1ubf Citations

Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes.

J Bacteriol 185 4280-4 (2003)
Related entries: 1g18, 1g19, 1mo3, 1mo4, 1mo5, 1mo6, 1ubc, 1ube, 1ubg

Cited: 35 times
EuropePMC logo PMID: 12837805

Abstract

The crystal structures of Mycobacterium smegmatis RecA (RecA(Ms)) and its complexes with ADP, ATPgammaS, and dATP show that RecA(Ms) has an expanded binding site like that in Mycobacterium tuberculosis RecA, although there are small differences between the proteins in their modes of nucleotide binding. Nucleotide binding is invariably accompanied by the movement of Gln 196, which appears to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding loops. These observations provide a framework for exploring the known properties of the RecA proteins.

Reviews - 1ubf mentioned but not cited (1)

  1. Allosteric movements in eubacterial RecA. Chandran AV, Vijayan M. Biophys Rev 5 249-258 (2013)

Articles - 1ubf mentioned but not cited (2)

  1. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. Leite WC, Galvão CW, Saab SC, Iulek J, Etto RM, Steffens MB, Chitteni-Pattu S, Stanage T, Keck JL, Cox MM. PLoS One 11 e0159871 (2016)
  2. The Error-Prone Polymerase DnaE2 Mediates the Evolution of Antibiotic Resistance in Persister Mycobacterial Cells. Salini S, Bhat SG, Naz S, Natesh R, Kumar RA, Nandicoori VK, Kurthkoti K. Antimicrob Agents Chemother 66 e0177321 (2022)


Reviews citing this publication (5)

  1. Regulation of bacterial RecA protein function. Cox MM. Crit Rev Biochem Mol Biol 42 41-63 (2007)
  2. Motoring along with the bacterial RecA protein. Cox MM. Nat Rev Mol Cell Biol 8 127-138 (2007)
  3. Molecular design and functional organization of the RecA protein. McGrew DA, Knight KL. Crit Rev Biochem Mol Biol 38 385-432 (2003)
  4. Structure and mechanism of Escherichia coli RecA ATPase. Bell CE. Mol Microbiol 58 358-366 (2005)
  5. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. Singh A. Microbiology (Reading) 163 1740-1758 (2017)

Articles citing this publication (27)

  1. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Wu Y, He Y, Moya IA, Qian X, Luo Y. Mol Cell 15 423-435 (2004)
  2. Essential roles for imuA'- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Warner DF, Ndwandwe DE, Abrahams GL, Kana BD, Machowski EE, Venclovas C, Mizrahi V. Proc Natl Acad Sci U S A 107 13093-13098 (2010)
  3. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. PLoS Genet 7 e1002244 (2011)
  4. The Rad51/RadA N-terminal domain activates nucleoprotein filament ATPase activity. Galkin VE, Wu Y, Zhang XP, Qian X, He Y, Yu X, Heyer WD, Luo Y, Egelman EH. Structure 14 983-992 (2006)
  5. Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. Rajan R, Bell CE. J Mol Biol 344 951-963 (2004)
  6. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. Nautiyal A, Patil KN, Muniyappa K. J Antimicrob Chemother 69 1834-1843 (2014)
  7. Crystal structures of Escherichia coli RecA in a compressed helical filament. Xing X, Bell CE. J Mol Biol 342 1471-1485 (2004)
  8. Structural plasticity and enzyme action: crystal structures of mycobacterium tuberculosis peptidyl-tRNA hydrolase. Selvaraj M, Roy S, Singh NS, Singh NS, Sangeetha R, Varshney U, Vijayan M. J Mol Biol 372 186-193 (2007)
  9. Presynaptic filament dynamics in homologous recombination and DNA repair. Liu J, Ehmsen KT, Heyer WD, Morrical SW. Crit Rev Biochem Mol Biol 46 240-270 (2011)
  10. Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA. Ariza A, Richard DJ, White MF, Bond CS. Nucleic Acids Res 33 1465-1473 (2005)
  11. Crystallographic identification of an ordered C-terminal domain and a second nucleotide-binding site in RecA: new insights into allostery. Krishna R, Manjunath GP, Kumar P, Surolia A, Chandra NR, Muniyappa K, Vijayan M. Nucleic Acids Res 34 2186-2195 (2006)
  12. Complementary strand relocation may play vital roles in RecA-based homology recognition. Peacock-Villada A, Yang D, Danilowicz C, Feinstein E, Pollock N, McShan S, Coljee V, Prentiss M. Nucleic Acids Res 40 10441-10451 (2012)
  13. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Cochran JC. Biophys Rev 7 269-299 (2015)
  14. Snapshots of RecA protein involving movement of the C-domain and different conformations of the DNA-binding loops: crystallographic and comparative analysis of 11 structures of Mycobacterium smegmatis RecA. Krishna R, Prabu JR, Manjunath GP, Datta S, Chandra NR, Muniyappa K, Vijayan M. J Mol Biol 367 1130-1144 (2007)
  15. Structural biology of mycobacterial proteins: the Bangalore effort. Vijayan M. Tuberculosis (Edinb) 85 357-366 (2005)
  16. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair. Shinohara T, Ikawa S, Iwasaki W, Hiraki T, Hikima T, Mikawa T, Arai N, Kamiya N, Shibata T. Nucleic Acids Res 43 973-986 (2015)
  17. Structure of RadB recombinase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1: an implication for the formation of a near-7-fold helical assembly. Akiba T, Ishii N, Rashid N, Morikawa M, Imanaka T, Harata K. Nucleic Acids Res 33 3412-3423 (2005)
  18. The SOS Regulatory Network. Simmons LA, Foti JJ, Cohen SE, Walker GC. EcoSal Plus 2008 (2008)
  19. Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein. Galkin VE, Britt RL, Bane LB, Yu X, Cox MM, Egelman EH. J Mol Biol 408 815-824 (2011)
  20. Structural studies on Mycobacterium tuberculosis RecA: molecular plasticity and interspecies variability. Chandran AV, Prabu JR, Nautiyal A, Patil KN, Muniyappa K, Vijayan M. J Biosci 40 13-30 (2015)
  21. Structure and interactions of RecA: plasticity revealed by molecular dynamics simulations. Chandran AV, Jayanthi S, Vijayan M. J Biomol Struct Dyn 36 98-111 (2018)
  22. Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. Kumar A, Joo WS, Meinke G, Moine S, Naumova EN, Bullock PA. J Virol 82 8849-8862 (2008)
  23. ATP half-sites in RadA and RAD51 recombinases bind nucleotides. Marsh ME, Scott DE, Ehebauer MT, Abell C, Blundell TL, Hyvönen M. FEBS Open Bio 6 372-385 (2016)
  24. Conformational flexibility of RecA protein filament: transitions between compressed and stretched states. Petukhov M, Lebedev D, Shalguev V, Islamov A, Kuklin A, Lanzov V, Isaev-Ivanov V. Proteins 65 296-304 (2006)
  25. Imidazopyridine Amides: Synthesis, Mycobacterium smegmatis CIII2CIV2 Supercomplex Binding, and In Vitro Antimycobacterial Activity. Abdelaziz R, Di Trani JM, Sahile H, Mann L, Richter A, Liu Z, Bueler SA, Cowen LE, Rubinstein JL, Imming P. ACS Omega 8 19081-19098 (2023)
  26. MAW point mutation impairs H. Seropedicae RecA ATP hydrolysis and DNA repair without inducing large conformational changes in its structure. Leite WC, Penteado RF, Gomes F, Iulek J, Etto RM, Saab SC, Steffens MBR, Galvão CW. PLoS One 14 e0214601 (2019)
  27. pH-dependent activities and structural stability of loop-2-anchoring helix of RadA recombinase from Methanococcus voltae. Rao DE, Luo Y. Protein Pept Lett 21 679-687 (2014)


Related citations provided by authors (2)