1wcs Citations

A sialidase mutant displaying trans-sialidase activity.

J Mol Biol 345 923-34 (2005)
Cited: 45 times
EuropePMC logo PMID: 15588836

Abstract

Trypanosoma cruzi, the agent of Chagas disease, expresses a modified sialidase, the trans-sialidase, which transfers sialic acid from host glycoconjugates to beta-galactose present in parasite mucins. Another American trypanosome, Trypanosoma rangeli, expresses a homologous protein that has sialidase activity but is devoid of transglycosidase activity. Based on the recently determined structures of T.rangeli sialidase (TrSA) and T.cruzi trans-sialidase (TcTS), we have now constructed mutants of TrSA with the aim of studying the relevant residues in transfer activity. Five mutations, Met96-Val, Ala98-Pro, Ser120-Tyr, Gly249-Tyr and Gln284-Pro, were enough to obtain a sialidase mutant (TrSA(5mut)) with trans-sialidase activity; and a sixth mutation increased the activity to about 10% that of wild-type TcTS. The crystal structure of TrSA(5mut) revealed the formation of a trans-sialidase-like binding site for the acceptor galactose, primarily defined by the phenol group of Tyr120 and the indole ring of Trp313, which adopts a new conformation, similar to that in TcTS, induced by the Gln284-Pro mutation. The transition state analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA), which inhibits sialidases but is a poor inhibitor of trans-sialidase, was used to probe the active site conformation of mutant enzymes. The results show that the presence of a sugar acceptor binding-site, the fine-tuning of protein-substrate interactions and the flexibility of crucial active site residues are all important to achieve transglycosidase activity from the TrSA sialidase scaffold.

Articles - 1wcs mentioned but not cited (3)

  1. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. Jers C, Michalak M, Larsen DM, Kepp KP, Li H, Guo Y, Kirpekar F, Meyer AS, Mikkelsen JD. PLoS One 9 e83902 (2014)
  2. Trypanosoma cruzi Binds to Cytokeratin through Conserved Peptide Motifs Found in the Laminin-G-Like Domain of the gp85/Trans-sialidase Proteins. Teixeira AA, de Vasconcelos Vde C, Colli W, Alves MJ, Giordano RJ. PLoS Negl Trop Dis 9 e0004099 (2015)
  3. In Silico Identification of New Targets for Diagnosis, Vaccine, and Drug Candidates against Trypanosoma cruzi. Trevisan RO, Santos MM, Desidério CS, Alves LG, de Jesus Sousa T, de Castro Oliveira L, Jaiswal AK, Tiwari S, Bovi WG, de Oliveira-Silva M, Costa-Madeira JC, Castellano LRC, Silva MV, Azevedo V, Rodrigues Junior V, Oliveira CJF, de Castro Soares S. Dis Markers 2020 9130719 (2020)


Reviews citing this publication (11)

  1. Glycosidases: a key to tailored carbohydrates. Bojarová P, Kren V. Trends Biotechnol 27 199-209 (2009)
  2. The trans-sialidase, the major Trypanosoma cruzi virulence factor: Three decades of studies. Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonça-Previato L, Previato JO. Glycobiology 25 1142-1149 (2015)
  3. Dendritic cells: a spot on sialic Acid. Crespo HJ, Lau JT, Videira PA. Front Immunol 4 491 (2013)
  4. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Zeuner B, Teze D, Muschiol J, Meyer AS. Molecules 24 E2033 (2019)
  5. The chemistry and biology of trypanosomal trans-sialidases: virulence factors in Chagas disease and sleeping sickness. Schauer R, Kamerling JP. Chembiochem 12 2246-2264 (2011)
  6. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Interface Focus 9 20180069 (2019)
  7. Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. da Fonseca LM, da Costa KM, Chaves VS, Freire-de-Lima CG, Morrot A, Mendonça-Previato L, Previato JO, Freire-de-Lima L. Front Immunol 10 164 (2019)
  8. Trypanosoma cruzi trans-sialidase as a drug target against Chagas disease (American trypanosomiasis). Miller BR, Roitberg AE. Future Med Chem 5 1889-1900 (2013)
  9. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. Sueth-Santiago V, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Lima ME. World J Biol Chem 8 57-80 (2017)
  10. Recent developments in trans-sialidase inhibitors of Trypanosoma cruzi. Kashif M, Moreno-Herrera A, Lara-Ramirez EE, Ramírez-Moreno E, Bocanegra-García V, Ashfaq M, Rivera G. J Drug Target 25 485-498 (2017)
  11. trans-Sialylation: a strategy used to incorporate sialic acid into oligosaccharides. de Lederkremer RM, Giorgi ME, Agusti R. RSC Chem Biol 3 121-139 (2022)

Articles citing this publication (31)

  1. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Bissaro B, Monsan P, Fauré R, O'Donohue MJ. Biochem J 467 17-35 (2015)
  2. Dependence of neurotrophic factor activation of Trk tyrosine kinase receptors on cellular sialidase. Woronowicz A, Amith SR, De Vusser K, Laroy W, Contreras R, Basta S, Szewczuk MR. Glycobiology 17 10-24 (2007)
  3. Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Arioka S, Sakagami M, Uematsu R, Yamaguchi H, Togame H, Takemoto H, Hinou H, Nishimura S. Bioorg Med Chem 18 1633-1640 (2010)
  4. Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Neres J, Brewer ML, Ratier L, Botti H, Buschiazzo A, Edwards PN, Mortenson PN, Charlton MH, Alzari PM, Frasch AC, Bryce RA, Douglas KT. Bioorg Med Chem Lett 19 589-596 (2009)
  5. Comparative rates of sialylation by recombinant trans-sialidase and inhibitor properties of synthetic oligosaccharides from Trypanosoma cruzi mucins-containing galactofuranose and galactopyranose. Agustí R, Giorgi ME, Mendoza VM, Gallo-Rodriguez C, de Lederkremer RM. Bioorg Med Chem 15 2611-2616 (2007)
  6. Modulation of catalytic function by differential plasticity of the active site: case study of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase. Demir O, Roitberg AE. Biochemistry 48 3398-3406 (2009)
  7. Sialic acid: a sweet swing between mammalian host and Trypanosoma cruzi. Freire-de-Lima L, Oliveira IA, Neves JL, Penha LL, Alisson-Silva F, Dias WB, Todeschini AR. Front Immunol 3 356 (2012)
  8. A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence. Carvalho ST, Sola-Penna M, Oliveira IA, Pita S, Gonçalves AS, Neves BC, Sousa FR, Freire-de-Lima L, Kurogochi M, Hinou H, Nishimura S, Mendonça-Previato L, Previato JO, Todeschini AR. Glycobiology 20 1034-1045 (2010)
  9. Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans-sialidase. Neres J, Bonnet P, Edwards PN, Kotian PL, Buschiazzo A, Alzari PM, Bryce RA, Douglas KT. Bioorg Med Chem 15 2106-2119 (2007)
  10. Procyclic Trypanosoma brucei expresses separate sialidase and trans-sialidase enzymes on its surface membrane. Montagna GN, Donelson JE, Frasch AC. J Biol Chem 281 33949-33958 (2006)
  11. Relevance of the diversity among members of the Trypanosoma cruzi trans-sialidase family analyzed with camelids single-domain antibodies. Ratier L, Urrutia M, Paris G, Zarebski L, Frasch AC, Goldbaum FA. PLoS One 3 e3524 (2008)
  12. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3'-sialyl and 6'-sialyl glycans. Guo Y, Jers C, Meyer AS, Arnous A, Li H, Kirpekar F, Mikkelsen JD. J Biotechnol 170 60-67 (2014)
  13. Continuous fluorimetric assay for high-throughput screening of inhibitors of trans-sialidase from Trypanosoma cruzi. Neres J, Buschiazzo A, Alzari PM, Walsh L, Douglas KT. Anal Biochem 357 302-304 (2006)
  14. An integrated membrane system for the biocatalytic production of 3'-sialyllactose from dairy by-products. Luo J, Nordvang RT, Morthensen ST, Zeuner B, Meyer AS, Mikkelsen JD, Pinelo M. Bioresour Technol 166 9-16 (2014)
  15. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. Holck J, Larsen DM, Michalak M, Li H, Kjærulff L, Kirpekar F, Gotfredsen CH, Forssten S, Ouwehand AC, Mikkelsen JD, Meyer AS. N Biotechnol 31 156-165 (2014)
  16. Sialic acid C-glycosides with aromatic residues: investigating enzyme binding and inhibition of Trypanosoma cruzi trans-sialidase. Meinke S, Schroven A, Thiem J. Org Biomol Chem 9 4487-4497 (2011)
  17. Design of Trypanosoma rangeli sialidase mutants with improved trans-sialidase activity. Nyffenegger C, Nordvang RT, Jers C, Meyer AS, Mikkelsen JD. PLoS One 12 e0171585 (2017)
  18. Design of e-pharmacophore models using compound fragments for the trans-sialidase of Trypanosoma cruzi: screening for novel inhibitor scaffolds. Miller BR, Roitberg AE. J Mol Graph Model 45 84-97 (2013)
  19. Enzymatic Synthesis of 6'-Sialyllactose, a Dominant Sialylated Human Milk Oligosaccharide, by a Novel exo-α-Sialidase from Bacteroides fragilis NCTC9343. Guo L, Chen X, Xu L, Xiao M, Lu L. Appl Environ Microbiol 84 e00071-18 (2018)
  20. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Wilbrink MH, ten Kate GA, van Leeuwen SS, Sanders P, Sallomons E, Hage JA, Dijkhuizen L, Kamerling JP. Appl Environ Microbiol 80 5984-5991 (2014)
  21. Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3'-sialyllactose production. Zeuner B, Luo J, Nyffenegger C, Aumala V, Mikkelsen JD, Meyer AS. Enzyme Microb Technol 55 85-93 (2014)
  22. Trypanosoma rangeli expresses a gene of the group II trans-sialidase superfamily. Añez-Rojas N, Peralta A, Crisante G, Rojas A, Añez N, Ramírez JL, Chiurillo MA. Mol Biochem Parasitol 142 133-136 (2005)
  23. Insights into the activity and specificity of Trypanosoma cruzi trans-sialidase from molecular dynamics simulations. Mitchell FL, Neres J, Ramraj A, Raju RK, Hillier IH, Vincent MA, Bryce RA. Biochemistry 52 3740-3751 (2013)
  24. It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity. Nordvang RT, Nyffenegger C, Holck J, Jers C, Zeuner B, Sundekilde UK, Meyer AS, Mikkelsen JD. PLoS One 11 e0158434 (2016)
  25. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Pierdominici-Sottile G, Palma J, Roitberg AE. Proteins 82 424-435 (2014)
  26. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase. Kashif M, Moreno-Herrera A, Villalobos-Rocha JC, Nogueda-Torres B, Pérez-Villanueva J, Rodríguez-Villar K, Medina-Franco JL, de Andrade P, Carvalho I, Rivera G. Molecules 22 E1863 (2017)
  27. Molecular modeling of T. rangeli, T. brucei gambiense, and T. evansi sialidases in complex with the DANA inhibitor. Lima AH, Souza PR, Alencar N, Lameira J, Govender T, Kruger HG, Maguire GE, Alves CN. Chem Biol Drug Des 80 114-120 (2012)
  28. Unraveling the differences of the hydrolytic activity of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase: a quantum mechanics-molecular mechanics modeling study. Bueren-Calabuig JA, Pierdominici-Sottile G, Roitberg AE. J Phys Chem B 118 5807-5816 (2014)
  29. Mutants of Micromonospora viridifaciens sialidase have highly variable activities on natural and non-natural substrates. Jers C, Guo Y, Kepp KP, Mikkelsen JD. Protein Eng Des Sel 28 37-44 (2015)
  30. Improvement of trans-sialylation versus hydrolysis activity of an engineered sialidase from Trypanosoma rangeli by use of co-solvents. Zeuner B, Riisager A, Mikkelsen JD, Meyer AS. Biotechnol Lett 36 1315-1320 (2014)
  31. Molecular Dynamics Simulations Reveal the Conformational Transition of GH33 Sialidases. Cao X, Yang X, Xiao M, Jiang X. Int J Mol Sci 24 6830 (2023)