1xra Citations

Crystal structure of S-adenosylmethionine synthetase.

J Biol Chem 271 136-47 (1996)
Related entries: 1xrb, 1xrc

Cited: 63 times
EuropePMC logo PMID: 8550549

Abstract

The structure of S-adenosylmethionine synthetase (MAT, ATP:L-methionine S-adenosyltransferase, EC 2.5.1.6.) from Escherichia coli has been determined at 3.0 A resolution by multiple isomorphous replacement using a uranium derivative and the selenomethionine form of the enzyme (SeMAT). The SeMAT data (9 selenomethionine residues out of 383 amino acid residues) have been found to have a sufficient phasing power to determine the structure of the 42,000 molecular weight protein by combining them with the other heavy atom derivative data (multiple isomorphous replacement). The enzyme consists of four identical subunits; two subunits form a spherical tight dimer, and pairs of these dimers form a peanut-shaped tetrameric enzyme. Each pair dimer has two active sites which are located between the subunits. Each subunit consists of three domains that are related to each other by pseudo-3-fold symmetry. The essential divalent (Mg2+/Co2+) and monovalent (K+) metal ions and one of the product, Pi ions, were found in the active site from three separate structures.

Reviews - 1xra mentioned but not cited (1)

  1. Structure-function relationships in methionine adenosyltransferases. Markham GD, Pajares MA. Cell Mol Life Sci 66 636-648 (2009)

Articles - 1xra mentioned but not cited (3)

  1. Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits. Shafqat N, Muniz JR, Pilka ES, Papagrigoriou E, von Delft F, Oppermann U, Yue WW. Biochem J 452 27-36 (2013)
  2. Solution structure of the U2 snRNP protein Rds3p reveals a knotted zinc-finger motif. van Roon AM, Loening NM, Obayashi E, Yang JC, Newman AJ, Hernández H, Nagai K, Neuhaus D. Proc Natl Acad Sci U S A 105 9621-9626 (2008)
  3. Stochastic protein multimerization, activity, and fitness. Hagner K, Setayeshgar S, Lynch M. Phys Rev E 98 062401 (2018)


Reviews citing this publication (6)

  1. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Thomas D, Surdin-Kerjan Y. Microbiol Mol Biol Rev 61 503-532 (1997)
  2. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Mato JM, Alvarez L, Ortiz P, Pajares MA. Pharmacol Ther 73 265-280 (1997)
  3. S-Adenosylmethionine: a control switch that regulates liver function. Mato JM, Corrales FJ, Lu SC, Avila MA. FASEB J 16 15-26 (2002)
  4. Role of Na+ and K+ in enzyme function. Page MJ, Di Cera E. Physiol Rev 86 1049-1092 (2006)
  5. Structures and folding pathways of topologically knotted proteins. Virnau P, Mallam A, Jackson S. J Phys Condens Matter 23 033101 (2011)
  6. Molecular genetics of hepatic methionine adenosyltransferase deficiency. Chou JY. Pharmacol Ther 85 1-9 (2000)

Articles citing this publication (53)

  1. Chemical topology: complex molecular knots, links, and entanglements. Forgan RS, Sauvage JP, Stoddart JF. Chem Rev 111 5434-5464 (2011)
  2. Characterizations of highly expressed genes of four fast-growing bacteria. Karlin S, Mrázek J, Campbell A, Kaiser D. J Bacteriol 183 5025-5040 (2001)
  3. Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. Pérez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM. J Biol Chem 274 17075-17079 (1999)
  4. Regulation of rat liver S-adenosylmethionine synthetase during septic shock: role of nitric oxide. Avila MA, Mingorance J, Martínez-Chantar ML, Casado M, Martin-Sanz P, Boscá L, Mato JM. Hepatology 25 391-396 (1997)
  5. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Dixon MM, Huang S, Matthews RG, Ludwig M. Structure 4 1263-1275 (1996)
  6. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization. Schröder G, Eichel J, Breinig S, Schröder J. Plant Mol Biol 33 211-222 (1997)
  7. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. González B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J. J Mol Biol 300 363-375 (2000)
  8. Highly expressed and alien genes of the Synechocystis genome. Mrázek J, Bhaya D, Grossman AR, Karlin S. Nucleic Acids Res 29 1590-1601 (2001)
  9. Dominant inheritance of isolated hypermethioninemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. Chamberlin ME, Ubagai T, Mudd SH, Levy HL, Chou JY. Am J Hum Genet 60 540-546 (1997)
  10. Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. McCarty RM, Krebs C, Bandarian V. Biochemistry 52 188-198 (2013)
  11. Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules. Farrar CE, Siu KK, Howell PL, Jarrett JT. Biochemistry 49 9985-9996 (2010)
  12. Comparative Study Fit to be tied. Mansfield ML. Nat Struct Biol 4 166-167 (1997)
  13. Flexible loop in the structure of S-adenosylmethionine synthetase crystallized in the tetragonal modification. Fu Z, Hu Y, Markham GD, Takusagawa F. J Biomol Struct Dyn 13 727-739 (1996)
  14. Identification of a mutation in the Bacillus subtilis S-adenosylmethionine synthetase gene that results in derepression of S-box gene expression. McDaniel BA, Grundy FJ, Kurlekar VP, Tomsic J, Henkin TM. J Bacteriol 188 3674-3681 (2006)
  15. Biochemical basis for the dominant inheritance of hypermethioninemia associated with the R264H mutation of the MAT1A gene. A monomeric methionine adenosyltransferase with tripolyphosphatase activity. Pérez Mato I, Sanchez del Pino MM, Chamberlin ME, Mudd SH, Mato JM, Corrales FJ. J Biol Chem 276 13803-13809 (2001)
  16. Characterisation of methionine adenosyltransferase from Mycobacterium smegmatis and M. tuberculosis. Berger BJ, Knodel MH. BMC Microbiol 3 12 (2003)
  17. DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S. J Biotechnol 141 97-103 (2009)
  18. Normal brain myelination in a patient homozygous for a mutation that encodes a severely truncated methionine adenosyltransferase I/III. Hazelwood S, Bernardini I, Shotelersuk V, Tangerman A, Guo J, Mudd H, Gahl WA. Am J Med Genet 75 395-400 (1998)
  19. Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase sMAT from Sulfolobus solfataricus. Wang F, Singh S, Zhang J, Huber TD, Helmich KE, Sunkara M, Hurley KA, Goff RD, Bingman CA, Morris AJ, Thorson JS, Phillips GN. FEBS J 281 4224-4239 (2014)
  20. Role of an intrasubunit disulfide in the association state of the cytosolic homo-oligomer methionine adenosyltransferase. Sanchez-Perez GF, Gasset M, Calvete JJ, Pajares MA. J Biol Chem 278 7285-7293 (2003)
  21. Interactions of (-)-ilimaquinone with methylation enzymes: implications for vesicular-mediated secretion. Radeke HS, Digits CA, Casaubon RL, Snapper ML. Chem Biol 6 639-647 (1999)
  22. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues. Taylor JC, Markham GD. J Biol Chem 275 4060-4065 (2000)
  23. Folding of dimeric methionine adenosyltransferase III: identification of two folding intermediates. Sánchez del Pino MM, Pérez-Mato I, Sanz JM, Mato JM, Corrales FJ. J Biol Chem 277 12061-12066 (2002)
  24. Recombinant rat liver S-adenosyl-L-methionine synthetase tetramers and dimers are in equilibrium. Mingorance J, Alvarez L, Pajares MA, Mato JM. Int J Biochem Cell Biol 29 485-491 (1997)
  25. Lysine acetylation regulates the activity of Escherichia coli S-adenosylmethionine synthase. Sun M, Guo H, Lu G, Gu J, Wang X, Zhang XE, Deng J. Acta Biochim Biophys Sin (Shanghai) 48 723-731 (2016)
  26. Site-selective photocleavage of proteins by uranyl ions. Duff MR, Kumar CV. Angew Chem Int Ed Engl 45 137-139 (2005)
  27. Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. Martínez-Chantar ML, Pajares MA. Eur J Biochem 267 132-137 (2000)
  28. Conversion of a chaperonin GroEL-independent protein into an obligate substrate. Ishimoto T, Fujiwara K, Niwa T, Taguchi H. J Biol Chem 289 32073-32080 (2014)
  29. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Gasset M, Alfonso C, Neira JL, Rivas G, Pajares MA. Biochem J 361 307-315 (2002)
  30. Methionine adenosyltransferase alpha-helix structure unfolds at lower temperatures than beta-sheet: a 2D-IR study. Iloro I, Chehín R, Goñi FM, Pajares MA, Arrondo JL. Biophys J 86 3951-3958 (2004)
  31. An unusual S-adenosylmethionine synthetase gene from dinoflagellate is methylated. Ho P, Kong KF, Chan YH, Tsang JS, Wong JT. BMC Mol Biol 8 87 (2007)
  32. Creation of a functional S-nitrosylation site in vitro by single point mutation. Castro C, Ruiz FA, Pérez-Mato I, Sánchez del Pino MM, LeGros L, Geller AM, Kotb M, Corrales FJ, Mato JM. FEBS Lett 459 319-322 (1999)
  33. Refolding and characterization of methionine adenosyltransferase from Euglena gracilis. Garrido F, Estrela S, Alves C, Sánchez-Pérez GF, Sillero A, Pajares MA. Protein Expr Purif 79 128-136 (2011)
  34. Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. Garrido F, Alfonso C, Taylor JC, Markham GD, Pajares MA. Biochim Biophys Acta 1794 1082-1090 (2009)
  35. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling. Taylor JC, Markham GD. Arch Biochem Biophys 415 164-171 (2003)
  36. Molecular cloning and characterization of S-adenosylmethionine synthetase gene from Lycoris radiata. Li XD, Xia B, Wang R, Xu S, Jiang YM, Yu FB, Peng F. Mol Biol Rep 40 1255-1263 (2013)
  37. S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Sekula B, Ruszkowski M, Dauter Z. Int J Biol Macromol 151 554-565 (2020)
  38. A dominant negative effect of eth-1r, a mutant allele of the Neurospora crassa S-adenosylmethionine synthetase-encoding gene conferring resistance to the methionine toxic analogue ethionine. Barra JL, Mautino MR, Rosa AL. Genetics 144 1455-1462 (1996)
  39. A new series of S-adenosyl-L-methionine synthetase inhibitors. Lavrador K, Allart B, Guillerm D, Guillerm G. J Enzyme Inhib 13 361-367 (1998)
  40. Efficient knot group identification as a tool for studying entanglements of polymers. Mansfield ML. J Chem Phys 127 244901 (2007)
  41. Mutational analysis of methionine adenosyltransferase from Leishmania donovani. Pérez-Pertejo Y, Reguera RM, García-Estrada C, Balaña-Fouce R, Ordóñez D. Eur J Biochem 271 2791-2798 (2004)
  42. Characterization of S-adenosylmethionine synthetase in Cryptosporidium parvum (Apicomplexa). Slapeta J, Stejskal F, Keithly JS. FEMS Microbiol Lett 225 271-277 (2003)
  43. Human Mat2A Uses an Ordered Kinetic Mechanism and Is Stabilized but Not Regulated by Mat2B. Bailey J, Douglas H, Masino L, de Carvalho LPS, Argyrou A. Biochemistry 60 3621-3632 (2021)
  44. Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery. Khedkar SA, Malde AK, Coutinho EC. J Mol Graph Model 23 355-366 (2005)
  45. Structural and functional characterization of S-adenosylmethionine (SAM) synthetase from Pichia ciferrii. Yoon S, Lee W, Kim M, Kim TD, Ryu Y. Bioprocess Biosyst Eng 35 173-181 (2012)
  46. Structural requirements for catalysis and dimerization of human methionine adenosyltransferase I/III. Chamberlin ME, Ubagai T, Pao VY, Pearlstein RA, Yang Chou J. Arch Biochem Biophys 373 56-62 (2000)
  47. Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases. Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P. JACS Au 1 2349-2360 (2021)
  48. Random mutagenesis and recombination of sam1 gene by integrating error-prone PCR with staggered extension process. An Y, Ji J, Wu W, Huang R, Wei Y, Xiu Z. Biotechnol Lett 30 1227-1232 (2008)
  49. SAMase of Bacteriophage T3 Inactivates Escherichia coli's Methionine S-Adenosyltransferase by Forming Heteropolymers. Simon-Baram H, Kleiner D, Shmulevich F, Zarivach R, Zalk R, Tang H, Ding F, Bershtein S. mBio 12 e0124221 (2021)
  50. Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Garrido F, Taylor JC, Alfonso C, Markham GD, Pajares MA. Amino Acids 42 361-373 (2012)
  51. The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond. Szabová J, Yubuki N, Leander BS, Triemer RE, Hampl V. BMC Evol Biol 14 25 (2014)
  52. Polyamine Metabolism in Scots Pine Embryogenic Cells under Potassium Deficiency. Muilu-Mäkelä R, Vuosku J, Häggman H, Sarjala T. Cells 10 1244 (2021)
  53. Structure of a critical metabolic enzyme: S-adenosylmethionine synthetase from Cryptosporidium parvum. Ohren J, Parungao GG, Viola RE. Acta Crystallogr F Struct Biol Commun 75 290-298 (2019)