1tyf Citations

The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis.

Cell 91 447-56 (1997)
Cited: 369 times
EuropePMC logo PMID: 9390554

Abstract

We have determined the crystal structure of the proteolytic component of the caseinolytic Clp protease (ClpP) from E. coli at 2.3 A resolution using an ab initio phasing procedure that exploits the internal 14-fold symmetry of the oligomer. The structure of a ClpP monomer has a distinct fold that defines a fifth structural family of serine proteases but a conserved catalytic apparatus. The active protease resembles a hollow, solid-walled cylinder composed of two 7-fold symmetric rings stacked back-to-back. Its 14 proteolytic active sites are located within a central, roughly spherical chamber approximately 51 A in diameter. Access to the proteolytic chamber is controlled by two axial pores, each having a minimum diameter of approximately 10 A. From the structural features of ClpP, we suggest a model for its action in degrading proteins.

Reviews - 1tyf mentioned but not cited (2)

  1. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Olivares AO, Baker TA, Sauer RT. Nat Rev Microbiol 14 33-44 (2016)
  2. Bioinformatics perspective on rhomboid intramembrane protease evolution and function. Kinch LN, Grishin NV. Biochim Biophys Acta 1828 2937-2943 (2013)

Articles - 1tyf mentioned but not cited (11)

  1. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Reid BG, Fenton WA, Horwich AL, Weber-Ban EU. Proc Natl Acad Sci U S A 98 3768-3772 (2001)
  2. Crystal structure of Mycobacterium tuberculosis ClpP1P2 suggests a model for peptidase activation by AAA+ partner binding and substrate delivery. Schmitz KR, Carney DW, Sello JK, Sauer RT. Proc Natl Acad Sci U S A 111 E4587-95 (2014)
  3. Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. Liu J, Mushegian A. J Bacteriol 186 4369-4375 (2004)
  4. Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad. Zeiler E, List A, Alte F, Gersch M, Wachtel R, Poreba M, Drag M, Groll M, Sieber SA. Proc Natl Acad Sci U S A 110 11302-11307 (2013)
  5. Reducing the computational complexity of protein folding via fragment folding and assembly. Haspel N, Tsai CJ, Wolfson H, Nussinov R. Protein Sci 12 1177-1187 (2003)
  6. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase. Effantin G, Maurizi MR, Steven AC. J Biol Chem 285 14834-14840 (2010)
  7. FunClust: a web server for the identification of structural motifs in a set of non-homologous protein structures. Ausiello G, Gherardini PF, Marcatili P, Tramontano A, Via A, Helmer-Citterich M. BMC Bioinformatics 9 Suppl 2 S2 (2008)
  8. Detection of crosslinks within and between proteins by LC-MALDI-TOFTOF and the software FINDX to reduce the MSMS-data to acquire for validation. Söderberg CA, Lambert W, Kjellström S, Wiegandt A, Wulff RP, Månsson C, Rutsdottir G, Emanuelsson C. PLoS One 7 e38927 (2012)
  9. ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores. Mabanglo MF, Leung E, Vahidi S, Seraphim TV, Eger BT, Bryson S, Bhandari V, Zhou JL, Mao YQ, Rizzolo K, Barghash MM, Goodreid JD, Phanse S, Babu M, Barbosa LRS, Ramos CHI, Batey RA, Kay LE, Pai EF, Houry WA. Commun Biol 2 410 (2019)
  10. An asymmetric model for Na+-translocating glutaconyl-CoA decarboxylases. Kress D, Brügel D, Schall I, Linder D, Buckel W, Essen LO. J Biol Chem 284 28401-28409 (2009)
  11. A ClpP protein model as tuberculosis target for screening marine compounds. Tiwari A, Gupta S, Srivastava S, Srivastava R, Rawat AK. Bioinformation 4 405-408 (2010)


Reviews citing this publication (79)

  1. The 26S proteasome: a molecular machine designed for controlled proteolysis. Voges D, Zwickl P, Baumeister W. Annu Rev Biochem 68 1015-1068 (1999)
  2. The proteasome: paradigm of a self-compartmentalizing protease. Baumeister W, Walz J, Zühl F, Seemüller E. Cell 92 367-380 (1998)
  3. AAA+ proteins: have engine, will work. Hanson PI, Whiteheart SW. Nat Rev Mol Cell Biol 6 519-529 (2005)
  4. Anthrax. Mock M, Fouet A. Annu Rev Microbiol 55 647-671 (2001)
  5. AAA+ superfamily ATPases: common structure--diverse function. Ogura T, Wilkinson AJ. Genes Cells 6 575-597 (2001)
  6. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Hengge-Aronis R. Microbiol Mol Biol Rev 66 373-95, table of contents (2002)
  7. Proteasomes and their kin: proteases in the machine age. Pickart CM, Cohen RE. Nat Rev Mol Cell Biol 5 177-187 (2004)
  8. AAA+ proteases: ATP-fueled machines of protein destruction. Sauer RT, Baker TA. Annu Rev Biochem 80 587-612 (2011)
  9. The HtrA family of proteases: implications for protein composition and cell fate. Clausen T, Southan C, Ehrmann M. Mol Cell 10 443-455 (2002)
  10. Sculpting the proteome with AAA(+) proteases and disassembly machines. Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ES, Siddiqui SM, Wah DA, Baker TA. Cell 119 9-18 (2004)
  11. Proteolysis in bacterial regulatory circuits. Gottesman S. Annu Rev Cell Dev Biol 19 565-587 (2003)
  12. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Gerlt JA, Babbitt PC. Annu Rev Biochem 70 209-246 (2001)
  13. Ubiquitin in chains. Pickart CM. Trends Biochem Sci 25 544-548 (2000)
  14. ClpXP, an ATP-powered unfolding and protein-degradation machine. Baker TA, Sauer RT. Biochim Biophys Acta 1823 15-28 (2012)
  15. Stress Physiology of Lactic Acid Bacteria. Papadimitriou K, Alegría Á, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zúñiga M, Tsakalidou E, Kok J. Microbiol Mol Biol Rev 80 837-890 (2016)
  16. Antibacterial natural products in medicinal chemistry--exodus or revival? von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Angew Chem Int Ed Engl 45 5072-5129 (2006)
  17. Observing biological dynamics at atomic resolution using NMR. Mittermaier AK, Kay LE. Trends Biochem Sci 34 601-611 (2009)
  18. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Frees D, Savijoki K, Varmanen P, Ingmer H. Mol Microbiol 63 1285-1295 (2007)
  19. The architecture of parallel beta-helices and related folds. Jenkins J, Pickersgill R. Prog Biophys Mol Biol 77 111-175 (2001)
  20. The proteasome activator 11 S REG (PA28) and class I antigen presentation. Rechsteiner M, Realini C, Ustrell V. Biochem J 345 Pt 1 1-15 (2000)
  21. How far divergent evolution goes in proteins. Murzin AG. Curr Opin Struct Biol 8 380-387 (1998)
  22. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Ekici OD, Paetzel M, Dalbey RE. Protein Sci 17 2023-2037 (2008)
  23. AAA+ proteins and substrate recognition, it all depends on their partner in crime. Dougan DA, Mogk A, Zeth K, Turgay K, Bukau B. FEBS Lett 529 6-10 (2002)
  24. Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Tugarinov V, Hwang PM, Kay LE. Annu Rev Biochem 73 107-146 (2004)
  25. New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Porankiewicz J, Wang J, Clarke AK. Mol Microbiol 32 449-458 (1999)
  26. ClpP: a distinctive family of cylindrical energy-dependent serine proteases. Yu AY, Houry WA. FEBS Lett 581 3749-3757 (2007)
  27. Protein degradation machineries in plastids. Sakamoto W. Annu Rev Plant Biol 57 599-621 (2006)
  28. Cutting edge of chloroplast proteolysis. Adam Z, Clarke AK. Trends Plant Sci 7 451-456 (2002)
  29. Chaperone rings in protein folding and degradation. Horwich AL, Weber-Ban EU, Finley D. Proc Natl Acad Sci U S A 96 11033-11040 (1999)
  30. Molecular mimicry and autoimmune liver disease: virtuous intentions, malign consequences. Bogdanos DP, Choudhuri K, Vergani D. Liver 21 225-232 (2001)
  31. Protein unfolding--an important process in vivo? Matouschek A. Curr Opin Struct Biol 13 98-109 (2003)
  32. Proteasomes and other self-compartmentalizing proteases in prokaryotes. De Mot R, Nagy I, Walz J, Baumeister W. Trends Microbiol 7 88-92 (1999)
  33. Self-compartmentalized bacterial proteases and pathogenesis. Butler SM, Festa RA, Pearce MJ, Darwin KH. Mol Microbiol 60 553-562 (2006)
  34. Membrane proteases in the bacterial protein secretion and quality control pathway. Dalbey RE, Wang P, van Dijl JM. Microbiol Mol Biol Rev 76 311-330 (2012)
  35. ClpP: a structurally dynamic protease regulated by AAA+ proteins. Alexopoulos JA, Guarné A, Ortega J. J Struct Biol 179 202-210 (2012)
  36. Clp chaperone-proteases: structure and function. Kress W, Maglica Z, Weber-Ban E. Res Microbiol 160 618-628 (2009)
  37. Regulation by proteolysis: developmental switches. Gottesman S. Curr Opin Microbiol 2 142-147 (1999)
  38. Structural and energetic determinants of the S1-site specificity in serine proteases. Czapinska H, Otlewski J. Eur J Biochem 260 571-595 (1999)
  39. The bacterial N-end rule pathway: expect the unexpected. Dougan DA, Truscott KN, Zeth K. Mol Microbiol 76 545-558 (2010)
  40. Can sequence determine function? Gerlt JA, Babbitt PC. Genome Biol 1 REVIEWS0005 (2000)
  41. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. Protein Sci 15 1815-1828 (2006)
  42. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. J Struct Biol 146 113-122 (2004)
  43. Bacterial caseinolytic proteases as novel targets for antibacterial treatment. Brötz-Oesterhelt H, Sass P. Int J Med Microbiol 304 23-30 (2014)
  44. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. Wang J. J Struct Biol 148 259-267 (2004)
  45. Haloarchaeal proteases and proteolytic systems. De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. FEMS Microbiol Rev 30 17-35 (2006)
  46. Structure and mechanism of ATP-dependent proteases. Schmidt M, Lupas AN, Finley D. Curr Opin Chem Biol 3 584-591 (1999)
  47. Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Chandu D, Nandi D. Res Microbiol 155 710-719 (2004)
  48. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Liu K, Ologbenla A, Houry WA. Crit Rev Biochem Mol Biol 49 400-412 (2014)
  49. ClpP Protease, a Promising Antimicrobial Target. Moreno-Cinos C, Goossens K, Salado IG, Van Der Veken P, De Winter H, Augustyns K. Int J Mol Sci 20 E2232 (2019)
  50. Broad yet high substrate specificity: the challenge of AAA+ proteins. Mogk A, Dougan D, Weibezahn J, Schlieker C, Turgay K, Bukau B. J Struct Biol 146 90-98 (2004)
  51. Conformational control of the bacterial Clp protease by natural product antibiotics. Malik IT, Brötz-Oesterhelt H. Nat Prod Rep 34 815-831 (2017)
  52. How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D. FEMS Microbiol Rev 30 734-759 (2006)
  53. Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins. Sheppard D, Sprangers R, Tugarinov V. Prog Nucl Magn Reson Spectrosc 56 1-45 (2010)
  54. Molecular chaperones in protein quality control. Lee S, Tsai FT. J Biochem Mol Biol 38 259-265 (2005)
  55. Mitochondrial proteases and protein quality control in ageing and longevity. Hamon MP, Bulteau AL, Friguet B. Ageing Res Rev 23 56-66 (2015)
  56. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Burton BM, Baker TA. Protein Sci 14 1945-1954 (2005)
  57. Exploiting Bifidobacterium genomes: the molecular basis of stress response. De Dea Lindner J, Canchaya C, Zhang Z, Neviani E, Fitzgerald GF, van Sinderen D, Ventura M. Int J Food Microbiol 120 13-24 (2007)
  58. The development of small-molecule modulators for ClpP protease activity. Ye F, Li J, Yang CG. Mol Biosyst 13 23-31 (2016)
  59. Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Schmidt R, Bukau B, Mogk A. Res Microbiol 160 629-636 (2009)
  60. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. Truscott KN, Bezawork-Geleta A, Bezawork-Geleta A, Dougan DA. IUBMB Life 63 955-963 (2011)
  61. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 E629 (2020)
  62. Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Gottesman ME, Hendrickson WA. Curr Opin Microbiol 3 197-202 (2000)
  63. Proteolysis: Adaptor, adaptor, catch me a catch. Ades SE. Curr Biol 14 R924-6 (2004)
  64. The mitochondrial unfolded protein response (UPRmt): shielding against toxicity to mitochondria in cancer. Inigo JR, Chandra D. J Hematol Oncol 15 98 (2022)
  65. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  66. New insights into Perrault syndrome, a clinically and genetically heterogeneous disorder. Faridi R, Rea A, Fenollar-Ferrer C, O'Keefe RT, Gu S, Munir Z, Khan AA, Riazuddin S, Hoa M, Naz S, Newman WG, Friedman TB. Hum Genet 141 805-819 (2022)
  67. Proteolytic system of plant mitochondria. Kwasniak M, Pogorzelec L, Migdal I, Smakowska E, Janska H. Physiol Plant 145 187-195 (2012)
  68. An overview of molecular stress response mechanisms in Escherichia coli contributing to survival of Shiga toxin-producing Escherichia coli during raw milk cheese production. Peng S, Tasara T, Hummerjohann J, Stephan R. J Food Prot 74 849-864 (2011)
  69. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. Mabanglo MF, Houry WA. J Biol Chem 298 101781 (2022)
  70. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Izert MA, Klimecka MM, Górna MW. Front Mol Biosci 8 669762 (2021)
  71. An amino acid domino effect orchestrates ClpP's conformational states. Stahl M, Sieber SA. Curr Opin Chem Biol 40 102-110 (2017)
  72. Molecular chaperones: clamps for the Clps? Feng HP, Gierasch LM. Curr Biol 8 R464-7 (1998)
  73. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Sauer RT, Fei X, Bell TA, Baker TA. Crit Rev Biochem Mol Biol 57 188-204 (2022)
  74. Functional regulation of immunoproteasomes and transporter associated with antigen processing. Hwang LY, Lieu PT, Peterson PA, Yang Y. Immunol Res 24 245-272 (2001)
  75. The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges. Clarke AK. Physiol Plant 145 235-244 (2012)
  76. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Gil F, Paredes-Sabja D. Future Microbiol 11 1179-1189 (2016)
  77. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Cancers (Basel) 15 1936 (2023)
  78. Bacterial degrons in synthetic circuits. Jadhav P, Chen Y, Butzin N, Buceta J, Urchueguía A. Open Biol 12 220180 (2022)
  79. Targeting bacterial degradation machinery as an antibacterial strategy. Petkov R, Camp AH, Isaacson RL, Torpey JH. Biochem J 480 1719-1731 (2023)

Articles citing this publication (277)

  1. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Gottesman S, Roche E, Zhou Y, Sauer RT. Genes Dev 12 1338-1347 (1998)
  2. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. Mol Cell 11 671-683 (2003)
  3. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H. Nat Med 11 1082-1087 (2005)
  4. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Weber-Ban EU, Reid BG, Miranker AD, Horwich AL. Nature 401 90-93 (1999)
  5. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. Mol Cell 7 627-637 (2001)
  6. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T. Nature 416 455-459 (2002)
  7. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. Turgay K, Hahn J, Burghoorn J, Dubnau D. EMBO J 17 6730-6738 (1998)
  8. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Kim YI, Burton RE, Burton BM, Sauer RT, Baker TA. Mol Cell 5 639-648 (2000)
  9. An essential protease involved in bacterial cell-cycle control. Jenal U, Fuchs T. EMBO J 17 5658-5669 (1998)
  10. ClpS, a substrate modulator of the ClpAP machine. Dougan DA, Reid BG, Horwich AL, Bukau B. Mol Cell 9 673-683 (2002)
  11. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Kenniston JA, Baker TA, Fernandez JM, Sauer RT. Cell 114 511-520 (2003)
  12. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S. Genes Dev 15 627-637 (2001)
  13. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Flynn JM, Levchenko I, Seidel M, Wickner SH, Sauer RT, Baker TA. Proc Natl Acad Sci U S A 98 10584-10589 (2001)
  14. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Cell 139 744-756 (2009)
  15. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Frees D, Qazi SN, Hill PJ, Ingmer H. Mol Microbiol 48 1565-1578 (2003)
  16. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Maillard RA, Chistol G, Sen M, Righini M, Tan J, Kaiser CM, Hodges C, Martin A, Bustamante C. Cell 145 459-469 (2011)
  17. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR. Proc Natl Acad Sci U S A 97 8898-8903 (2000)
  18. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Gaillot O, Pellegrini E, Bregenholt S, Nair S, Berche P. Mol Microbiol 35 1286-1294 (2000)
  19. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, Rho SH, Seong IS, Lee CS, Chung CH, Eom SH. Structure 9 177-184 (2001)
  20. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Gerth U, Krüger E, Derré I, Msadek T, Hecker M. Mol Microbiol 28 787-802 (1998)
  21. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Flynn JM, Levchenko I, Sauer RT, Baker TA. Genes Dev 18 2292-2301 (2004)
  22. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Jenkinson EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, Drummond MC, Khan SN, Naeem MA, Rauf B, Billington N, Schultz JM, Urquhart JE, Lee MK, Berry A, Hanley NA, Mehta S, Cilliers D, Clayton PE, Kingston H, Smith MJ, Warner TT, University of Washington Center for Mendelian Genomics, Black GC, Trump D, Davis JR, Ahmad W, Leal SM, Riazuddin S, King MC, Friedman TB, Newman WG. Am J Hum Genet 92 605-613 (2013)
  23. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rübsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K. EMBO Mol Med 1 37-49 (2009)
  24. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Wang J, Song JJ, Seong IS, Franklin MC, Kamtekar S, Eom SH, Chung CH. Structure 9 1107-1116 (2001)
  25. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Cell 121 1017-1027 (2005)
  26. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Siddiqui SM, Sauer RT, Baker TA. Genes Dev 18 369-374 (2004)
  27. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Ortega J, Singh SK, Ishikawa T, Maurizi MR, Steven AC. Mol Cell 6 1515-1521 (2000)
  28. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. Burton RE, Siddiqui SM, Kim YI, Baker TA, Sauer RT. EMBO J 20 3092-3100 (2001)
  29. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE. Proc Natl Acad Sci U S A 102 16678-16683 (2005)
  30. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M. J Bacteriol 182 3259-3265 (2000)
  31. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Neher SB, Villén J, Oakes EC, Bakalarski CE, Sauer RT, Gygi SP, Baker TA. Mol Cell 22 193-204 (2006)
  32. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. Pamp SJ, Frees D, Engelmann S, Hecker M, Ingmer H. J Bacteriol 188 4861-4870 (2006)
  33. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. Raju RM, Unnikrishnan M, Rubin DH, Krishnamoorthy V, Kandror O, Akopian TN, Goldberg AL, Rubin EJ. PLoS Pathog 8 e1002511 (2012)
  34. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Smith CK, Baker TA, Sauer RT. Proc Natl Acad Sci U S A 96 6678-6682 (1999)
  35. ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. Camberg JL, Hoskins JR, Wickner S. Proc Natl Acad Sci U S A 106 10614-10619 (2009)
  36. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Li DH, Chung YS, Gloyd M, Joseph E, Ghirlando R, Wright GD, Cheng YQ, Maurizi MR, Guarné A, Ortega J. Chem Biol 17 959-969 (2010)
  37. Communication between ClpX and ClpP during substrate processing and degradation. Joshi SA, Hersch GL, Baker TA, Sauer RT. Nat Struct Mol Biol 11 404-411 (2004)
  38. Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b(6)f complex. Majeran W, Wollman FA, Vallon O. Plant Cell 12 137-150 (2000)
  39. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Hoskins JR, Singh SK, Maurizi MR, Wickner S. Proc Natl Acad Sci U S A 97 8892-8897 (2000)
  40. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Suno R, Niwa H, Tsuchiya D, Zhang X, Yoshida M, Morikawa K. Mol Cell 22 575-585 (2006)
  41. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. Kirstein J, Schlothauer T, Dougan DA, Lilie H, Tischendorf G, Mogk A, Bukau B, Turgay K. EMBO J 25 1481-1491 (2006)
  42. Solution NMR of supramolecular complexes: providing new insights into function. Sprangers R, Velyvis A, Kay LE. Nat Methods 4 697-703 (2007)
  43. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Krojer T, Pangerl K, Kurt J, Sawa J, Stingl C, Mechtler K, Huber R, Ehrmann M, Clausen T. Proc Natl Acad Sci U S A 105 7702-7707 (2008)
  44. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. Akopian T, Kandror O, Raju RM, Unnikrishnan M, Rubin EJ, Goldberg AL. EMBO J 31 1529-1541 (2012)
  45. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Frees D, Ingmer H. Mol Microbiol 31 79-87 (1999)
  46. Translocation pathway of protein substrates in ClpAP protease. Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC. Proc Natl Acad Sci U S A 98 4328-4333 (2001)
  47. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. Beuron F, Maurizi MR, Belnap DM, Kocsis E, Booy FP, Kessel M, Steven AC. J Struct Biol 123 248-259 (1998)
  48. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Martin A, Baker TA, Sauer RT. Mol Cell 27 41-52 (2007)
  49. The role of the ClpA chaperone in proteolysis by ClpAP. Hoskins JR, Pak M, Maurizi MR, Wickner S. Proc Natl Acad Sci U S A 95 12135-12140 (1998)
  50. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Sen M, Maillard RA, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, Bustamante C. Cell 155 636-646 (2013)
  51. Protease gene families in Populus and Arabidopsis. García-Lorenzo M, Sjödin A, Jansson S, Funk C. BMC Plant Biol 6 30 (2006)
  52. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjögren LL, Zhao Y, Clarke AK, Chory J. Plant Mol Biol 63 85-96 (2007)
  53. Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ. Plant Cell 18 1704-1721 (2006)
  54. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Sjögren LL, Stanne TM, Zheng B, Sutinen S, Clarke AK. Plant Cell 18 2635-2649 (2006)
  55. Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Tomoyasu T, Takaya A, Isogai E, Yamamoto T. Mol Microbiol 48 443-452 (2003)
  56. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control. Ramundo S, Casero D, Mühlhaus T, Hemme D, Sommer F, Crèvecoeur M, Rahire M, Schroda M, Rusch J, Goodenough U, Pellegrini M, Perez-Perez ME, Crespo JL, Schaad O, Civic N, Rochaix JD. Plant Cell 26 2201-2222 (2014)
  57. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Stahlberg H, Kutejová E, Suda K, Wolpensinger B, Lustig A, Schatz G, Engel A, Suzuki CK. Proc Natl Acad Sci U S A 96 6787-6790 (1999)
  58. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J Mol Biol 372 817-845 (2007)
  59. Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK. Physiol Plant 114 92-101 (2002)
  60. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Wah DA, Levchenko I, Baker TA, Sauer RT. Chem Biol 9 1237-1245 (2002)
  61. Distinct peptide signals in the UmuD and UmuD' subunits of UmuD/D' mediate tethering and substrate processing by the ClpXP protease. Neher SB, Sauer RT, Baker TA. Proc Natl Acad Sci U S A 100 13219-13224 (2003)
  62. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM. Plant Physiol 162 1867-1880 (2013)
  63. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis. Gerth U, Kock H, Kusters I, Michalik S, Switzer RL, Hecker M. J Bacteriol 190 321-331 (2008)
  64. Direct and adaptor-mediated substrate recognition by an essential AAA+ protease. Chien P, Perchuk BS, Laub MT, Sauer RT, Baker TA. Proc Natl Acad Sci U S A 104 6590-6595 (2007)
  65. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. Bewley MC, Graziano V, Griffin K, Flanagan JM. J Struct Biol 153 113-128 (2006)
  66. Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-A resolution. Du X, Choi IG, Kim R, Wang W, Jancarik J, Yokota H, Kim SH. Proc Natl Acad Sci U S A 97 14079-14084 (2000)
  67. Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. Kang SG, Maurizi MR, Thompson M, Mueser T, Ahvazi B. J Struct Biol 148 338-352 (2004)
  68. Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana. Peltier JB, Ytterberg J, Liberles DA, Roepstorff P, van Wijk KJ. J Biol Chem 276 16318-16327 (2001)
  69. The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. Tamura N, Lottspeich F, Baumeister W, Tamura T. Cell 95 637-648 (1998)
  70. Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Bota DA, Davies KJ. Mitochondrion 1 33-49 (2001)
  71. The axial channel of the 20S proteasome opens upon binding of the PA200 activator. Ortega J, Heymann JB, Kajava AV, Ustrell V, Rechsteiner M, Steven AC. J Mol Biol 346 1221-1227 (2005)
  72. Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Frees D, Sørensen K, Ingmer H. Infect Immun 73 8100-8108 (2005)
  73. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Elife 9 e52774 (2020)
  74. The CtrA response regulator essential for Caulobacter crescentus cell-cycle progression requires a bipartite degradation signal for temporally controlled proteolysis. Ryan KR, Judd EM, Shapiro L. J Mol Biol 324 443-455 (2002)
  75. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ, Kwon KK, De Donatis GM, Lee JH, Maurizi MR, Kang SG. EMBO J 29 3520-3530 (2010)
  76. Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site. Szyk A, Maurizi MR. J Struct Biol 156 165-174 (2006)
  77. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, van Dijl JM. Microb Cell Fact 7 10 (2008)
  78. Fine-tuning in regulation of Clp protein content in Bacillus subtilis. Gerth U, Kirstein J, Mostertz J, Waldminghaus T, Miethke M, Kock H, Hecker M. J Bacteriol 186 179-191 (2004)
  79. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Bolon DN, Grant RA, Baker TA, Sauer RT. Mol Cell 16 343-350 (2004)
  80. AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Gersch M, Famulla K, Dahmen M, Göbl C, Malik I, Richter K, Korotkov VS, Sass P, Rübsamen-Schaeff H, Madl T, Brötz-Oesterhelt H, Sieber SA. Nat Commun 6 6320 (2015)
  81. Distinctive types of ATP-dependent Clp proteases in cyanobacteria. Stanne TM, Pojidaeva E, Andersson FI, Clarke AK. J Biol Chem 282 14394-14402 (2007)
  82. Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. Kim KI, Park SC, Kang SH, Cheong GW, Chung CH. J Mol Biol 294 1363-1374 (1999)
  83. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. Ripstein ZA, Vahidi S, Houry WA, Rubinstein JL, Kay LE. Elife 9 e52158 (2020)
  84. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding. Lee ME, Baker TA, Sauer RT. J Mol Biol 399 707-718 (2010)
  85. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S. Proc Natl Acad Sci U S A 99 11037-11042 (2002)
  86. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Schmidt R, Zahn R, Bukau B, Mogk A. Mol Microbiol 72 506-517 (2009)
  87. The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Rawlings ND, Morton FR. Biochimie 90 243-259 (2008)
  88. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Fischer B, Rummel G, Aldridge P, Jenal U. Mol Microbiol 44 461-478 (2002)
  89. Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. de Crécy-Lagard V, Servant-Moisson P, Viala J, Grandvalet C, Mazodier P. Mol Microbiol 32 505-517 (1999)
  90. Double-stranded DNA bacteriophage prohead protease is homologous to herpesvirus protease. Cheng H, Shen N, Pei J, Grishin NV. Protein Sci 13 2260-2269 (2004)
  91. Antibodies against homologous microbial caseinolytic proteases P characterise primary biliary cirrhosis. Bogdanos DP, Baum H, Sharma UC, Grasso A, Ma Y, Burroughs AK, Vergani D. J Hepatol 36 14-21 (2002)
  92. Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. Hinzen B, Raddatz S, Paulsen H, Lampe T, Schumacher A, Häbich D, Hellwig V, Benet-Buchholz J, Endermann R, Labischinski H, Brötz-Oesterhelt H. ChemMedChem 1 689-693 (2006)
  93. A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK. Planta 224 1103-1115 (2006)
  94. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. Kenniston JA, Burton RE, Siddiqui SM, Baker TA, Sauer RT. J Struct Biol 146 130-140 (2004)
  95. Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine. Song HK, Eck MJ. Mol Cell 12 75-86 (2003)
  96. Membrane protein degradation by FtsH can be initiated from either end. Chiba S, Akiyama Y, Ito K. J Bacteriol 184 4775-4782 (2002)
  97. Alternating translocation of protein substrates from both ends of ClpXP protease. Ortega J, Lee HS, Maurizi MR, Steven AC. EMBO J 21 4938-4949 (2002)
  98. Polypeptide translocation by the AAA+ ClpXP protease machine. Barkow SR, Levchenko I, Baker TA, Sauer RT. Chem Biol 16 605-612 (2009)
  99. Congress Proteolysis in prokaryotes: protein quality control and regulatory principles. Hengge R, Bukau B. Mol Microbiol 49 1451-1462 (2003)
  100. Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis. Olinares PD, Kim J, Davis JI, van Wijk KJ. Plant Cell 23 2348-2361 (2011)
  101. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. Wilson HL, Ou MS, Aldrich HC, Maupin-Furlow J. J Bacteriol 182 1680-1692 (2000)
  102. Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Burton RE, Baker TA, Sauer RT. Protein Sci 12 893-902 (2003)
  103. Structure and function of a novel type of ATP-dependent Clp protease. Andersson FI, Tryggvesson A, Sharon M, Diemand AV, Classen M, Best C, Schmidt R, Schelin J, Stanne TM, Bukau B, Robinson CV, Witt S, Mogk A, Clarke AK. J Biol Chem 284 13519-13532 (2009)
  104. A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. Fukui T, Eguchi T, Atomi H, Imanaka T. J Bacteriol 184 3689-3698 (2002)
  105. ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. Chattoraj P, Banerjee A, Biswas S, Biswas I. J Bacteriol 192 1312-1323 (2010)
  106. A conformational switch underlies ClpP protease function. Geiger SR, Böttcher T, Sieber SA, Cramer P. Angew Chem Int Ed Engl 50 5749-5752 (2011)
  107. Cryo-EM structure of the ClpXP protein degradation machinery. Gatsogiannis C, Balogh D, Merino F, Sieber SA, Raunser S. Nat Struct Mol Biol 26 946-954 (2019)
  108. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Ramachandran R, Hartmann C, Song HK, Huber R, Bochtler M. Proc Natl Acad Sci U S A 99 7396-7401 (2002)
  109. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. Kay LE. J Magn Reson 210 159-170 (2011)
  110. Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity. Carney DW, Schmitz KR, Truong JV, Sauer RT, Sello JK. J Am Chem Soc 136 1922-1929 (2014)
  111. Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Cohn MT, Ingmer H, Mulholland F, Jørgensen K, Wells JM, Brøndsted L. Appl Environ Microbiol 73 7803-7813 (2007)
  112. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Halperin T, Zheng B, Itzhaki H, Clarke AK, Adam Z. Plant Mol Biol 45 461-468 (2001)
  113. Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes. Rockenbach K, Havird JC, Monroe JG, Triant DA, Taylor DR, Sloan DB. Genetics 204 1507-1522 (2016)
  114. Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis. Wilson HL, Aldrich HC, Maupin-Furlow J. J Bacteriol 181 5814-5824 (1999)
  115. Knotting and unknotting of a protein in single molecule experiments. Ziegler F, Lim NC, Mandal SS, Pelz B, Ng WP, Schlierf M, Jackson SE, Rief M. Proc Natl Acad Sci U S A 113 7533-7538 (2016)
  116. Asymmetric nucleotide transactions of the HslUV protease. Yakamavich JA, Baker TA, Sauer RT. J Mol Biol 380 946-957 (2008)
  117. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis. Lopez KE, Rizo AN, Tse E, Lin J, Scull NW, Thwin AC, Lucius AL, Shorter J, Southworth DR. Nat Struct Mol Biol 27 406-416 (2020)
  118. Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein. Gersch M, List A, Groll M, Sieber SA. J Biol Chem 287 9484-9494 (2012)
  119. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase. Schmitz KR, Sauer RT. Mol Microbiol 93 617-628 (2014)
  120. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9A resolution. Vincent F, Charnock SJ, Verschueren KH, Turkenburg JP, Scott DJ, Offen WA, Roberts S, Pell G, Gilbert HJ, Davies GJ, Brannigan JA. J Mol Biol 330 593-606 (2003)
  121. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. Stein A, Aloy P. PLoS Comput Biol 6 e1000789 (2010)
  122. The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease. Ishikawa T, Maurizi MR, Steven AC. J Struct Biol 146 180-188 (2004)
  123. The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function. Shen G, Yan J, Pasapula V, Luo J, He C, Clarke AK, Zhang H. Plant J 49 228-237 (2007)
  124. Tuning the strength of a bacterial N-end rule degradation signal. Wang KH, Oakes ES, Sauer RT, Baker TA. J Biol Chem 283 24600-24607 (2008)
  125. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Burton BM, Williams TL, Baker TA. Mol Cell 8 449-454 (2001)
  126. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. Fedhila S, Msadek T, Nel P, Lereclus D. J Bacteriol 184 5554-5562 (2002)
  127. Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase. Lo JH, Baker TA, Sauer RT. Protein Sci 10 551-559 (2001)
  128. Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. Kim DY, Kim DR, Ha SC, Lokanath NK, Lee CJ, Hwang HY, Kim KK. J Biol Chem 278 6543-6551 (2003)
  129. Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations. Kimber MS, Yu AY, Borg M, Leung E, Chan HS, Houry WA. Structure 18 798-808 (2010)
  130. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. Leodolter J, Warweg J, Weber-Ban E. PLoS One 10 e0125345 (2015)
  131. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Frees D, Varmanen P, Ingmer H. Mol Microbiol 41 93-103 (2001)
  132. Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics. Zhang J, Ye F, Lan L, Jiang H, Luo C, Yang CG. J Biol Chem 286 37590-37601 (2011)
  133. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Levchenko I, Grant RA, Flynn JM, Sauer RT, Baker TA. Nat Struct Mol Biol 12 520-525 (2005)
  134. A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Krupovic M, Spang A, Gribaldo S, Forterre P, Schleper C. Biochem Soc Trans 39 82-88 (2011)
  135. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. Compton CL, Schmitz KR, Sauer RT, Sello JK. ACS Chem Biol 8 2669-2677 (2013)
  136. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. Sjögren LLE, Tanabe N, Lymperopoulos P, Khan NZ, Rodermel SR, Aronsson H, Clarke AK. J Biol Chem 289 11318-11330 (2014)
  137. Structural insights into the conformational diversity of ClpP from Bacillus subtilis. Lee BG, Kim MK, Song HK. Mol Cells 32 589-595 (2011)
  138. Two-substrate association with the 20S proteasome at single-molecule level. Hutschenreiter S, Tinazli A, Model K, Tampé R. EMBO J 23 2488-2497 (2004)
  139. Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases. Botos I, Melnikov EE, Cherry S, Kozlov S, Makhovskaya OV, Tropea JE, Gustchina A, Rotanova TV, Wlodawer A. J Mol Biol 351 144-157 (2005)
  140. The structural basis for the activation and peptide recognition of bacterial ClpP. Kim DY, Kim KK. J Mol Biol 379 760-771 (2008)
  141. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. Sjögren LL, Clarke AK. Plant Cell 23 322-332 (2011)
  142. Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity. Akopian T, Kandror O, Tsu C, Lai JH, Wu W, Liu Y, Zhao P, Park A, Wolf L, Dick LR, Rubin EJ, Bachovchin W, Goldberg AL. J Biol Chem 290 11008-11020 (2015)
  143. Crystal structure of a bacterial signal Peptide peptidase. Kim AC, Oliver DC, Paetzel M. J Mol Biol 376 352-366 (2008)
  144. Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by A Clp protease complex. Baier A, Winkler W, Korte T, Lockau W, Karradt A. J Biol Chem 289 11755-11766 (2014)
  145. Differential proteasomal processing of hydrophobic and hydrophilic protein regions: contribution to cytotoxic T lymphocyte epitope clustering in HIV-1-Nef. Lucchiari-Hartz M, Lindo V, Hitziger N, Gaedicke S, Saveanu L, van Endert PM, Greer F, Eichmann K, Niedermann G. Proc Natl Acad Sci U S A 100 7755-7760 (2003)
  146. Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection. Castellano LM, Bart SM, Holmes VM, Weissman D, Shorter J. Chem Biol 22 1074-1086 (2015)
  147. Structure and Functional Properties of the Active Form of the Proteolytic Complex, ClpP1P2, from Mycobacterium tuberculosis. Li M, Kandror O, Akopian T, Dharkar P, Wlodawer A, Maurizi MR, Goldberg AL. J Biol Chem 291 7465-7476 (2016)
  148. Turned on for degradation: ATPase-independent degradation by ClpP. Bewley MC, Graziano V, Griffin K, Flanagan JM. J Struct Biol 165 118-125 (2009)
  149. Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. Wang J, Hartling JA, Flanagan JM. J Struct Biol 124 151-163 (1998)
  150. Evidence for multiple levels of regulation of Oenococcus oeni clpP-clpL locus expression in response to stress. Beltramo C, Grandvalet C, Pierre F, Guzzo J. J Bacteriol 186 2200-2205 (2004)
  151. Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Clarke AK, Schelin J, Porankiewicz J. Plant Mol Biol 37 791-801 (1998)
  152. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S, Pozzi G. Front Microbiol 5 687 (2014)
  153. Substrate sequestration by a proteolytically inactive Lon mutant. Van Melderen L, Gottesman S. Proc Natl Acad Sci U S A 96 6064-6071 (1999)
  154. Optimizing ring assembly reveals the strength of weak interactions. Deeds EJ, Bachman JA, Fontana W. Proc Natl Acad Sci U S A 109 2348-2353 (2012)
  155. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, Thomas VC, Frees D. Sci Rep 7 11739 (2017)
  156. The N-degradome of Escherichia coli: limited proteolysis in vivo generates a large pool of proteins bearing N-degrons. Humbard MA, Surkov S, De Donatis GM, Jenkins LM, Maurizi MR. J Biol Chem 288 28913-28924 (2013)
  157. Eukaryotic and prokaryotic stomatins: the proteolytic link. Green JB, Fricke B, Chetty MC, von Düring M, Preston GF, Stewart GW. Blood Cells Mol Dis 32 411-422 (2004)
  158. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. Osterås M, Stotz A, Schmid Nuoffer S, Jenal U. J Bacteriol 181 3039-3050 (1999)
  159. The ClpP N-terminus coordinates substrate access with protease active site reactivity. Jennings LD, Bohon J, Chance MR, Licht S. Biochemistry 47 11031-11040 (2008)
  160. The Protein Chaperone ClpX Targets Native and Non-native Aggregated Substrates for Remodeling, Disassembly, and Degradation with ClpP. LaBreck CJ, May S, Viola MG, Conti J, Camberg JL. Front Mol Biosci 4 26 (2017)
  161. Exome analysis identified a novel missense mutation in the CLPP gene in a consanguineous Saudi family expanding the clinical spectrum of Perrault Syndrome type-3. Ahmed S, Jelani M, Alrayes N, Mohamoud HS, Almramhi MM, Anshasi W, Ahmed NA, Wang J, Wang J, Nasir J, Al-Aama JY. J Neurol Sci 353 149-154 (2015)
  162. The clpP multigenic family in Streptomyces lividans: conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Viala J, Rapoport G, Mazodier P. Mol Microbiol 38 602-612 (2000)
  163. Escherichia coli ClpB is a non-processive polypeptide translocase. Li T, Weaver CL, Lin J, Duran EC, Miller JM, Lucius AL. Biochem J 470 39-52 (2015)
  164. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Shin Y, Davis JH, Brau RR, Martin A, Kenniston JA, Baker TA, Sauer RT, Lang MJ. Proc Natl Acad Sci U S A 106 19340-19345 (2009)
  165. Synchrotron protein footprinting supports substrate translocation by ClpA via ATP-induced movements of the D2 loop. Bohon J, Jennings LD, Phillips CM, Licht S, Chance MR. Structure 16 1157-1165 (2008)
  166. The mechanism of caseinolytic protease (ClpP) inhibition. Gersch M, Gut F, Korotkov VS, Lehmann J, Böttcher T, Rusch M, Hedberg C, Waldmann H, Klebe G, Sieber SA. Angew Chem Int Ed Engl 52 3009-3014 (2013)
  167. Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry. Sowole MA, Alexopoulos JA, Cheng YQ, Ortega J, Konermann L. J Mol Biol 425 4508-4519 (2013)
  168. Activity control of the ClpC adaptor McsB in Bacillus subtilis. Elsholz AK, Hempel K, Michalik S, Gronau K, Becher D, Hecker M, Gerth U. J Bacteriol 193 3887-3893 (2011)
  169. ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans. Viala J, Mazodier P. Mol Microbiol 44 633-643 (2002)
  170. Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. Ow DS, Lee RM, Nissom PM, Philp R, Oh SK, Yap MG. J Biotechnol 131 261-269 (2007)
  171. Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Vahidi S, Ripstein ZA, Bonomi M, Yuwen T, Mabanglo MF, Juravsky JB, Rizzolo K, Velyvis A, Houry WA, Vendruscolo M, Rubinstein JL, Kay LE. Proc Natl Acad Sci U S A 115 E6447-E6456 (2018)
  172. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Thibault G, Yudin J, Wong P, Tsitrin V, Sprangers R, Zhao R, Houry WA. Proc Natl Acad Sci U S A 103 17724-17729 (2006)
  173. The structure of aspartyl dipeptidase reveals a unique fold with a Ser-His-Glu catalytic triad. Håkansson K, Wang AH, Miller CG. Proc Natl Acad Sci U S A 97 14097-14102 (2000)
  174. Consistency analysis of similarity between multiple alignments: prediction of protein function and fold structure from analysis of local sequence motifs. Kunin V, Chan B, Sitbon E, Lithwick G, Pietrokovski S. J Mol Biol 307 939-949 (2001)
  175. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP. Miller JM, Miller JM, Lin J, Li T, Lucius AL. J Mol Biol 425 2795-2812 (2013)
  176. Helix unfolding/refolding characterizes the functional dynamics of Staphylococcus aureus Clp protease. Ye F, Zhang J, Liu H, Hilgenfeld R, Zhang R, Kong X, Li L, Lu J, Zhang X, Li D, Jiang H, Yang CG, Luo C. J Biol Chem 288 17643-17653 (2013)
  177. Mitochondrial localization and oligomeric structure of HClpP, the human homologue of E. coli ClpP. de Sagarra MR, Mayo I, Marco S, Rodríguez-Vilariño S, Oliva J, Carrascosa JL, Casta ñ JG. J Mol Biol 292 819-825 (1999)
  178. Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. Lowth BR, Kirstein-Miles J, Saiyed T, Brötz-Oesterhelt H, Morimoto RI, Truscott KN, Dougan DA. J Struct Biol 179 193-201 (2012)
  179. The chloroplast ClpP complex in Chlamydomonas reinhardtii contains an unusual high molecular mass subunit with a large apical domain. Majeran W, Friso G, van Wijk KJ, Vallon O. FEBS J 272 5558-5571 (2005)
  180. ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter. Pummi T, Leskelä S, Wahlström E, Gerth U, Tjalsma H, Hecker M, Sarvas M, Kontinen VP. J Bacteriol 184 1010-1018 (2002)
  181. An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Vahidi S, Ripstein ZA, Juravsky JB, Rennella E, Goldberg AL, Mittermaier AK, Rubinstein JL, Kay LE. Proc Natl Acad Sci U S A 117 5895-5906 (2020)
  182. Letter Antibodies to Clp protease in primary biliary cirrhosis: possible role of a mimicking T-cell epitope. Baum H, Bogdanos DP, Vergani D. J Hepatol 34 785-787 (2001)
  183. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Ow DS, Lim DY, Nissom PM, Camattari A, Wong VV. Microb Cell Fact 9 22 (2010)
  184. Genome-wide analysis of alternative splicing in Volvox carteri. Kianianmomeni A, Ong CS, Rätsch G, Hallmann A. BMC Genomics 15 1117 (2014)
  185. Structure and mechanism of the caseinolytic protease ClpP1/2 heterocomplex from Listeria monocytogenes. Dahmen M, Vielberg MT, Groll M, Sieber SA. Angew Chem Int Ed Engl 54 3598-3602 (2015)
  186. Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2. Benaroudj N, Raynal B, Miot M, Ortiz-Lombardia M. BMC Biochem 12 61 (2011)
  187. Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon. Wickner S, Maurizi MR. Proc Natl Acad Sci U S A 96 8318-8320 (1999)
  188. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. Thibault G, Tsitrin Y, Davidson T, Gribun A, Houry WA. EMBO J 25 3367-3376 (2006)
  189. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry. Maglica Z, Kolygo K, Weber-Ban E. Structure 17 508-516 (2009)
  190. TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system. Fico S, Mahillon J. BMC Genomics 7 259 (2006)
  191. The 10.8-A structure of Saccharomyces cerevisiae phosphofructokinase determined by cryoelectron microscopy: localization of the putative fructose 6-phosphate binding sites. Ruiz T, Mechin I, Bär J, Rypniewski W, Kopperschläger G, Radermacher M. J Struct Biol 143 124-134 (2003)
  192. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Zamboni N, Fischer E, Muffler A, Wyss M, Hohmann HP, Sauer U. Biotechnol Bioeng 89 219-232 (2005)
  193. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Okuno T, Yamanaka K, Ogura T. Genes Cells 11 261-268 (2006)
  194. Initial Characterization of the Two ClpP Paralogs of Chlamydia trachomatis Suggests Unique Functionality for Each. Wood NA, Chung KY, Blocker AM, Rodrigues de Almeida N, Conda-Sheridan M, Fisher DJ, Ouellette SP. J Bacteriol 201 e00635-18 (2019)
  195. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Burton BM, Baker TA. Chem Biol 10 463-472 (2003)
  196. Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P. Lavey NP, Coker JA, Ruben EA, Duerfeldt AS. J Nat Prod 79 1193-1197 (2016)
  197. Staphylococcus aureus ClpYQ plays a minor role in stress survival. Frees D, Thomsen LE, Ingmer H. Arch Microbiol 183 286-291 (2005)
  198. Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Felix J, Weinhäupl K, Chipot C, Dehez F, Hessel A, Gauto DF, Morlot C, Abian O, Gutsche I, Velazquez-Campoy A, Schanda P, Fraga H. Sci Adv 5 eaaw3818 (2019)
  199. The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Pan S, Malik IT, Thomy D, Henrichfreise B, Sass P. Sci Rep 9 14129 (2019)
  200. Cell Division Protein FtsZ Is Unfolded for N-Terminal Degradation by Antibiotic-Activated ClpP. Silber N, Pan S, Schäkermann S, Mayer C, Brötz-Oesterhelt H, Sass P. mBio 11 e01006-20 (2020)
  201. The ClpP protease homologue is required for the transmission traits and cell division of the pathogen Legionella pneumophila. Li XH, Zeng YL, Gao Y, Zheng XC, Zhang QF, Zhou SN, Lu YJ. BMC Microbiol 10 54 (2010)
  202. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii. Yokoyama H, Matsui E, Akiba T, Harata K, Matsui I. J Mol Biol 358 1152-1164 (2006)
  203. Species variation in ATP-dependent protein degradation: protease profiles differ between mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Knipfer N, Seth A, Roudiak SG, Shrader TE. Gene 231 95-104 (1999)
  204. Structural insights into the inactive subunit of the apicoplast-localized caseinolytic protease complex of Plasmodium falciparum. El Bakkouri M, Rathore S, Calmettes C, Wernimont AK, Liu K, Sinha D, Asad M, Jung P, Hui R, Mohmmed A, Houry WA. J Biol Chem 288 1022-1031 (2013)
  205. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. Okuno T, Yamanaka K, Ogura T. J Struct Biol 156 109-114 (2006)
  206. Interaction specificity between the chaperone and proteolytic components of the cyanobacterial Clp protease. Tryggvesson A, Ståhlberg FM, Mogk A, Zeth K, Clarke AK. Biochem J 446 311-320 (2012)
  207. The Escherichia coli heat shock protein ClpB restores acquired thermotolerance to a cyanobacterial clpB deletion mutant. Eriksson MJ, Clarke AK. Cell Stress Chaperones 5 255-264 (2000)
  208. Ureadepsipeptides as ClpP Activators. Griffith EC, Zhao Y, Singh AP, Conlon BP, Tangallapally R, Shadrick WR, Liu J, Wallace MJ, Yang L, Elmore JM, Li Y, Zheng Z, Miller DJ, Cheramie MN, Lee RB, LaFleur MD, Lewis K, Lee RE. ACS Infect Dis 5 1915-1925 (2019)
  209. A Novel Missense Mutation in the CLPP Gene Causing Perrault Syndrome Type 3 in a Turkish Family. Dursun F, Mohamoud HS, Karim N, Naeem M, Jelani M, Kırmızıbekmez H. J Clin Res Pediatr Endocrinol 8 472-477 (2016)
  210. ClpP-deletion impairs the virulence of Legionella pneumophila and the optimal translocation of effector proteins. Zhao BB, Li XH, Zeng YL, Lu YJ. BMC Microbiol 16 174 (2016)
  211. Structural determinants stabilizing the axial channel of ClpP for substrate translocation. Alexopoulos J, Ahsan B, Homchaudhuri L, Husain N, Cheng YQ, Ortega J. Mol Microbiol 90 167-180 (2013)
  212. The mechanism of temperature-induced bacterial HtrA activation. Kim DY, Kwon E, Shin YK, Kweon DH, Kim KK. J Mol Biol 377 410-420 (2008)
  213. The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and lambda. Effantin G, Figueroa-Bossi N, Schoehn G, Bossi L, Conway JF. Virology 402 355-365 (2010)
  214. Analysis of protein structures reveals regions of rare backbone conformation at functional sites. Petock JM, Torshin IY, Weber IT, Harrison RW. Proteins 53 872-879 (2003)
  215. Insights into ClpXP proteolysis: heterooligomerization and partial deactivation enhance chaperone affinity and substrate turnover in Listeria monocytogenes. Balogh D, Dahmen M, Stahl M, Poreba M, Gersch M, Drag M, Sieber SA. Chem Sci 8 1592-1600 (2017)
  216. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Amor AJ, Schmitz KR, Baker TA, Sauer RT. Protein Sci 28 756-765 (2019)
  217. Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion. Hahn A, Stevanovic M, Brouwer E, Bublak D, Tripp J, Schorge T, Karas M, Schleiff E. Environ Microbiol 17 767-780 (2015)
  218. A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens. Lin HH, Yu M, Sriramoju MK, Hsu SD, Liu CT, Lai EM. Front Microbiol 10 3077 (2019)
  219. A new principle of oligomerization of plant DEG7 protease based on interactions of degenerated protease domains. Schuhmann H, Mogg U, Adamska I. Biochem J 435 167-174 (2011)
  220. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP. Sharma S, Hoskins JR, Wickner S. J Biol Chem 280 5449-5455 (2005)
  221. Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis. Yoo SJ, Kim HH, Shin DH, Lee CS, Seong IS, Seol JH, Shimbara N, Tanaka K, Chung CH. J Biol Chem 273 22929-22935 (1998)
  222. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species. Chowdhury T, Chien P, Ebrahim S, Sauer RT, Baker TA. Protein Sci 19 242-254 (2010)
  223. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, Attwood K, Wang J, Spernyak JA, Rath E, Yadav N, Haller D, Goodrich DW, Tang DG, Chandra D. J Clin Invest 132 e149906 (2022)
  224. Capsids of tricorn protease studied by electron cryomicroscopy. Walz J, Koster AJ, Tamura T, Baumeister W. J Struct Biol 128 65-68 (1999)
  225. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts. Ferreira AB, De Oliveira MN, Freitas FS, Alfenas-Zerbini P, Da Silva DF, De Queiroz MV, Borges AC, De Moraes CA. Benef Microbes 4 367-374 (2013)
  226. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. Kang MS, Kim SR, Kwack P, Lim BK, Ahn SW, Rho YM, Seong IS, Park SC, Eom SH, Cheong GW, Chung CH. EMBO J 22 2893-2902 (2003)
  227. Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans. Zhang J, Banerjee A, Biswas I. J Bacteriol 191 1056-1065 (2009)
  228. Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data. Wang J, Wing RA. Acta Crystallogr D Biol Crystallogr 70 1491-1497 (2014)
  229. Molecular and structural insights into an asymmetric proteolytic complex (ClpP1P2) from Mycobacterium smegmatis. Nagpal J, Paxman JJ, Zammit JE, Thomas AA, Truscott KN, Heras B, Dougan DA. Sci Rep 9 18019 (2019)
  230. Mycobacterium tuberculosis RsdA provides a conformational rationale for selective regulation of σ-factor activity by proteolysis. Jaiswal RK, Prabha TS, Manjeera G, Gopal B. Nucleic Acids Res 41 3414-3423 (2013)
  231. Stress responses in Prochlorococcus MIT9313 vs. SS120 involve differential expression of genes encoding proteases ClpP, FtsH and Lon. Gómez-Baena G, Rangel OA, López-Lozano A, García-Fernández JM, Diez J. Res Microbiol 160 567-575 (2009)
  232. Systematic comparison of catalytic mechanisms of hydrolysis and transfer reactions classified in the EzCatDB database. Nagano N, Noguchi T, Akiyama Y. Proteins 66 147-159 (2007)
  233. ClpP inhibitors are produced by a widespread family of bacterial gene clusters. Culp EJ, Sychantha D, Hobson C, Pawlowski AC, Prehna G, Wright GD. Nat Microbiol 7 451-462 (2022)
  234. Consequences of Depsipeptide Substitution on the ClpP Activation Activity of Antibacterial Acyldepsipeptides. Li Y, Lavey NP, Coker JA, Knobbe JE, Truong DC, Yu H, Lin YS, Nimmo SL, Duerfeldt AS. ACS Med Chem Lett 8 1171-1176 (2017)
  235. Cold Atmospheric-Pressure Plasma Caused Protein Damage in Methicillin-Resistant Staphylococcus aureus Cells in Biofilms. Guo L, Yang L, Qi Y, Niyazi G, Huang L, Gou L, Wang Z, Zhang L, Liu D, Wang X, Chen H, Kong MG. Microorganisms 9 1072 (2021)
  236. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity. Bell TA, Baker TA, Sauer RT. Biochemistry 57 6787-6796 (2018)
  237. Multistep processing of an insertion sequence in an essential subunit of the chloroplast ClpP complex. Derrien B, Majeran W, Wollman FA, Vallon O. J Biol Chem 284 15408-15415 (2009)
  238. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Hwang W, Lang MJ. Cell Mol Bioeng 6 65-73 (2013)
  239. Optimization of ClpXP activity and protein synthesis in an E. coli extract-based cell-free expression system. Shi X, Wu T, M Cole C, K Devaraj N, Joseph S. Sci Rep 8 3488 (2018)
  240. Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana. Kim L, Heo J, Kwon DH, Shin JS, Jang SH, Park ZY, Song HK. Protein Sci 30 700-708 (2021)
  241. A conserved ClpP-like protease involved in spore outgrowth in Bacillus subtilis. Traag BA, Pugliese A, Setlow B, Setlow P, Losick R. Mol Microbiol 90 160-166 (2013)
  242. Atypical caseinolytic protease homolog from Plasmodium falciparum possesses unusual substrate preference and a functional nuclear localization signal. Lin W, Chan M, Sim TS. Parasitol Res 105 1715-1722 (2009)
  243. Characterization of ClpS2, an essential adaptor protein for the cyanobacterium Synechococcus elongatus. Tryggvesson A, Ståhlberg FM, Töpel M, Tanabe N, Mogk A, Clarke AK. FEBS Lett 589 4039-4046 (2015)
  244. Consequences of the loss of catalytic triads in chloroplast CLPPR protease core complexes in vivo. Liao JR, Friso G, Kim J, van Wijk KJ. Plant Direct 2 e00086 (2018)
  245. Contribution of ClpP to stress tolerance and virulence properties of Streptococcus mutans. Hou XH, Zhang JQ, Song XY, Ma XB, Zhang SY. J Basic Microbiol 54 1222-1232 (2014)
  246. McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation. Hajdusits B, Suskiewicz MJ, Hundt N, Meinhart A, Kurzbauer R, Leodolter J, Kukura P, Clausen T. Elife 10 e63505 (2021)
  247. The Roles of UmuD in Regulating Mutagenesis. Ollivierre JN, Fang J, Beuning PJ. J Nucleic Acids 2010 947680 (2010)
  248. Acyldepsipeptide Antibiotics and a Bioactive Fragment Thereof Differentially Perturb Mycobacterium tuberculosis ClpXP1P2 Activity in Vitro. Schmitz KR, Handy EL, Compton CL, Gupta S, Bishai WR, Sauer RT, Sello JK. ACS Chem Biol 18 724-733 (2023)
  249. Escherichia coli Quorum-Sensing EDF, A Peptide Generated by Novel Multiple Distinct Mechanisms and Regulated by trans-Translation. Kumar S, Kolodkin-Gal I, Vesper O, Alam N, Schueler-Furman O, Moll I, Engelberg-Kulka H. mBio 7 e02034-15 (2016)
  250. Examination of a Structural Model of Peptidomimicry by Cyclic Acyldepsipeptide Antibiotics in Their Interaction with the ClpP Peptidase. Carney DW, Schmitz KR, Scruse AC, Sauer RT, Sello JK. Chembiochem 16 1875-1879 (2015)
  251. Identification of Novel Inhibitors against Coactivator Associated Arginine Methyltransferase 1 Based on Virtual Screening and Biological Assays. Ye F, Zhang W, Lu W, Xie Y, Jiang H, Jin J, Luo C. Biomed Res Int 2016 7086390 (2016)
  252. In vivo inactivation of the mycobacterial integral membrane stearoyl coenzyme A desaturase DesA3 by a C-terminus-specific degradation process. Chang Y, Wesenberg GE, Bingman CA, Fox BG. J Bacteriol 190 6686-6696 (2008)
  253. Metabolic Perturbations in a Bacillus subtilis clpP Mutant during Glucose Starvation. Schultz D, Schlüter R, Gerth U, Lalk M. Metabolites 7 E63 (2017)
  254. Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC. Miller EJ, Meyer AS, Frydman J. Protein Sci 15 1522-1526 (2006)
  255. Structural insights into ClpP protease side exit pore-opening by a pH drop coupled with substrate hydrolysis. Kim L, Lee BG, Kim M, Kim MK, Kwon DH, Kim H, Brötz-Oesterhelt H, Roh SH, Song HK. EMBO J 41 e109755 (2022)
  256. Crystal structure of Bacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus. Rho SH, Park HH, Kang GB, Im YJ, Kang MS, Lim BK, Seong IS, Seol J, Chung CH, Wang J, Eom SH. Proteins 71 1020-1026 (2008)
  257. Molecular Characterization of the ClpC AAA+ ATPase in the Biology of Chlamydia trachomatis. Pan S, Jensen AA, Wood NA, Henrichfreise B, Brötz-Oesterhelt H, Fisher DJ, Sass P, Ouellette SP. mBio 14 e0007523 (2023)
  258. Specificity Distorted: Chemical Induction of Biological Paracatalysis. Callahan BP, Ciulla DA, Wagner AG, Xu Z, Zhang X. Biochemistry 59 3517-3522 (2020)
  259. The strand-helix motif is a recurring theme in biological hydrolysis. Does the conformation of the Ramachandran outlier enhance its electrophilicity? Håkansson K. Int J Biol Macromol 30 273-277 (2002)
  260. Activation of a dormant ClpX recognition motif of bacteriophage Mu repressor by inducing high local flexibility. Marshall-Batty KR, Nakai H. J Biol Chem 283 9060-9070 (2008)
  261. Acyldepsipeptide Probes Facilitate Specific Detection of Caseinolytic Protease P Independent of Its Oligomeric and Activity State. Eyermann B, Meixner M, Brötz-Oesterhelt H, Antes I, Sieber SA. Chembiochem 21 235-240 (2020)
  262. Chemical activators of ClpP: turning Jekyll into Hyde. Dougan DA. Chem Biol 18 1072-1074 (2011)
  263. Degradation of MinD oscillator complexes by Escherichia coli ClpXP. LaBreck CJ, Trebino CE, Ferreira CN, Morrison JJ, DiBiasio EC, Conti J, Camberg JL. J Biol Chem 296 100162 (2021)
  264. DnaJ and ClpX Are Required for HitRS and HssRS Two-Component System Signaling in Bacillus anthracis. Laut CL, Leasure CS, Pi H, Carlin SM, Chu ML, Hillebrand GH, Lin HK, Yi XI, Stauff DL, Skaar EP. Infect Immun 90 e0056021 (2022)
  265. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. Khara P, Biswas S, Biswas I. Microbiology (Reading) 166 641-653 (2020)
  266. Comment Protein unfolding. Trapped in the act. Baker TA. Nature 401 29-30 (1999)
  267. Structure of the drug target ClpC1 unfoldase in action provides insights on antibiotic mechanism of action. Weinhäupl K, Gragera M, Bueno-Carrasco MT, Arranz R, Krandor O, Akopian T, Soares R, Rubin E, Felix J, Fraga H. J Biol Chem 298 102553 (2022)
  268. Antibiotic Acyldepsipeptides Stimulate the Streptomyces Clp-ATPase/ClpP Complex for Accelerated Proteolysis. Reinhardt L, Thomy D, Lakemeyer M, Westermann LM, Ortega J, Sieber SA, Sass P, Brötz-Oesterhelt H. mBio 13 e0141322 (2022)
  269. Complete Chloroplast Genome of Gladiolus gandavensis (Gladiolus) and Genetic Evolutionary Analysis. Qian R, Ye Y, Hu Q, Ma X, Zheng J. Genes (Basel) 13 1599 (2022)
  270. Comment Old approach yields new antibiotic. Blanchard JS. Nat Med 11 1045-1046 (2005)
  271. The cryo-EM structure of the chloroplast ClpP complex. Wang N, Wang Y, Zhao Q, Zhang X, Peng C, Peng C, Zhang W, Liu Y, Vallon O, Schroda M, Cong Y, Liu C. Nat Plants 7 1505-1515 (2021)
  272. Comment Anything a ClpA can do, two ClpAs can do better. Burston SG. Structure 17 483-484 (2009)
  273. Could confounding the allosteric communication of biotic machinery be an alternative path to antibiotics? Byrd RA. Proc Natl Acad Sci U S A 117 8222-8224 (2020)
  274. Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Huanca-Juarez J, Nascimento-Silva EA, Silva NH, Silva-Rocha R, Guazzaroni ME. Front Microbiol 14 1268315 (2023)
  275. Interactome Analysis Identifies MSMEI_3879 as a Substrate of Mycolicibacterium smegmatis ClpC1. Ogbonna EC, Anderson HR, Beardslee PC, Bheemreddy P, Schmitz KR. Microbiol Spectr 11 e0454822 (2023)
  276. The mobilome of Lactobacillus crispatus M247 includes two novel genetic elements: Tn7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247. Colombini L, Santoro F, Tirziu M, Lazzeri E, Morelli L, Pozzi G, Iannelli F. Microb Genom 9 (2023)
  277. Trans-targeting of protease substrates by conformationally activating a regulable ClpX-recognition motif. Marshall-Batty KR, Nakai H. Mol Microbiol 67 920-933 (2008)


Related citations provided by authors (1)

  1. Sequence and Structure of Clp P, the Proteolytic Component of the ATP-Dependent Clp Protease of Escherichia Coli. Maurizi MR, Clark WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S J. Biol. Chem. 265 12536- (1990)