1ygs Citations

A structural basis for mutational inactivation of the tumour suppressor Smad4.

Nature 388 87-93 (1997)
Cited: 261 times
EuropePMC logo PMID: 9214508

Abstract

The Smad4/DPC4 tumour suppressor is inactivated in nearly half of pancreatic carcinomas and to a lesser extent in a variety of other cancers. Smad4/DPC4, and the related tumour suppressor Smad2, belong to the SMAD family of proteins that mediate signalling by the TGF-beta/activin/BMP-2/4 cytokine superfamily from receptor Ser/Thr protein kinases at the cell surface to the nucleus. SMAD proteins, which are phosphorylated by the activated receptor, propagate the signal, in part, through homo- and hetero-oligomeric interactions. Smad4/DPC4 plays a central role as it is the shared hetero-oligomerization partner of the other SMADs. The conserved carboxy-terminal domains of SMADs are sufficient for inducing most of the ligand-specific effects, and are the primary targets of tumorigenic inactivation. We now describe the crystal structure of the C-terminal domain (CTD) of the Smad4/DPC4 tumour suppressor, determined at 2.5 A resolution. The structure reveals that the Smad4/DPC4 CTD forms a crystallographic trimer through a conserved protein-protein interface, to which the majority of the tumour-derived missense mutations map. These mutations disrupt homo-oligomerization in vitro and in vivo, indicating that the trimeric assembly of the Smad4/DPC4 CTD is critical for signalling and is disrupted by tumorigenic mutations.

Articles - 1ygs mentioned but not cited (8)

  1. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, Séraphin B. Nucleic Acids Res 37 129-143 (2009)
  2. NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Lee GI, Ding Z, Walker JC, Van Doren SR. Proc Natl Acad Sci U S A 100 11261-11266 (2003)
  3. Human germline and pan-cancer variomes and their distinct functional profiles. Pan Y, Karagiannis K, Zhang H, Dingerdissen H, Shamsaddini A, Wan Q, Simonyan V, Mazumder R. Nucleic Acids Res 42 11570-11588 (2014)
  4. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  5. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Saleem A, Afzal M, Naveed M, Makhdoom SI, Mazhar M, Aziz T, Khan AA, Kamal Z, Shahzad M, Alharbi M, Alshammari A. Molecules 27 8512 (2022)
  6. Inhibition of transforming growth factor-beta by Tranilast reduces tumor growth and ameliorates fibrosis in colorectal cancer. Hashemzehi M, Yavari N, Rahmani F, Asgharzadeh F, Soleimani A, Shakour N, Avan A, Hadizadeh F, Fakhraie M, Marjaneh RM, Ferns GA, Reisi P, Ryzhikov M, Khazaei M, Hassanian SM. EXCLI J 20 601-613 (2021)
  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  8. Conformational landscape of multidomain SMAD proteins. Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Comput Struct Biotechnol J 19 5210-5224 (2021)


Reviews citing this publication (85)

  1. TGF-beta signal transduction. Massagué J. Annu Rev Biochem 67 753-791 (1998)
  2. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Heldin CH, Miyazono K, ten Dijke P. Nature 390 465-471 (1997)
  3. TGFbeta signaling in growth control, cancer, and heritable disorders. Massagué J, Blain SW, Lo RS. Cell 103 295-309 (2000)
  4. Transcriptional control by the TGF-beta/Smad signaling system. Massagué J, Wotton D. EMBO J 19 1745-1754 (2000)
  5. Specificity and versatility in tgf-beta signaling through Smads. Feng XH, Derynck R. Annu Rev Cell Dev Biol 21 659-693 (2005)
  6. How cells read TGF-beta signals. Massagué J. Nat Rev Mol Cell Biol 1 169-178 (2000)
  7. Bone morphogenetic protein receptors and signal transduction. Miyazono K, Kamiya Y, Morikawa M. J Biochem 147 35-51 (2010)
  8. Specificity, diversity, and regulation in TGF-beta superfamily signaling. Piek E, Heldin CH, Ten Dijke P. FASEB J 13 2105-2124 (1999)
  9. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. Verrecchia F, Mauviel A. J Invest Dermatol 118 211-215 (2002)
  10. Contextual determinants of TGFβ action in development, immunity and cancer. David CJ, Massagué J. Nat Rev Mol Cell Biol 19 419-435 (2018)
  11. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Pardali K, Moustakas A. Biochim Biophys Acta 1775 21-62 (2007)
  12. Smads as transcriptional co-modulators. Attisano L, Wrana JL. Curr Opin Cell Biol 12 235-243 (2000)
  13. Signal transduction by bone morphogenetic proteins. Kawabata M, Imamura T, Miyazono K. Cytokine Growth Factor Rev 9 49-61 (1998)
  14. Transforming growth factor-beta and fibrosis. Verrecchia F, Mauviel A. World J Gastroenterol 13 3056-3062 (2007)
  15. Regulation of cell proliferation by Smad proteins. Ten Dijke P, Goumans MJ, Itoh F, Itoh S. J Cell Physiol 191 1-16 (2002)
  16. SMADs: mediators and regulators of TGF-beta signaling. Kretzschmar M, Massagué J. Curr Opin Genet Dev 8 103-111 (1998)
  17. The role of TGF-β/SMAD4 signaling in cancer. Zhao M, Mishra L, Deng CX. Int J Biol Sci 14 111-123 (2018)
  18. How the Smads regulate transcription. Ross S, Hill CS. Int J Biochem Cell Biol 40 383-408 (2008)
  19. Transforming growth factor-beta and Smad signalling in kidney diseases. Wang W, Koka V, Lan HY. Nephrology (Carlton) 10 48-56 (2005)
  20. Pathogenesis of fibrosis: role of TGF-beta and CTGF. Ihn H. Curr Opin Rheumatol 14 681-685 (2002)
  21. Regulation of TGF-β Family Signaling by Inhibitory Smads. Miyazawa K, Miyazono K. Cold Spring Harb Perspect Biol 9 a022095 (2017)
  22. TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Raftery LA, Sutherland DJ. Dev Biol 210 251-268 (1999)
  23. TGF-β Signaling. Tzavlaki K, Moustakas A. Biomolecules 10 E487 (2020)
  24. Structural determinants of Smad function in TGF-β signaling. Macias MJ, Martin-Malpartida P, Massagué J. Trends Biochem Sci 40 296-308 (2015)
  25. From developmental disorder to heritable cancer: it's all in the BMP/TGF-beta family. Waite KA, Eng C. Nat Rev Genet 4 763-773 (2003)
  26. Dimerization as a regulatory mechanism in signal transduction. Klemm JD, Schreiber SL, Crabtree GR. Annu Rev Immunol 16 569-592 (1998)
  27. Regulation of Smad signalling by protein associations and signalling crosstalk. Zhang Y, Derynck R. Trends Cell Biol 9 274-279 (1999)
  28. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Welt C, Sidis Y, Keutmann H, Schneyer A. Exp Biol Med (Maywood) 227 724-752 (2002)
  29. The Smad pathway. Wrana JL, Attisano L. Cytokine Growth Factor Rev 11 5-13 (2000)
  30. Role of Smad4 (DPC4) inactivation in human cancer. Miyaki M, Kuroki T. Biochem Biophys Res Commun 306 799-804 (2003)
  31. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Miyazono K. Bone 25 91-93 (1999)
  32. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Nguyen HT, Duong HQ. Oncol Lett 16 9-18 (2018)
  33. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Verrecchia F, Mauviel A. Cell Signal 16 873-880 (2004)
  34. TGF-beta and the Smad signal transduction pathway. Mehra A, Wrana JL. Biochem Cell Biol 80 605-622 (2002)
  35. Mads and Smads in TGF beta signalling. Attisano L, Wrana JL. Curr Opin Cell Biol 10 188-194 (1998)
  36. Basics of TGF-beta and pancreatic cancer. Truty MJ, Urrutia R. Pancreatology 7 423-435 (2007)
  37. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, Cheng H, Jin K, Ni Q, Yu X, Liu C. J Hematol Oncol 13 130 (2020)
  38. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Peng D, Fu M, Wang M, Wei Y, Wei X. Mol Cancer 21 104 (2022)
  39. Integration of the TGF-beta pathway into the cellular signalling network. Lutz M, Knaus P. Cell Signal 14 977-988 (2002)
  40. Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Int J Mol Sci 22 E130 (2020)
  41. Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. Ihn H. J Dermatol Sci 49 103-113 (2008)
  42. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Teixeira AF, Ten Dijke P, Zhu HJ. Front Cell Dev Biol 8 605 (2020)
  43. TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Hata A, Shi Y, Massagué J. Mol Med Today 4 257-262 (1998)
  44. The Smads. Attisano L, Lee-Hoeflich ST. Genome Biol 2 REVIEWS3010 (2001)
  45. Structural insights on Smad function in TGFbeta signaling. Shi Y. Bioessays 23 223-232 (2001)
  46. Transforming growth factor-beta signal transduction and progressive renal disease. Cheng J, Grande JP. Exp Biol Med (Maywood) 227 943-956 (2002)
  47. TGF-beta signaling, Smads, and tumor suppressors. Padgett RW, Das P, Krishna S. Bioessays 20 382-390 (1998)
  48. The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. Attisano L, Silvestri C, Izzi L, Labbé E. Mol Cell Endocrinol 180 3-11 (2001)
  49. SMAD4 and its role in pancreatic cancer. Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, Huang K, Qiu Z. Tumour Biol 36 111-119 (2015)
  50. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. Jin G, Hong W, Guo Y, Bai Y, Chen B. J Cancer 11 1505-1515 (2020)
  51. Genetic conditions associated with intestinal juvenile polyps. Merg A, Howe JR. Am J Med Genet C Semin Med Genet 129C 44-55 (2004)
  52. Molecular genetic basis of pancreatic adenocarcinoma. Hilgers W, Kern SE. Genes Chromosomes Cancer 26 1-12 (1999)
  53. Smads as intracellular mediators of airway inflammation. Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J. Exp Lung Res 30 223-250 (2004)
  54. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Chaikuad A, Bullock AN. Cold Spring Harb Perspect Biol 8 a022111 (2016)
  55. TGF-beta-dependent cell growth arrest and apoptosis. Lee KY, Bae SC. J Biochem Mol Biol 35 47-53 (2002)
  56. Crossing Smads. Wrana JL. Sci STKE 2000 re1 (2000)
  57. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? Abdullahi W, Davis TP, Ronaldson PT. AAPS J 19 931-939 (2017)
  58. Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ. J Diabetes 2 233-242 (2010)
  59. Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-beta family signals. Christian JL, Nakayama T. Bioessays 21 382-390 (1999)
  60. Regulation of activin's access to the cell: why is mother nature such a control freak? Phillips DJ. Bioessays 22 689-696 (2000)
  61. The role of TGF-beta in epithelial malignancy and its relevance to the pathogenesis of oral cancer (part II). Prime SS, Davies M, Pring M, Paterson IC. Crit Rev Oral Biol Med 15 337-347 (2004)
  62. The transforming growth factor-beta signaling pathway in tumorigenesis. Wieser R. Curr Opin Oncol 13 70-77 (2001)
  63. Risk factors and therapeutic targets in pancreatic cancer. Wörmann SM, Algül H. Front Oncol 3 282 (2013)
  64. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Cancer Commun (Lond) 43 3-41 (2023)
  65. Smad4 (DPC4)--a potent tumour suppressor? Duff EK, Clarke AR. Br J Cancer 78 1615-1619 (1998)
  66. The Smads. Hill CS. Int J Biochem Cell Biol 31 1249-1254 (1999)
  67. TGF-β in developmental and fibrogenic EMTs. Lee JH, Massagué J. Semin Cancer Biol 86 136-145 (2022)
  68. Role of TGFbeta signaling in skin carcinogenesis. Wang XJ. Microsc Res Tech 52 420-429 (2001)
  69. The smad proteins and TGFbeta signalling: uncovering a pathway critical in cancer. Rooke HM, Crosier KE. Pathology 33 73-84 (2001)
  70. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  71. Alternative splicing of SMADs in differentiation and tissue homeostasis. Tao S, Sampath K. Dev Growth Differ 52 335-342 (2010)
  72. The TGF-beta--Smad network: introducing bioinformatic tools. Kloos DU, Choi C, Wingender E. Trends Genet 18 96-103 (2002)
  73. The role of TGFbeta in human cancers. Wong SF, Lai LC. Pathology 33 85-92 (2001)
  74. The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Su E, Han X, Jiang G. Tumori 96 659-666 (2010)
  75. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system. Luo JY, Zhang Y, Wang L, Huang Y. J Physiol 593 2995-3011 (2015)
  76. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  77. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. Zakrzewski PK. J Clin Med 10 3900 (2021)
  78. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Islam MS, Segars JH, Castellucci M, Ciarmela P. Pharmacol Rep 69 57-70 (2017)
  79. The molecular basis for prevention of colorectal cancer. Krause WF, DuBois RN. Clin Colorectal Cancer 1 47-54 (2001)
  80. TGF-β: The missing link in obesity-associated airway diseases? Woo J, Koziol-White C, Panettieri R, Jude J. Curr Res Pharmacol Drug Discov 2 100016 (2021)
  81. The Role of SMAD4 Inactivation in Epithelial-Mesenchymal Plasticity of Pancreatic Ductal Adenocarcinoma: The Missing Link? Racu ML, Lebrun L, Schiavo AA, Van Campenhout C, De Clercq S, Absil L, Minguijon Perez E, Maris C, Decaestecker C, Salmon I, D'Haene N. Cancers (Basel) 14 973 (2022)
  82. Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. Dai CJ, Cao YT, Huang F, Wang YG. World J Stem Cells 14 41-53 (2022)
  83. Copy Number Variations as Determinants of Colorectal Tumor Progression in Liquid Biopsies. Debattista J, Grech L, Scerri C, Grech G. Int J Mol Sci 24 1738 (2023)
  84. Proactive and reactive roles of TGF-β in cancer. Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Semin Cancer Biol 95 120-139 (2023)
  85. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Brown MA, Ried T. Cancers (Basel) 14 784 (2022)

Articles citing this publication (168)

  1. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. EMBO J 17 3091-3100 (1998)
  2. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. Nature 389 631-635 (1997)
  3. Human Smad3 and Smad4 are sequence-specific transcription activators. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE. Mol Cell 1 611-617 (1998)
  4. A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Kretzschmar M, Doody J, Timokhina I, Massagué J. Genes Dev 13 804-816 (1999)
  5. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Kretzschmar M, Doody J, Massagué J. Nature 389 618-622 (1997)
  6. Sequential cancer mutations in cultured human intestinal stem cells. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJ, Clevers H. Nature 521 43-47 (2015)
  7. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Genes Dev 12 186-197 (1998)
  8. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Shi Y, Wang YF, Jayaraman L, Yang H, Massagué J, Pavletich NP. Cell 94 585-594 (1998)
  9. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA. Lancet 363 852-859 (2004)
  10. A Smad transcriptional corepressor. Wotton D, Lo RS, Lee S, Massagué J. Cell 97 29-39 (1999)
  11. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW. Genes Dev 12 107-119 (1998)
  12. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Chen CR, Kang Y, Siegel PM, Massagué J. Cell 110 19-32 (2002)
  13. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Feng XH, Zhang Y, Wu RY, Derynck R. Genes Dev 12 2153-2163 (1998)
  14. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Liu F, Pouponnot C, Massagué J. Genes Dev 11 3157-3167 (1997)
  15. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. Genes Dev 13 2196-2206 (1999)
  16. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T, Utsunomiya J, Kuroki T, Mori T. Oncogene 18 3098-3103 (1999)
  17. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. Feng XH, Lin X, Derynck R. EMBO J 19 5178-5193 (2000)
  18. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Yang X, Li C, Xu X, Deng C. Proc Natl Acad Sci U S A 95 3667-3672 (1998)
  19. Determinants of specificity in TGF-beta signal transduction. Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massagué J. Genes Dev 12 2144-2152 (1998)
  20. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Hata A, Lo RS, Wotton D, Lagna G, Massagué J. Nature 388 82-87 (1997)
  21. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Proc Natl Acad Sci U S A 95 9378-9383 (1998)
  22. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y. Mol Cell 8 1277-1289 (2001)
  23. Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K. EMBO J 17 4056-4065 (1998)
  24. Crystal structure of the BTB domain from PLZF. Ahmad KF, Engel CK, Privé GG. Proc Natl Acad Sci U S A 95 12123-12128 (1998)
  25. Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF. Mol Cell Biol 17 7019-7028 (1997)
  26. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A, Mitros FA, Vaccaro CA, Petersen GM, Giardiello FM, Tinley ST, Aaltonen LA, Lynch HT. J Med Genet 41 484-491 (2004)
  27. Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Xu X, Yin Z, Hudson JB, Ferguson EL, Frasch M. Genes Dev 12 2354-2370 (1998)
  28. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. Lo RS, Chen YG, Shi Y, Pavletich NP, Massagué J. EMBO J 17 996-1005 (1998)
  29. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Kim RY, Robertson EJ, Solloway MJ. Dev Biol 235 449-466 (2001)
  30. Letter Specific versus non-specific contacts in protein crystals. Janin J. Nat Struct Biol 4 973-974 (1997)
  31. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y. Cell 111 357-367 (2002)
  32. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F, Raffel C. Genes Chromosomes Cancer 27 44-51 (2000)
  33. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Woodford-Richens KL, Rowan AJ, Gorman P, Halford S, Bicknell DC, Wasan HS, Roylance RR, Bodmer WF, Tomlinson IP. Proc Natl Acad Sci U S A 98 9719-9723 (2001)
  34. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Xu J, Attisano L. Proc Natl Acad Sci U S A 97 4820-4825 (2000)
  35. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K. Mol Cell 15 813-823 (2004)
  36. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A. Mol Biol Cell 12 1079-1091 (2001)
  37. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Ladd AN, Yatskievych TA, Antin PB. Dev Biol 204 407-419 (1998)
  38. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Dennler S, Huet S, Gauthier JM. Oncogene 18 1643-1648 (1999)
  39. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Sayed MG, Ahmed AF, Ringold JR, Anderson ME, Bair JL, Mitros FA, Lynch HT, Tinley ST, Petersen GM, Giardiello FM, Vogelstein B, Howe JR. Ann Surg Oncol 9 901-906 (2002)
  40. X-ray crystal structure of IRF-3 and its functional implications. Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F. Nat Struct Biol 10 922-927 (2003)
  41. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Korkut A, Zaidi S, Kanchi RS, Rao S, Gough NR, Schultz A, Li X, Lorenzi PL, Berger AC, Robertson G, Kwong LN, Datto M, Roszik J, Ling S, Ravikumar V, Manyam G, Rao A, Shelley S, Liu Y, Ju Z, Hansel D, de Velasco G, Pennathur A, Andersen JB, O'Rourke CJ, Ohshiro K, Jogunoori W, Nguyen BN, Li S, Osmanbeyoglu HU, Ajani JA, Mani SA, Houseman A, Wiznerowicz M, Chen J, Gu S, Ma W, Zhang J, Tong P, Cherniack AD, Deng C, Resar L, Cancer Genome Atlas Research Network, Weinstein JN, Mishra L, Akbani R. Cell Syst 7 422-437.e7 (2018)
  42. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M. Oncogene 18 4879-4883 (1999)
  43. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Huang L, Serganov A, Patel DJ. Mol Cell 40 774-786 (2010)
  44. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. Watanabe M, Masuyama N, Fukuda M, Nishida E. EMBO Rep 1 176-182 (2000)
  45. A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. Kim RH, Wang D, Tsang M, Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB. Genes Dev 14 1605-1616 (2000)
  46. Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Salovaara R, Roth S, Loukola A, Launonen V, Sistonen P, Avizienyte E, Kristo P, Järvinen H, Souchelnytskyi S, Sarlomo-Rikala M, Aaltonen LA. Gut 51 56-59 (2002)
  47. Transforming growth factor beta -inducible independent binding of SMAD to the Smad7 promoter. Denissova NG, Pouponnot C, Long J, He D, Liu F. Proc Natl Acad Sci U S A 97 6397-6402 (2000)
  48. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Qin BY, Lam SS, Correia JJ, Lin K. Genes Dev 16 1950-1963 (2002)
  49. The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Podos SD, Hanson KK, Wang YC, Ferguson EL. Dev Cell 1 567-578 (2001)
  50. Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Shioda T, Lechleider RJ, Dunwoodie SL, Li H, Yahata T, de Caestecker MP, Fenner MH, Roberts AB, Isselbacher KJ. Proc Natl Acad Sci U S A 95 9785-9790 (1998)
  51. Interplay of signal mediators of decapentaplegic (Dpp): molecular characterization of mothers against dpp, Medea, and daughters against dpp. Inoue H, Imamura T, Ishidou Y, Takase M, Udagawa Y, Oka Y, Tsuneizumi K, Tabata T, Miyazono K, Kawabata M. Mol Biol Cell 9 2145-2156 (1998)
  52. Simple sequences are rare in the Protein Data Bank. Huntley MA, Golding GB. Proteins 48 134-140 (2002)
  53. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains. Miller ML, Reznik E, Gauthier NP, Aksoy BA, Korkut A, Gao J, Ciriello G, Schultz N, Sander C. Cell Syst 1 197-209 (2015)
  54. Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. Liao H, Byeon IJ, Tsai MD. J Mol Biol 294 1041-1049 (1999)
  55. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, Moustakas A. Mol Cell Biol 26 1318-1332 (2006)
  56. Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D. FASEB J 13 1315-1324 (1999)
  57. Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking the association of Smad proteins with Smad-binding element. Lee DK, Kim BC, Brady JN, Jeang KT, Kim SJ. J Biol Chem 277 33766-33775 (2002)
  58. Structural basis of Smad1 activation by receptor kinase phosphorylation. Qin BY, Chacko BM, Lam SS, de Caestecker MP, Correia JJ, Lin K. Mol Cell 8 1303-1312 (2001)
  59. Abrogation of Smad3 and Smad2 or of Smad4 gene expression positively regulates murine embryonic lung branching morphogenesis in culture. Zhao J, Lee M, Smith S, Warburton D. Dev Biol 194 182-195 (1998)
  60. Genetics of adenocarcinomas of the small intestine: frequent deletions at chromosome 18q and mutations of the SMAD4 gene. Bläker H, von Herbay A, Penzel R, Gross S, Otto HF. Oncogene 21 158-164 (2002)
  61. Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif. Randall RA, Germain S, Inman GJ, Bates PA, Hill CS. EMBO J 21 145-156 (2002)
  62. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis. Liu J, Cho SN, Akkanti B, Jin N, Mao J, Long W, Chen T, Zhang Y, Tang X, Wistub II, Creighton CJ, Kheradmand F, DeMayo FJ. Cell Rep 10 1599-1613 (2015)
  63. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Dai JL, Bansal RK, Kern SE. Proc Natl Acad Sci U S A 96 1427-1432 (1999)
  64. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. Mehrvarz Sarshekeh A, Advani S, Overman MJ, Manyam G, Kee BK, Fogelman DR, Dasari A, Raghav K, Vilar E, Manuel S, Shureiqi I, Wolff RA, Patel KP, Luthra R, Shaw K, Eng C, Maru DM, Routbort MJ, Meric-Bernstam F, Kopetz S. PLoS One 12 e0173345 (2017)
  65. SMAD-signaling in chronic obstructive pulmonary disease: transcriptional down-regulation of inhibitory SMAD 6 and 7 by cigarette smoke. Springer J, Scholz FR, Peiser C, Groneberg DA, Fischer A. Biol Chem 385 649-653 (2004)
  66. SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma. Hernanda PY, Chen K, Das AM, Sideras K, Wang W, Li J, Cao W, Bots SJ, Kodach LL, de Man RA, Ijzermans JN, Janssen HL, Stubbs AP, Sprengers D, Bruno MJ, Metselaar HJ, ten Hagen TL, Kwekkeboom J, Peppelenbosch MP, Pan Q. Oncogene 34 5055-5068 (2015)
  67. Transforming growth factor beta/Smad3 signaling regulates IRF-7 function and transcriptional activation of the beta interferon promoter. Qing J, Liu C, Choy L, Wu RY, Pagano JS, Derynck R. Mol Cell Biol 24 1411-1425 (2004)
  68. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. De Bosscher K, Hill CS, Nicolás FJ. Biochem J 379 209-216 (2004)
  69. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Maki K, Ogawa S, Chiba S, Mitani K, Hirai H. Oncogene 20 88-96 (2001)
  70. A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF-beta signals. Goto D, Yagi K, Inoue H, Iwamoto I, Kawabata M, Miyazono K, Kato M. FEBS Lett 430 201-204 (1998)
  71. An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl-N- nitrosourea-mutagenized mouse embryonic stem cells. Vivian JL, Chen Y, Yee D, Schneider E, Magnuson T. Proc Natl Acad Sci U S A 99 15542-15547 (2002)
  72. The prognostic role of TGF-β signaling pathway in breast cancer patients. de Kruijf EM, Dekker TJA, Hawinkels LJAC, Putter H, Smit VTHBM, Kroep JR, Kuppen PJK, van de Velde CJH, Ten Dijke P, Tollenaar RAEM, Mesker WE. Ann Oncol 24 384-390 (2013)
  73. The protooncogene Ski controls Schwann cell proliferation and myelination. Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U. Neuron 43 499-511 (2004)
  74. BMP9 and COX-2 form an important regulatory loop in BMP9-induced osteogenic differentiation of mesenchymal stem cells. Wang JH, Liu YZ, Yin LJ, Chen L, Huang J, Liu Y, Zhang RX, Zhou LY, Yang QJ, Luo JY, Zuo GW, Deng ZL, He BC. Bone 57 311-321 (2013)
  75. The zinc finger protein schnurri acts as a Smad partner in mediating the transcriptional response to decapentaplegic. Dai H, Hogan C, Gopalakrishnan B, Torres-Vazquez J, Nguyen M, Park S, Raftery LA, Warrior R, Arora K. Dev Biol 227 373-387 (2000)
  76. Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP). Wang L, Liu YT, Hao R, Chen L, Chang Z, Wang HR, Wang ZX, Wu JW. J Biol Chem 286 15883-15894 (2011)
  77. Gene expression signature of advanced pancreatic ductal adenocarcinoma using low density array on endoscopic ultrasound-guided fine needle aspiration samples. Bournet B, Pointreau A, Souque A, Oumouhou N, Muscari F, Lepage B, Senesse P, Barthet M, Lesavre N, Hammel P, Levy P, Ruszniewski P, Cordelier P, Buscail L. Pancreatology 12 27-34 (2012)
  78. SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells. Wan M, Huang J, Jhala NC, Tytler EM, Yang L, Vickers SM, Tang Y, Lu C, Wang N, Cao X. Am J Pathol 166 1379-1392 (2005)
  79. A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Lazzereschi D, Nardi F, Turco A, Ottini L, D'Amico C, Mariani-Costantini R, Gulino A, Coppa A. Oncogene 24 5344-5354 (2005)
  80. Cell fate specification in the Drosophila salivary gland: the integration of homeotic gene function with the DPP signaling cascade. Henderson KD, Isaac DD, Andrew DJ. Dev Biol 205 10-21 (1999)
  81. Comprehensive analysis of SMAD4 mutations and protein expression in juvenile polyposis: evidence for a distinct genetic pathway and polyp morphology in SMAD4 mutation carriers. Woodford-Richens KL, Rowan AJ, Poulsom R, Bevan S, Salovaara R, Aaltonen LA, Houlston RS, Wright NA, Tomlinson IP. Am J Pathol 159 1293-1300 (2001)
  82. Dpp-responsive silencers are bound by a trimeric Mad-Medea complex. Gao S, Steffen J, Laughon A. J Biol Chem 280 36158-36164 (2005)
  83. Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers. Yanagisawa K, Uchida K, Nagatake M, Masuda A, Sugiyama M, Saito T, Yamaki K, Takahashi T, Osada H. Oncogene 19 2305-2311 (2000)
  84. Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif. Randall RA, Howell M, Page CS, Daly A, Bates PA, Hill CS. Mol Cell Biol 24 1106-1121 (2004)
  85. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells. Zhu Q, Pearson-White S, Luo K. Mol Cell Biol 25 10731-10744 (2005)
  86. Activation of Smad1-mediated transcription by p300/CBP. Pearson KL, Hunter T, Janknecht R. Biochim Biophys Acta 1489 354-364 (1999)
  87. Conservation of a DPP/BMP signaling pathway in the nonbilateral cnidarian Acropora millepora. Samuel G, Miller D, Saint R. Evol Dev 3 241-250 (2001)
  88. Comment Signal transduction. Mad about SMADs. Wrana J, Pawson T. Nature 388 28-29 (1997)
  89. Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Jonson T, Gorunova L, Dawiskiba S, Andrén-Sandberg A, Stenman G, ten Dijke P, Johansson B, Höglund M. Genes Chromosomes Cancer 24 62-71 (1999)
  90. The role of COX-2 in mediating the effect of PTEN on BMP9 induced osteogenic differentiation in mouse embryonic fibroblasts. Huang J, Yuan SX, Wang DX, Wu QX, Wang X, Pi CJ, Zou X, Chen L, Ying LJ, Wu K, Yang JQ, Sun WJ, Deng ZL, He BC. Biomaterials 35 9649-9659 (2014)
  91. Crystal structure of a transcriptionally active Smad4 fragment. Qin B, Lam SS, Lin K. Structure 7 1493-1503 (1999)
  92. SMA-3 smad has specific and critical functions in DBL-1/SMA-6 TGFbeta-related signaling. Savage-Dunn C, Tokarz R, Wang H, Cohen S, Giannikas C, Padgett RW. Dev Biol 223 70-76 (2000)
  93. Smad4 cooperates with lymphoid enhancer-binding factor 1/T cell-specific factor to increase c-myc expression in the absence of TGF-beta signaling. Lim SK, Hoffmann FM. Proc Natl Acad Sci U S A 103 18580-18585 (2006)
  94. BMP signaling in telencephalic neural cell specification and maturation. Gámez B, Rodriguez-Carballo E, Ventura F. Front Cell Neurosci 7 87 (2013)
  95. Structural and functional impact of cancer-related missense somatic mutations. Shi Z, Moult J. J Mol Biol 413 495-512 (2011)
  96. Activation of Mitofusin2 by Smad2-RIN1 Complex during Mitochondrial Fusion. Kumar S, Pan CC, Shah N, Wheeler SE, Hoyt KR, Hempel N, Mythreye K, Lee NY. Mol Cell 62 520-531 (2016)
  97. Low-dose paclitaxel modulates tumour fibrosis in gastric cancer. Tsukada T, Fushida S, Harada S, Terai S, Yagi Y, Kinoshita J, Oyama K, Tajima H, Ninomiya I, Fujimura T, Ohta T. Int J Oncol 42 1167-1174 (2013)
  98. Loss of DPC4 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. Hua Z, Zhang YC, Hu XM, Jia ZG. World J Gastroenterol 9 2764-2767 (2003)
  99. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Jones JB, Kern SE. Nucleic Acids Res 28 2363-2368 (2000)
  100. Mechanism for mutational inactivation of the tumor suppressor Smad2. Prunier C, Ferrand N, Frottier B, Pessah M, Atfi A. Mol Cell Biol 21 3302-3313 (2001)
  101. Mh1 domain of Smad is a degraded homing endonuclease. Grishin NV. J Mol Biol 307 31-37 (2001)
  102. TGF-beta type II receptor in rat renal vascular development: localization to juxtaglomerular cells. Liu A, Ballermann BJ. Kidney Int 53 716-725 (1998)
  103. Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation. Yang L, Wang N, Tang Y, Cao X, Wan M. Hum Mutat 27 897-905 (2006)
  104. Epstein-Barr virus BARF1-induced NFκB/miR-146a/SMAD4 alterations in stomach cancer cells. Kim DH, Chang MS, Yoon CJ, Middeldorp JM, Martinez OM, Byeon SJ, Rha SY, Kim SH, Kim YS, Woo JH. Oncotarget 7 82213-82227 (2016)
  105. Identification of novel Smad binding proteins. Warner DR, Roberts EA, Greene RM, Pisano MM. Biochem Biophys Res Commun 312 1185-1190 (2003)
  106. L-Arginine and L-Citrulline Supplementation Have Different Programming Effect on Regulatory T-Cells Function of Infantile Rats. Lee YC, Su YT, Liu TY, Tsai CM, Chang CH, Yu HR. Front Immunol 9 2911 (2018)
  107. SMAD4 Somatic Mutations in Head and Neck Carcinoma Are Associated With Tumor Progression. Lin LH, Chang KW, Cheng HW, Liu CJ. Front Oncol 9 1379 (2019)
  108. Ras inhibition enhances autophagy, which partially protects cells from death. Schmukler E, Grinboim E, Schokoroy S, Amir A, Wolfson E, Kloog Y, Pinkas-Kramarski R. Oncotarget 4 145-155 (2013)
  109. Tumor suppressor gene insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) induces senescence-like growth arrest in colorectal cancer cells. Ma Y, Lu B, Ruan W, Wang H, Lin J, Hu H, Deng H, Huang Q, Lai M. Exp Mol Pathol 85 141-145 (2008)
  110. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction. Kuang C, Chen Y. Oncogene 23 1021-1029 (2004)
  111. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. D'Inzeo S, Nicolussi A, Donini CF, Zani M, Mancini P, Nardi F, Coppa A. Endocr Relat Cancer 19 39-55 (2012)
  112. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein. Prokova V, Mavridou S, Papakosta P, Kardassis D. Nucleic Acids Res 33 3708-3721 (2005)
  113. Expression and mutational analysis of the MADR2/Smad2 gene in human prostate cancer. Latil A, Pesche S, Valéri A, Fournier G, Cussenot O, Lidereau R. Prostate 40 225-231 (1999)
  114. Allelic imbalance in chromosome band 18q21 and SMAD4 mutations in ovarian cancers. Takakura S, Okamoto A, Saito M, Yasuhara T, Shinozaki H, Isonishi S, Yoshimura T, Ohtake Y, Ochiai K, Tanaka T. Genes Chromosomes Cancer 24 264-271 (1999)
  115. Identification of a novel Drosophila SMAD on the X chromosome. Henderson KD, Andrew DJ. Biochem Biophys Res Commun 252 195-201 (1998)
  116. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif. Makkar P, Metpally RP, Sangadala S, Reddy BV. J Mol Graph Model 27 803-812 (2009)
  117. DPC-4 (Smad-4) and K-ras gene mutations in biliary tract epithelium in children with anomalous pancreaticobiliary ductal union. Shimotake T, Aoi S, Tomiyama H, Iwai N. J Pediatr Surg 38 694-697 (2003)
  118. Localization of activin and inhibin subunits, receptors and SMADs in the mouse mammary gland. Jeruss JS, Santiago JY, Woodruff TK. Mol Cell Endocrinol 203 185-196 (2003)
  119. Relative expression of genes encoding SMAD signal transduction factors in human granulosa cells is correlated with oocyte quality. Kuo FT, Fan K, Ambartsumyan G, Menon P, Ketefian A, Bentsi-Barnes IK, Pisarska MD. J Assist Reprod Genet 28 931-938 (2011)
  120. The steroid receptor co-activator-1 (SRC-1) potentiates TGF-beta/Smad signaling: role of p300/CBP. Dennler S, Pendaries V, Tacheau C, Costas MA, Mauviel A, Verrecchia F. Oncogene 24 1936-1945 (2005)
  121. A follicular regulatory Innate Lymphoid Cell population impairs interactions between germinal center Tfh and B cells. O'Connor MH, Muir R, Chakhtoura M, Fang M, Moysi E, Moir S, Carey AJ, Terk A, Nichols CN, Metcalf T, Petrovas C, Cameron MJ, Tardif V, Haddad EK. Commun Biol 4 563 (2021)
  122. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Miyazono KI, Moriwaki S, Ito T, Kurisaki A, Asashima M, Tanokura M, Tanokura M. Sci Signal 11 eaao7227 (2018)
  123. Identification and characterization of beta-lactamase inhibitor protein-II (BLIP-II) interactions with beta-lactamases using phage display. Brown NG, Palzkill T. Protein Eng Des Sel 23 469-478 (2010)
  124. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. Gori I, George R, Purkiss AG, Strohbuecker S, Randall RA, Ogrodowicz R, Carmignac V, Faivre L, Joshi D, Kjær S, Hill CS. Elife 10 e63545 (2021)
  125. Letter Novel de novo mutation of MADH4/SMAD4 in a patient with juvenile polyposis. Burger B, Uhlhaas S, Mangold E, Propping P, Friedl W, Jenne D, Dockter G, Back W. Am J Med Genet 110 289-291 (2002)
  126. Smad1/5 and Smad4 expression are important for osteoclast differentiation. Tasca A, Stemig M, Broege A, Huang B, Davydova J, Zwijsen A, Umans L, Jensen ED, Gopalakrishnan R, Mansky KC. J Cell Biochem 116 1350-1360 (2015)
  127. Structural and functional analysis of SMAD4 gene promoter in malignant pancreatic and colorectal tissues: detection of two novel polymorphic nucleotide repeats. Nikolic A, Kojic S, Knezevic S, Krivokapic Z, Ristanovic M, Radojkovic D. Cancer Epidemiol 35 265-271 (2011)
  128. 5-HT2B-mediated serotonin activation in enterocytes suppresses colitis-associated cancer initiation and promotes cancer progression. Mao L, Xin F, Ren J, Xu S, Huang H, Zha X, Wen X, Gu G, Yang G, Cheng Y, Zhang C, Wang W, Liu X. Theranostics 12 3928-3945 (2022)
  129. Inhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFβ/Smads signaling pathway. Xiong G, Huang Z, Jiang H, Pan Z, Xie J, Wang S. Iran J Basic Med Sci 19 787-793 (2016)
  130. Overexpression of Smad proteins, especially Smad7, in oral epithelial dysplasias. Chen YK, Huang AH, Cheng PH, Yang SH, Lin LM. Clin Oral Investig 17 921-932 (2013)
  131. SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes. Ma X, Das NK, Castillo C, Gourani A, Perekatt AO, Verzi MP, Shah YM. J Biol Chem 294 3974-3986 (2019)
  132. Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-β signaling pathways. Li L, Ji Y, Fan J, Li F, Li Y, Wu M, Cheng H, Xu C. Naunyn Schmiedebergs Arch Pharmacol 392 593-603 (2019)
  133. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. Schiro MM, Stauber SE, Peterson TL, Krueger C, Darnell SJ, Satyshur KA, Drinkwater NR, Newton MA, Hoffmann FM. PLoS One 6 e25021 (2011)
  134. A molecular basis for Smad specificity. Lagna G, Hemmati-Brivanlou A. Dev Dyn 214 269-277 (1999)
  135. CREBZF, a novel Smad8-binding protein. Lee JH, Lee GT, Kwon SJ, Jeong J, Ha YS, Kim WJ, Kim IY. Mol Cell Biochem 368 147-153 (2012)
  136. A novel mouse Smad4 mutation reduces protein stability and wild-type protein levels. Chen Y, Yee D, Magnuson T. Mamm Genome 17 211-219 (2006)
  137. Aberrant expression in multiple components of the transforming growth factor-β1-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene-induced hamster buccal-pouch squamous-cell carcinogenesis. Chen YK, Yang SH, Huang AH, Hsue SS, Lin LM. Oral Oncol 47 262-267 (2011)
  138. Halofuginone inhibits radiotherapy-induced epithelial-mesenchymal transition in lung cancer. Chen Y, Liu W, Wang P, Hou H, Liu N, Gong L, Wang Y, Ji K, Zhao L, Wang P. Oncotarget 7 71341-71352 (2016)
  139. Loss of SMAD4 function in small intestinal adenocarcinomas: comparison of genetic and immunohistochemical findings. Bläker H, Aulmann S, Helmchen B, Otto HF, Rieker RJ, Penzel R. Pathol Res Pract 200 1-7 (2004)
  140. Signal transduction by transforming growth factor-β: A cooperative paradigm with extensive negative regulation. Engel ME, Datta PK, Moses HL. J Cell Biochem 72 Suppl 30-31 111-122 (1998)
  141. Genetic alterations in Japanese extrahepatic biliary tract cancer. Noguchi R, Yamaguchi K, Ikenoue T, Terakado Y, Ohta Y, Yamashita N, Kainuma O, Yokoi S, Maru Y, Nagase H, Furukawa Y. Oncol Lett 14 877-884 (2017)
  142. Human SMAD4 is phosphorylated at Thr9 and Ser138 by interacting with NLK. Shi Y, Ye K, Wu H, Sun Y, Shi H, Huo K. Mol Cell Biochem 333 293-298 (2010)
  143. Region between alpha-helices 3 and 4 of the mad homology 2 domain of Smad4: functional roles in oligomer formation and transcriptional activation. Tada K, Inoue H, Ebisawa T, Makuuchi M, Kawabata M, Imamura T, Miyazono K. Genes Cells 4 731-741 (1999)
  144. SMAD4 Mutation in Small Cell Transformation of Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma. D'Haene N, Le Mercier M, Salmon I, Mekinda Z, Remmelink M, Berghmans T. Oncologist 24 9-13 (2019)
  145. Transforming growth factor-beta signaling is differentially inhibited by Smad2D450E and Smad3D407E. Kondo M, Suzuki H, Takehara K, Miyazono K, Kato M. Cancer Sci 95 12-17 (2004)
  146. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census. Malhotra S, Alsulami AF, Heiyun Y, Ochoa BM, Jubb H, Forbes S, Blundell TL. PLoS One 14 e0219935 (2019)
  147. Role of TGF-beta in EGF-induced transformation of NRK cells is sustaining high-level EGF-signaling. Kizaka-Kondoh S, Akiyama N, Okayama H. FEBS Lett 466 160-164 (2000)
  148. Smad3/4 Binding to Promoter II of P450arom So As to Regulate Aromatase Expression in Endometriosis. Qu J, Zhu Y, Wu X, Zheng J, Hou Z, Cui Y, Mao Y, Liu J. Reprod Sci 24 1187-1194 (2017)
  149. A reinforced merging methodology for mapping unique peptide motifs in members of protein families. Chang HT, Pai TW, Fan TC, Su BH, Wu PC, Tang CY, Chang CT, Liu SH, Chang MD. BMC Bioinformatics 7 38 (2006)
  150. Celastrol improves self-renewal and differentiation of human tendon-derived stem cells by suppressing Smad7 through hypoxia. Wu T, Liu S, Wen G, Xu J, Yu Y, Chai Y. Stem Cell Res Ther 8 274 (2017)
  151. Influential Mutations in the SMAD4 Trimer Complex Can Be Detected from Disruptions of Electrostatic Complementarity. Nolan BE, Levenson E, Chen BY. J Comput Biol 24 68-78 (2017)
  152. Recombinant expression and purification of smad proteins. Funaba M, Mathews LS. Protein Expr Purif 20 507-513 (2000)
  153. Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling. Imoto S, Sugiyama K, Sekine Y, Matsuda T. FEBS Lett 579 2853-2862 (2005)
  154. Smad4 suppresses the progression of renal cell carcinoma via the activation of forkhead box protein H1. Liu Y, Xu Y, Li X, Chen Z. Mol Med Rep 11 2717-2722 (2015)
  155. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Front Genet 13 990849 (2022)
  156. PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Liu A, Yu C, Qiu C, Wu Q, Huang C, Li X, She X, Wan K, Liu L, Li M, Wang Z, Chen Y, Hu F, Song D, Li K, Zhao C, Deng H, Sun X, Xu F, Lai S, Luo X, Hu J, Wang G. Oncogene 42 1572-1584 (2023)
  157. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines. Grider A, Lewis RD, Laing EM, Bakre AA, Tripp RA. Biometals 28 959-966 (2015)
  158. Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4-LEF1 Binding. Lanauze CB, Sehgal P, Hayer K, Torres-Diz M, Pippin JA, Grant SFA, Thomas-Tikhonenko A. Mol Cancer Res 19 823-833 (2021)
  159. Crystal structure of the MH2 domain of Drosophila Mad. WANG C, CHEN L, WANG L, WU J. Sci China C Life Sci 52 539-544 (2009)
  160. Lateral thinking in syndromic congenital cardiovascular disease. Kocere A, Lalonde RL, Mosimann C, Burger A. Dis Model Mech 16 dmm049735 (2023)
  161. SMAD4 mutations identified in Iranian patients with colorectal cancer and polyp. Najjar Sadeghi R, Saeedi N, Sahba N, Sadeghi A. Gastroenterol Hepatol Bed Bench 14 S32-S40 (2021)
  162. Smad2 phosphorylation by type I receptor: contribution of arginine 462 and cysteine 463 In the C terminus of Smad2 for specificity. Yakymovych I, Heldin CH, Souchelnytskyi S. J Biol Chem 279 35781-35787 (2004)
  163. Structural based screening of potential inhibitors of SMAD4: a step towards personalized medicine for gall bladder and other associated cancers. Kumar R, Kumar R, Tanwar P. Mol Divers 25 1945-1961 (2021)
  164. Arnold J. Levine and my career development. Shi Y. J Mol Cell Biol 11 546-550 (2019)
  165. Disruptor: Computational identification of oncogenic mutants disrupting protein-protein and protein-DNA interactions. Kugler V, Lieb A, Guerin N, Donald BR, Stefan E, Kaserer T. Commun Biol 6 720 (2023)
  166. Myhre syndrome is caused by dominant-negative dysregulation of SMAD4 and other co-factors. Alankarage D, Enriquez A, Steiner RD, Raggio C, Higgins M, Milnes D, Humphreys DT, Duncan EL, Sparrow DB, Giampietro PF, Chapman G, Dunwoodie SL. Differentiation 128 1-12 (2022)
  167. Profile of Yigong Shi. Davis TH. Proc Natl Acad Sci U S A 111 16234-16235 (2014)
  168. Unexpected Differences in the Speed of Non-Malignant versus Malignant Cell Migration Reveal Differential Basal Intracellular ATP Levels. Kim B, Lopez AT, Thevarajan I, Osuna MF, Mallavarapu M, Gao B, Osborne JK. Cancers (Basel) 15 5519 (2023)