1xfx Citations

Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor.

EMBO J 24 929-41 (2005)
Related entries: 1xfu, 1xfv, 1xfw, 1xfy, 1xfz, 1y0v

Cited: 87 times
EuropePMC logo PMID: 15719022

Abstract

Edema factor (EF), a key anthrax exotoxin, has an anthrax protective antigen-binding domain (PABD) and a calmodulin (CaM)-activated adenylyl cyclase domain. Here, we report the crystal structures of CaM-bound EF, revealing the architecture of EF PABD. CaM has N- and C-terminal domains and each domain can bind two calcium ions. Calcium binding induces the conformational change of CaM from closed to open. Structures of the EF-CaM complex show how EF locks the N-terminal domain of CaM into a closed conformation regardless of its calcium-loading state. This represents a mechanism of how CaM effector alters the calcium affinity of CaM and uncouples the conformational change of CaM from calcium loading. Furthermore, structures of EF-CaM complexed with nucleotides show that EF uses two-metal-ion catalysis, a prevalent mechanism in DNA and RNA polymerases. A histidine (H351) further facilitates the catalysis of EF by activating a water to deprotonate 3'OH of ATP. Mammalian adenylyl cyclases share no structural similarity with EF and they also use two-metal-ion catalysis, suggesting the catalytic mechanism-driven convergent evolution of two structurally diverse adenylyl cyclases.

Reviews - 1xfx mentioned but not cited (1)

Articles - 1xfx mentioned but not cited (6)

  1. Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor. Shen Y, Zhukovskaya NL, Guo Q, Florián J, Tang WJ. EMBO J. 24 929-941 (2005)
  2. Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding. Laine E, Martínez L, Blondel A, Malliavin TE. Biophys. J. 99 2264-2272 (2010)
  3. Dynamics and energetics: a consensus analysis of the impact of calcium on EF-CaM protein complex. Laine E, Blondel A, Malliavin TE. Biophys. J. 96 1249-1263 (2009)
  4. A computational and structural analysis of germline and somatic variants affecting the DDR mechanism, and their impact on human diseases. Magraner-Pardo L, Laskowski RA, Pons T, Thornton JM. Sci Rep 11 14268 (2021)
  5. Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors. Zhou K, Liu S, Hardenbrook NJ, Cui Y, Krantz BA, Zhou ZH. Structure 28 879-887.e3 (2020)
  6. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Hong Zhou Z, Krantz BA. Nat Commun 11 840 (2020)


Reviews citing this publication (16)

  1. Molecular details of cAMP generation in mammalian cells: a tale of two systems. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. J. Mol. Biol. 362 623-639 (2006)
  2. Structural diversity of calmodulin binding to its target sites. Tidow H, Nissen P. FEBS J. 280 5551-5565 (2013)
  3. The adenylyl cyclase activity of anthrax edema factor. Tang WJ, Guo Q. Mol. Aspects Med. 30 423-430 (2009)
  4. Ratcheting up protein translocation with anthrax toxin. Feld GK, Brown MJ, Krantz BA. Protein Sci. 21 606-624 (2012)
  5. Toxin-based therapeutic approaches. Shapira A, Benhar I. Toxins (Basel) 2 2519-2583 (2010)
  6. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Sherer K, Li Y, Cui X, Eichacker PQ. Am. J. Respir. Crit. Care Med. 175 211-221 (2007)
  7. AB toxins: a paradigm switch from deadly to desirable. Odumosu O, Nicholas D, Yano H, Langridge W. Toxins (Basel) 2 1612-1645 (2010)
  8. Inhibitors of Bacillus anthracis edema factor. Seifert R, Dove S. Pharmacol. Ther. 140 200-212 (2013)
  9. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Beierlein JM, Anderson AC. Curr. Med. Chem. 18 5083-5094 (2011)
  10. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Li Y, Sherer K, Cui X, Eichacker PQ. Expert Opin Biol Ther 7 843-854 (2007)
  11. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, Sebo P, Osicka R. Toxins (Basel) 9 (2017)
  12. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Göttle M, Dove S, Seifert R. Toxins (Basel) 4 505-535 (2012)
  13. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Pitard I, Malliavin TE. Toxins (Basel) 11 (2019)
  14. The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Lahiani A, Yavin E, Lazarovici P. Toxins (Basel) 9 (2017)
  15. The Potential Pathogenic Contributions of Endothelial Barrier and Arterial Contractile Dysfunction to Shock Due to B. anthracis Lethal and Edema Toxins. Suffredini DA, Cui X, Xu W, Li Y, Eichacker PQ. Toxins (Basel) 9 (2017)
  16. [Recombinant antibodies for medical protection against bioterrorism agents: the example of anthrax]. Thullier P, Pelat T, Paucod JC, Vidal D. Biol Aujourdhui 204 81-86 (2010)

Articles citing this publication (64)

  1. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ. EMBO J. 24 3190-3201 (2005)
  2. Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5. Chagot B, Chazin WJ. J. Mol. Biol. 406 106-119 (2011)
  3. Cell entry and cAMP imaging of anthrax edema toxin. Dal Molin F, Tonello F, Ladant D, Zornetta I, Zamparo I, Di Benedetto G, Zaccolo M, Montecucco C. EMBO J. 25 5405-5413 (2006)
  4. A model of anthrax toxin lethal factor bound to protective antigen. Lacy DB, Lin HC, Melnyk RA, Schueler-Furman O, Reither L, Cunningham K, Baker D, Collier RJ. Proc. Natl. Acad. Sci. U.S.A. 102 16409-16414 (2005)
  5. Cytidylyl and uridylyl cyclase activity of bacillus anthracis edema factor and Bordetella pertussis CyaA. Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, Shen Y, Tang WJ, Kaever V, Seifert R. Biochemistry 49 5494-5503 (2010)
  6. Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor. Laine E, Goncalves C, Karst JC, Lesnard A, Rault S, Tang WJ, Malliavin TE, Ladant D, Blondel A. Proc. Natl. Acad. Sci. U.S.A. 107 11277-11282 (2010)
  7. The adenylate cyclase toxins of Bacillus anthracis and Bordetella pertussis promote Th2 cell development by shaping T cell antigen receptor signaling. Rossi Paccani S, Benagiano M, Capitani N, Zornetta I, Ladant D, Montecucco C, D'Elios MM, Baldari CT. PLoS Pathog. 5 e1000325 (2009)
  8. Novel chimpanzee/human monoclonal antibodies that neutralize anthrax lethal factor, and evidence for possible synergy with anti-protective antigen antibody. Chen Z, Moayeri M, Crown D, Emerson S, Gorshkova I, Schuck P, Leppla SH, Purcell RH. Infect. Immun. 77 3902-3908 (2009)
  9. Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Zornetta I, Brandi L, Janowiak B, Dal Molin F, Tonello F, Collier RJ, Montecucco C. Cell. Microbiol. 12 1435-1445 (2010)
  10. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2'(3')-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Taha HM, Schmidt J, Göttle M, Suryanarayana S, Shen Y, Tang WJ, Gille A, Geduhn J, König B, Dove S, Seifert R. Mol. Pharmacol. 75 693-703 (2009)
  11. Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions. Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ. Biophys. J. 96 2832-2848 (2009)
  12. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Chen D, Menche G, Power TD, Sower L, Peterson JW, Schein CH. Proteins 67 593-605 (2007)
  13. Novel inhibitors of anthrax edema factor. Chen D, Misra M, Sower L, Peterson JW, Kellogg GE, Schein CH. Bioorg. Med. Chem. 16 7225-7233 (2008)
  14. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently. Guo Q, Jureller JE, Warren JT, Solomaha E, Florián J, Tang WJ. J. Biol. Chem. 283 23836-23845 (2008)
  15. Electrostatic ratchet in the protective antigen channel promotes anthrax toxin translocation. Wynia-Smith SL, Brown MJ, Chirichella G, Kemalyan G, Krantz BA. J. Biol. Chem. 287 43753-43764 (2012)
  16. Structure of the class IV adenylyl cyclase reveals a novel fold. Gallagher DT, Smith NN, Kim SK, Heroux A, Robinson H, Reddy PT. J. Mol. Biol. 362 114-122 (2006)
  17. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Laine E, Yoneda JD, Blondel A, Malliavin TE. Proteins 71 1813-1829 (2008)
  18. Anthrax edema factor potency depends on mode of cell entry. Hong J, Beeler J, Zhukovskaya NL, He W, Tang WJ, Rosner MR. Biochem. Biophys. Res. Commun. 335 850-857 (2005)
  19. Mouse monoclonal antibodies to anthrax edema factor protect against infection. Leysath CE, Chen KH, Moayeri M, Crown D, Fattah R, Chen Z, Das SR, Purcell RH, Leppla SH. Infect. Immun. 79 4609-4616 (2011)
  20. Interactions of anthrax lethal factor with protective antigen defined by site-directed spin labeling. Jennings-Antipov LD, Song L, Collier RJ. Proc. Natl. Acad. Sci. U.S.A. 108 1868-1873 (2011)
  21. cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin. Dal Molin F, Zornetta I, Puhar A, Tonello F, Zaccolo M, Montecucco C. Biochem. Biophys. Res. Commun. 376 429-433 (2008)
  22. A 1.3-A structure of zinc-bound N-terminal domain of calmodulin elucidates potential early ion-binding step. Warren JT, Guo Q, Tang WJ. J. Mol. Biol. 374 517-527 (2007)
  23. Certhrax toxin, an anthrax-related ADP-ribosyltransferase from Bacillus cereus. Visschedyk D, Rochon A, Tempel W, Dimov S, Park HW, Merrill AR. J. Biol. Chem. 287 41089-41102 (2012)
  24. Active-site structure of class IV adenylyl cyclase and transphyletic mechanism. Gallagher DT, Kim SK, Robinson H, Reddy PT. J. Mol. Biol. 405 787-803 (2011)
  25. Catalytically inactive anthrax toxin(s) are potential prophylactic agents. Gupta M, Alam S, Bhatnagar R. Vaccine 25 8410-8419 (2007)
  26. Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. Kronhardt A, Rolando M, Beitzinger C, Stefani C, Leuber M, Flatau G, Popoff MR, Benz R, Lemichez E. PLoS ONE 6 e23133 (2011)
  27. Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Selwa E, Laine E, Malliavin TE. Proteins 80 1028-1040 (2012)
  28. Bacillus anthracis edema toxin activates nuclear glycogen synthase kinase 3beta. Larabee JL, DeGiusti K, Regens JL, Ballard JD. Infect. Immun. 76 4895-4904 (2008)
  29. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates. Taha H, Dove S, Geduhn J, König B, Shen Y, Tang WJ, Seifert R. Naunyn Schmiedebergs Arch. Pharmacol. 385 57-68 (2012)
  30. The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor. Xu Q, Göhler AK, Kosfeld A, Carlton D, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Jahreis K, Wilson IA. J. Bacteriol. 194 2987-2999 (2012)
  31. ATP conformations and ion binding modes in the active site of anthrax edema factor: a computational analysis. Martínez L, Laine E, Malliavin TE, Nilges M, Blondel A. Proteins 77 971-983 (2009)
  32. Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis. O'Brien DP, Durand D, Voegele A, Hourdel V, Davi M, Chamot-Rooke J, Vachette P, Brier S, Ladant D, Chenal A. PLoS Biol. 15 e2004486 (2017)
  33. Interaction with adenylate cyclase toxin from Bordetella pertussis affects the metal binding properties of calmodulin. Springer TI, Emerson CC, Johns CW, Finley NL. FEBS Open Bio 7 25-34 (2017)
  34. Congresses The International Bacillus anthracis, B. cereus, and B. thuringiensis Conference, "Bacillus-ACT05". Keim P, Mock M, Young J, Koehler TM. J. Bacteriol. 188 3433-3441 (2006)
  35. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor. Lübker C, Seifert R. PLoS ONE 10 e0124017 (2015)
  36. Empirical valence bond simulations of the chemical mechanism of ATP to cAMP conversion by anthrax edema factor. Mones L, Tang WJ, Florián J. Biochemistry 52 2672-2682 (2013)
  37. Kinetic characterization and ligand binding studies of His351 mutants of Bacillus anthracis adenylate cyclase. Gupta M, Alam S, Bhatnagar R. Arch. Biochem. Biophys. 446 28-34 (2006)
  38. Anthrax edema factor toxicity is strongly mediated by the N-end rule. Leysath CE, Phillips DD, Crown D, Fattah RJ, Moayeri M, Leppla SH. PLoS ONE 8 e74474 (2013)
  39. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor. Thullier P, Avril A, Mathieu J, Behrens CK, Pellequer JL, Pelat T. PLoS ONE 8 e65855 (2013)
  40. Mechanism of reactant and product dissociation from the anthrax edema factor: a locally enhanced sampling and steered molecular dynamics study. Martínez L, Malliavin TE, Blondel A. Proteins 79 1649-1661 (2011)
  41. Structural basis of anthrax edema factor neutralization by a neutralizing antibody. Makiya M, Dolan M, Agulto L, Purcell R, Chen Z. Biochem. Biophys. Res. Commun. 417 324-329 (2012)
  42. Assessing predictions on fitness effects of missense variants in calmodulin. Zhang J, Kinch LN, Cong Q, Katsonis P, Lichtarge O, Savojardo C, Babbi G, Martelli PL, Capriotti E, Casadio R, Garg A, Pal D, Weile J, Sun S, Verby M, Roth FP, Grishin NV. Hum Mutat 40 1463-1473 (2019)
  43. Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. Alisaraie L, Rouiller I. J Mol Model 22 7 (2016)
  44. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor. Lübker C, Dove S, Tang WJ, Urbauer RJ, Moskovitz J, Urbauer JL, Seifert R. Toxins (Basel) 7 2598-2614 (2015)
  45. Site I Inactivation Impacts Calmodulin Calcium Binding and Activation of Bordetella pertussis Adenylate Cyclase Toxin. Johns CW, Finley NL. Toxins (Basel) 9 (2017)
  46. Structure of androcam supports specialized interactions with myosin VI. Joshi MK, Moran S, Beckingham KM, MacKenzie KR. Proc. Natl. Acad. Sci. U.S.A. 109 13290-13295 (2012)
  47. Pseudomonas aeruginosa exoenzyme Y directly bundles actin filaments. Mancl JM, Suarez C, Liang WG, Kovar DR, Tang WJ. J Biol Chem 295 3506-3517 (2020)
  48. A Robust and Sensitive Spectrophotometric Assay for the Enzymatic Activity of Bacterial Adenylate Cyclase Toxins. Davi M, Sadi M, Pitard I, Chenal A, Ladant D. Toxins (Basel) 14 691 (2022)
  49. A journey in science: promise, purpose, privilege. Nathan C. Mol. Med. 19 305-313 (2013)
  50. Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients. Dumas EK, Gross T, Larabee J, Pate L, Cuthbertson H, Charlton S, Hallis B, Engler RJM, Collins LC, Spooner CE, Chen H, Ballard J, James JA, Farris AD. Clin. Vaccine Immunol. 24 (2017)
  51. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2+ DRG sensory neurons. Yang NJ, Isensee J, Neel DV, Quadros AU, Zhang HB, Lauzadis J, Liu SM, Shiers S, Belu A, Palan S, Marlin S, Maignel J, Kennedy-Curran A, Tong VS, Moayeri M, Röderer P, Nitzsche A, Lu M, Pentelute BL, Brüstle O, Tripathi V, Foster KA, Price TJ, Collier RJ, Leppla SH, Puopolo M, Bean BP, Cunha TM, Hucho T, Chiu IM. Nat Neurosci 25 168-179 (2022)
  52. Compartmentalized Cyclic AMP Production by the Bordetella pertussis and Bacillus anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Arumugham VB, Ulivieri C, Onnis A, Finetti F, Tonello F, Ladant D, Baldari CT. Front Immunol 9 919 (2018)
  53. Defensive strategies of Bacillus anthracis that promote a fatal disease. Mogridge J. Drug Discov Today Dis Mech 4 253-258 (2007)
  54. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model. Zhao T, Zhao X, Liu J, Meng Y, Feng Y, Fang T, Zhang J, Yang X, Li J, Xu J, Chen W. Toxins (Basel) 8 35 (2016)
  55. A Free-Energy Landscape Analysis of Calmodulin Obtained from an NMR Data-Utilized Multi-Scale Divide-and-Conquer Molecular Dynamics Simulation. Shimoyama H, Shigeta Y. Life (Basel) 11 1241 (2021)
  56. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion. Shimoyama H. J. Biomol. Struct. Dyn. 37 1567-1581 (2019)
  57. Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Pitard I, Monet D, Goossens PL, Blondel A, Malliavin TE. Front Mol Biosci 7 586544 (2020)
  58. Anthrax toxins--roadblocks for exocytic trafficking. Ireton K. Dev. Cell 19 643-644 (2010)
  59. Bacillus anthracis Edema Toxin Increases Fractional Free Water and Sodium Reabsorption in an Isolated Perfused Rat Kidney Model. Jaswal DS, Cui X, Torabi-Parizi P, Ohanjanian L, Sampath-Kumar H, Fitz Y, Li Y, Xu W, Eichacker PQ. Infect. Immun. 85 (2017)
  60. Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric pre-pore state. Antoni C, Quentin D, Lang AE, Aktories K, Gatsogiannis C, Raunser S. PLoS Pathog 16 e1008530 (2020)
  61. Functional and structural insights into the multi-step activation and catalytic mechanism of bacterial ExoY nucleotidyl cyclase toxins bound to actin-profilin. Teixeira Nunes M, Retailleau P, Raoux-Barbot D, Comisso M, Missinou AA, Velours C, Plancqueel S, Ladant D, Mechold U, Renault L. PLoS Pathog 19 e1011654 (2023)
  62. Mechanism of actin-dependent activation of nucleotidyl cyclase toxins from bacterial human pathogens. Belyy A, Merino F, Mechold U, Raunser S. Nat Commun 12 6628 (2021)
  63. The extreme C terminus of the Pseudomonas aeruginosa effector ExoY is crucial for binding to its eukaryotic activator, F-actin. Belyy A, Santecchia I, Renault L, Bourigault B, Ladant D, Mechold U. J. Biol. Chem. 293 19785-19796 (2018)
  64. Whole-Transcriptome Analysis Highlights Adenylyl Cyclase Toxins-Derived Modulation of NF-κB and ERK1/2 Pathways in Macrophages. Zhao T, Li R, Qian M, Wang M, Zhang X, Wang Y, Zhao X, Xie J. Toxins (Basel) 15 139 (2023)