenterol. 20 9392-9404 (2014)
  22. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Kaminskyy D, Kryshchyshyn A, Lesyk R. Eur J Med Chem 140 542-594 (2017)
  23. Targeting Pim kinases for cancer treatment: opportunities and challenges. Le BT, Kumarasiri M, Adams JR, Yu M, Milne R, Sykes MJ, Wang S. Future Med Chem 7 35-53 (2015)
  24. Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (review). Liang C, Li YY. Mol Med Rep 9 2051-2060 (2014)
  25. Signaling and Function of Interleukin-2 in T Lymphocytes. Ross SH, Cantrell DA. Annu. Rev. Immunol. 36 411-433 (2018)
  26. Insights from Pim1 structure for anti-cancer drug design. Ogawa N, Yuki H, Tanaka A. Expert Opin Drug Discov 7 1177-1192 (2012)
  27. Druggable binding sites in the multicomponent assemblies that characterise DNA double-strand-break repair through non-homologous end joining. Kefala Stavridi A, Appleby R, Liang S, Blundell TL, Chaplin AK. Essays Biochem 64 791-806 (2020)
  28. PIM1/STAT3 axis: a potential co-targeted therapeutic approach in triple-negative breast cancer. Mahata S, Sahoo PK, Pal R, Sarkar S, Mistry T, Ghosh S, Nasare VD. Med Oncol 39 74 (2022)
  29. Pim Kinases: Important Regulators of Cardiovascular Disease. Nock S, Karim E, Unsworth AJ. Int J Mol Sci 24 11582 (2023)
  30. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M, Photodynamic Therapy Study Group. Methods Mol Biol 2451 405-480 (2022)

Articles citing this publication (73)

  1. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. PLoS Biol. 7 e38 (2009)
  2. Exploring the specificity of the PI3K family inhibitor LY294002. Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD. Biochem. J. 404 15-21 (2007)
  3. Pim-1 regulates cardiomyocyte survival downstream of Akt. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA. Nat. Med. 13 1467-1475 (2007)
  4. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L, Uzunov M, Ifrah N, Dreyfus F, Lacombe C, Mayeux P, Bouscary D. Blood 114 1618-1627 (2009)
  5. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Fedorov O, Huber K, Eisenreich A, Eisenreich A, Filippakopoulos P, King O, Bullock AN, Szklarczyk D, Jensen LJ, Fabbro D, Trappe J, Rauch U, Bracher F, Knapp S. Chem. Biol. 18 67-76 (2011)
  6. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W, Kraft AS, Smith CD. J. Med. Chem. 52 74-86 (2009)
  7. IL-3 induces a Pim1-dependent antiapoptotic pathway in primary human basophils. Didichenko SA, Spiegl N, Brunner T, Dahinden CA. Blood 112 3949-3958 (2008)
  8. PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS, Xing PX. J. Clin. Invest. 119 362-375 (2009)
  9. Ruthenium half-sandwich complexes bound to protein kinase Pim-1. Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E. Angew. Chem. Int. Ed. Engl. 45 1580-1585 (2006)
  10. Pim-1 kinase protects mitochondrial integrity in cardiomyocytes. Borillo GA, Mason M, Quijada P, Völkers M, Cottage C, McGregor M, Din S, Fischer K, Gude N, Avitabile D, Barlow S, Alvarez R, Truffa S, Whittaker R, Glassy MS, Gustafsson AB, Miyamoto S, Glembotski CC, Gottlieb RA, Brown JH, Sussman MA. Circ. Res. 106 1265-1274 (2010)
  11. Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Cheney IW, Yan S, Appleby T, Walker H, Vo T, Yao N, Hamatake R, Hong Z, Wu JZ. Bioorg. Med. Chem. Lett. 17 1679-1683 (2007)
  12. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. Katoh H, Ojima H, Kokubu A, Saito S, Kondo T, Kosuge T, Hosoda F, Imoto I, Inazawa J, Hirohashi S, Shibata T. Gastroenterology 133 1475-1486 (2007)
  13. The PI3K inhibitor arsenal: choose your weapon! Crabbe T, Welham MJ, Ward SG. Trends Biochem. Sci. 32 450-456 (2007)
  14. Allergic airway hyperresponsiveness, inflammation, and remodeling do not develop in phosphoinositide 3-kinase gamma-deficient mice. Takeda M, Ito W, Tanabe M, Ueki S, Kato H, Kihara J, Tanigai T, Chiba T, Yamaguchi K, Kayaba H, Imai Y, Okuyama K, Ohno I, Sasaki T, Chihara J. J. Allergy Clin. Immunol. 123 805-812 (2009)
  15. Activated lymphocytes as a metabolic model for carcinogenesis. Macintyre AN, Rathmell JC. Cancer Metab 1 5 (2013)
  16. New principles in medicinal organometallic chemistry. Schatzschneider U, Metzler-Nolte N. Angew. Chem. Int. Ed. Engl. 45 1504-1507 (2006)
  17. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S. PLoS ONE 4 e7112 (2009)
  18. A coiled-coil enabled split-luciferase three-hybrid system: applied toward profiling inhibitors of protein kinases. Jester BW, Cox KJ, Gaj A, Shomin CD, Porter JR, Ghosh I. J. Am. Chem. Soc. 132 11727-11735 (2010)
  19. Ruthenium half-sandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand. Pagano N, Maksimoska J, Bregman H, Williams DS, Webster RD, Xue F, Meggers E. Org. Biomol. Chem. 5 1218-1227 (2007)
  20. Structure-based design of an organoruthenium phosphatidyl-inositol-3-kinase inhibitor reveals a switch governing lipid kinase potency and selectivity. Xie P, Williams DS, Atilla-Gokcumen GE, Milk L, Xiao M, Smalley KS, Herlyn M, Meggers E, Marmorstein R. ACS Chem. Biol. 3 305-316 (2008)
  21. Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: chemistry, biological activities, and molecular modeling. Tong Y, Stewart KD, Thomas S, Przytulinska M, Johnson EF, Klinghofer V, Leverson J, McCall O, Soni NB, Luo Y, Lin NH, Sowin TJ, Giranda VL, Penning TD. Bioorg. Med. Chem. Lett. 18 5206-5208 (2008)
  22. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B. Pharmacol. Res. 70 90-101 (2013)
  23. Up-regulation of a serine-threonine kinase proto-oncogene Pim-1 in oral squamous cell carcinoma. Chiang WF, Yen CY, Lin CN, Liaw GA, Chiu CT, Hsia YJ, Liu SY. Int J Oral Maxillofac Surg 35 740-745 (2006)
  24. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R, Chan A, Clifford A, Wilkes M, Vollmer D, Brenning B, Merx S, Lai S, McCullar MV, Ho KK, Albertson DJ, Call LT, Bearss JJ, Tripp S, Liu T, Stephens BJ, Mollard A, Warner SL, Bearss DJ, Kanner SB. Neoplasia 16 403-412 (2014)
  25. Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase. Grey R, Pierce AC, Bemis GW, Jacobs MD, Moody CS, Jajoo R, Mohal N, Green J. Bioorg. Med. Chem. Lett. 19 3019-3022 (2009)
  26. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1409-1425 (2008)
  27. Regulation of Skp2 levels by the Pim-1 protein kinase. Cen B, Mahajan S, Zemskova M, Beharry Z, Lin YW, Cramer SD, Lilly MB, Kraft AS. J. Biol. Chem. 285 29128-29137 (2010)
  28. Complex impacts of PI3K/AKT inhibitors to androgen receptor gene expression in prostate cancer cells. Liu L, Dong X. PLoS ONE 9 e108780 (2014)
  29. In vitro differentiation of near-unlimited numbers of functional mouse basophils using conditional Hoxb8. Gurzeler U, Rabachini T, Dahinden CA, Salmanidis M, Brumatti G, Ekert PG, Echeverry N, Bachmann D, Simon HU, Kaufmann T. Allergy 68 604-613 (2013)
  30. Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling. Shomin CD, Meyer SC, Ghosh I. Bioorg. Med. Chem. 17 6196-6202 (2009)
  31. Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival. Herzog S, Fink MA, Weitmann K, Friedel C, Hadlich S, Langner S, Kindermann K, Holm T, Böhm A, Eskilsson E, Miletic H, Hildner M, Fritsch M, Vogelgesang S, Havemann C, Ritter CA, Meyer zu Schwabedissen HE, Rauch B, Hoffmann W, Kroemer HK, Schroeder H, Bien-Möller S. Neuro-oncology 17 223-242 (2015)
  32. Proviral integration site for Moloney murine leukemia virus 1, but not phosphatidylinositol-3 kinase, is essential in the antiapoptotic signaling cascade initiated by IL-5 in eosinophils. Andina N, Didichenko S, Schmidt-Mende J, Dahinden CA, Simon HU. J. Allergy Clin. Immunol. 123 603-611 (2009)
  33. Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Harrington L, Cheley S, Alexander LT, Knapp S, Bayley H. Proc. Natl. Acad. Sci. U.S.A. 110 E4417-26 (2013)
  34. Signaling in lipopolysaccharide-induced stabilization of formyl peptide receptor 1 mRNA in mouse peritoneal macrophages. Mandal P, Hamilton T. J Immunol 178 2542-2548 (2007)
  35. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide. Tsuganezawa K, Watanabe H, Parker L, Yuki H, Taruya S, Nakagawa Y, Kamei D, Mori M, Ogawa N, Tomabechi Y, Handa N, Honma T, Yokoyama S, Kojima H, Okabe T, Nagano T, Tanaka A. J. Mol. Biol. 417 240-252 (2012)
  36. De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. Urich R, Wishart G, Kiczun M, Richters A, Tidten-Luksch N, Rauh D, Sherborne B, Wyatt PG, Brenk R. ACS Chem. Biol. 8 1044-1052 (2013)
  37. Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors. Olla S, Manetti F, Crespan E, Maga G, Angelucci A, Schenone S, Bologna M, Botta M. Bioorg. Med. Chem. Lett. 19 1512-1516 (2009)
  38. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Velazquez R, Shaw DM, Caccamo A, Oddo S. Mol Neurodegener 11 52 (2016)
  39. Selective bisubstrate inhibitors with sub-nanomolar affinity for protein kinase Pim-1. Ekambaram R, Enkvist E, Vaasa A, Kasari M, Raidaru G, Knapp S, Uri A. ChemMedChem 8 909-913 (2013)
  40. AutoMap: a tool for analyzing protein-ligand recognition using multiple ligand binding modes. Agostino M, Mancera RL, Ramsland PA, Yuriev E. J. Mol. Graph. Model. 40 80-90 (2013)
  41. PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells. Xie Y, Bayakhmetov S. Mol Clin Oncol 4 13-17 (2016)
  42. Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. More KN, Jang HW, Hong VS, Lee J. Bioorg. Med. Chem. Lett. 24 2424-2428 (2014)
  43. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases. Casuscelli F, Ardini E, Avanzi N, Casale E, Cervi G, D'Anello M, Donati D, Faiardi D, Ferguson RD, Fogliatto G, Galvani A, Marsiglio A, Mirizzi DG, Montemartini M, Orrenius C, Papeo G, Piutti C, Salom B, Felder ER. Bioorg. Med. Chem. 21 7364-7380 (2013)
  44. Structure-based design of low-nanomolar PIM kinase inhibitors. Ishchenko A, Zhang L, Le Brazidec JY, Fan J, Chong JH, Hingway A, Raditsis A, Singh L, Elenbaas B, Hong VS, Marcotte D, Silvian L, Enyedy I, Chao J. Bioorg. Med. Chem. Lett. 25 474-480 (2015)
  45. Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway. Gao L, Yao R, Liu Y, Wang Z, Huang Z, Du B, Zhang D, Wu L, Xiao L, Zhang Y. Mol. Cell. Biochem. 429 167-177 (2017)
  46. LPS-stimulating astrocyte-conditioned medium causes neuronal apoptosis via increasing CDK11(p58) expression in PC12 cells through downregulating AKT pathway. Liu X, Cheng C, Shao B, Wu X, Ji Y, Lu X, Shen A. Cell. Mol. Neurobiol. 33 779-787 (2013)
  47. Large-scale computational drug repositioning to find treatments for rare diseases. Govindaraj RG, Naderi M, Singha M, Lemoine J, Brylinski M. NPJ Syst Biol Appl 4 13 (2018)
  48. 6-Hydroxybenzothiophene ketones: potent inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) owing to favorable molecule geometry and conformational preorganization. Miralinaghi P, Schmitt C, Hartmann RW, Frotscher M, Engel M. ChemMedChem 9 2294-2308 (2014)
  49. Computational modelling of LY303511 and TRAIL-induced apoptosis suggests dynamic regulation of cFLIP. Shi Y, Mellier G, Huang S, White J, Pervaiz S, Tucker-Kellogg L. Bioinformatics 29 347-354 (2013)
  50. Crystal structure of pim1 kinase in complex with a pyrido[4,3-d]pyrimidine derivative suggests a unique binding mode. Lee SJ, Han BG, Cho JW, Choi JS, Lee J, Song HJ, Koh JS, Lee BI. PLoS ONE 8 e70358 (2013)
  51. Pim Kinase Inhibitors Evaluated with a Single-Molecule Engineered Nanopore Sensor. Harrington L, Alexander LT, Knapp S, Bayley H. Angew. Chem. Int. Ed. Engl. 54 8154-8159 (2015)
  52. Sohlh2 inhibits the apoptosis of mouse primordial follicle oocytes via C-kit/PI3K/Akt/Foxo3a signalling pathway. Zhang X, Zhang H, Gao Q, Ji S, Bing L, Hao J. Reprod. Biomed. Online 30 514-521 (2015)
  53. A combination strategy to inhibit Pim-1: synergism between noncompetitive and ATP-competitive inhibitors. Mori M, Tintori C, Christopher RS, Radi M, Schenone S, Musumeci F, Brullo C, Sanità P, Delle Monache S, Angelucci A, Kissova M, Crespan E, Maga G, Botta M. ChemMedChem 8 484-496 (2013)
  54. Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach. Shao M, Yuan Y, Yu K, Lei K, Zhu G, Chen L, Xiang M. Mol. Divers. 18 335-344 (2014)
  55. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors - Part I. Barberis C, Moorcroft N, Arendt C, Levit M, Moreno-Mazza S, Batchelor J, Mechin I, Majid T. Bioorg. Med. Chem. Lett. 27 4730-4734 (2017)
  56. Non-ATP-Mimetic Organometallic Protein Kinase Inhibitor. Wähler K, Kräling K, Steuber H, Meggers E. ChemistryOpen 2 180-185 (2013)
  57. Reactive oxygen species (ROS) and sensitization to TRAIL-induced apoptosis, in Bayesian network modelling of HeLa cell response to LY303511. Tucker-Kellogg L, Shi Y, White JK, Pervaiz S. Biochem. Pharmacol. 84 1307-1317 (2012)
  58. Targeting Pim Kinases and DAPK3 to Control Hypertension. Carlson DA, Singer MR, Sutherland C, Redondo C, Alexander LT, Hughes PF, Knapp S, Gurley SB, Sparks MA, MacDonald JA, Haystead TAJ. Cell Chem Biol 25 1195-1207.e32 (2018)
  59. Design and Synthesis of Potent and Selective PIM Kinase Inhibitors by Targeting Unique Structure of ATP-Binding Pocket. Nakano H, Hasegawa T, Kojima H, Okabe T, Nagano T. ACS Med Chem Lett 8 504-509 (2017)
  60. Identification of quinones as novel PIM1 kinase inhibitors. Schroeder RL, Goyal N, Bratton M, Townley I, Pham NA, Tram P, Stone T, Geathers J, Nguyen K, Sridhar J. Bioorg. Med. Chem. Lett. 26 3187-3191 (2016)
  61. In vitro evaluation of dihydropyridine-3-carbonitriles as potential cytotoxic agents through PIM-1 protein kinase inhibition. Abnous K, Manavi H, Mehri S, Alibolandi M, Kamali H, Ghandadi M, Hadizadeh F. Res Pharm Sci 12 196-203 (2017)
  62. A review on PIM kinases in tumors. Arrouchi H, Lakhlili W, Ibrahimi A. Bioinformation 15 40-45 (2019)
  63. AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Yadav AK, Kumar V, Bailey DB, Jang BC. Int J Mol Sci 20 (2019)
  64. Airborne Particulate Matter (PM10) Inhibits Apoptosis through PI3K/AKT/FoxO3a Pathway in Lung Epithelial Cells: The Role of a Second Oxidant Stimulus. García-Cuellar CM, Chirino YI, Morales-Bárcenas R, Soto-Reyes E, Quintana-Belmares R, Santibáñez-Andrade M, Sánchez-Pérez Y. Int J Mol Sci 21 (2020)
  65. Design, synthesis and cytotoxic evaluation of novel bis-thiazole derivatives as preferential Pim1 kinase inhibitors with in vivo and in silico study. Al-Sanea MM, Nasr TM, Bondock S, Gawish AY, Mohamed NM. J Enzyme Inhib Med Chem 38 2166936 (2023)
  66. Development and Application of a High-Throughput Fluorescence Polarization Assay to Target Pim Kinases. Lee S, Hong VS. Assay Drug Dev Technol 14 50-57 (2016)
  67. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors - Lead series identification - Part II. Barberis C, Moorcroft N, Pribish J, Tserlin E, Gross A, Czekaj M, Barrague M, Erdman P, Majid T, Batchelor J, Levit M, Hebert A, Shen L, Moreno-Mazza S, Wang A. Bioorg. Med. Chem. Lett. 27 4735-4740 (2017)
  68. Macrocyclization as a Source of Desired Polypharmacology. Discovery of Triple PI3K/mTOR/PIM Inhibitors. Martínez-González S, Alvarez RM, Martín JI, García AB, Riesco-Fagundo C, Varela C, Rodríguez Hergueta A, González Cantalapiedra E, Albarrán MI, Gómez-Casero E, Cebriá A, Aguirre E, Ajenjo N, Cebrián D, Di Geronimo B, Cunningham D, O'Neill M, Dave HPG, Blanco-Aparicio C, Pastor J. ACS Med Chem Lett 12 1794-1801 (2021)
  69. PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity. Preite S, Huang B, Cannons JL, McGavern DB, Schwartzberg PL. Front Immunol 9 3079 (2018)
  70. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells. Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S. Int J Mol Sci 22 11126 (2021)
  71. Structural analysis of PIM1 kinase complexes with ATP-competitive inhibitors. Bogusz J, Zrubek K, Rembacz KP, Grudnik P, Golik P, Romanowska M, Wladyka B, Dubin G. Sci Rep 7 13399 (2017)
  72. Structure-Based Virtual Screening and De Novo Design of PIM1 Inhibitors with Anticancer Activity from Natural Products. Park H, Jeon J, Kim K, Choi S, Hong S. Pharmaceuticals (Basel) 14 275 (2021)
  73. Targeting Echinococcus multilocularis PIM kinase for improving anti-parasitic chemotherapy. Koike A, Becker F, Sennhenn P, Kim J, Zhang J, Hannus S, Brehm K. PLoS Negl Trop Dis 16 e0010483 (2022)