1tf6 Citations

Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex.

Proc Natl Acad Sci U S A 95 2938-43 (1998)
Cited: 129 times
EuropePMC logo PMID: 9501194

Abstract

The crystal structure of the six NH2-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound with 31 bp of the 5S rRNA gene promoter has been determined at 3.1 A resolution. Individual zinc fingers are positioned differently in the major groove and across the minor groove of DNA to span the entire length of the duplex. These results show how TFIIIA can recognize several separated DNA sequences by using fewer fingers than necessary for continuous winding in the major groove.

Reviews - 1tf6 mentioned but not cited (2)

  1. Macromolecular mimicry. Nissen P, Kjeldgaard M, Nyborg J. EMBO J 19 489-495 (2000)
  2. Structure-based modeling of protein: DNA specificity. Joyce AP, Zhang C, Bradley P, Havranek JJ. Brief Funct Genomics 14 39-49 (2015)

Articles - 1tf6 mentioned but not cited (8)

  1. Structural classification of zinc fingers: survey and summary. Krishna SS, Majumdar I, Grishin NV. Nucleic Acids Res 31 532-550 (2003)
  2. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Nolte RT, Conlin RM, Harrison SC, Brown RS. Proc Natl Acad Sci U S A 95 2938-2943 (1998)
  3. Structure-based prediction of C2H2 zinc-finger binding specificity: sensitivity to docking geometry. Siggers TW, Honig B. Nucleic Acids Res 35 1085-1097 (2007)
  4. An expanded binding model for Cys2His2 zinc finger protein-DNA interfaces. Persikov AV, Singh M. Phys Biol 8 035010 (2011)
  5. Electrostatic hot spot on DNA-binding domains mediates phosphate desolvation and the pre-organization of specificity determinant side chains. Temiz AN, Benos PV, Camacho CJ. Nucleic Acids Res 38 2134-2144 (2010)
  6. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  7. Structural and functional analysis of the human cone-rod homeobox transcription factor. Clanor PB, Buchholz CN, Hayes JE, Friedman MA, White AM, Enke RA, Berndsen CE. Proteins 90 1584-1593 (2022)
  8. Letter Native, sequential protein folding via anchored N and C protein termini. Alberti S. Proc Natl Acad Sci U S A 113 E3189-91 (2016)


Reviews citing this publication (32)

  1. Intrinsically disordered protein. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. J Mol Graph Model 19 26-59 (2001)
  2. Genome editing with engineered zinc finger nucleases. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Nat Rev Genet 11 636-646 (2010)
  3. DNA recognition by Cys2His2 zinc finger proteins. Wolfe SA, Nekludova L, Pabo CO. Annu Rev Biophys Biomol Struct 29 183-212 (2000)
  4. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Ohlsson R, Renkawitz R, Lobanenkov V. Trends Genet 17 520-527 (2001)
  5. Design and selection of novel Cys2His2 zinc finger proteins. Pabo CO, Peisach E, Grant RA. Annu Rev Biochem 70 313-340 (2001)
  6. Survey and summary: transcription by RNA polymerases I and III. Paule MR, White RJ. Nucleic Acids Res 28 1283-1298 (2000)
  7. Multiple modes of RNA recognition by zinc finger proteins. Hall TM. Curr Opin Struct Biol 15 367-373 (2005)
  8. Recognition of specific DNA sequences. Garvie CW, Wolberger C. Mol Cell 8 937-946 (2001)
  9. Drug discovery with engineered zinc-finger proteins. Jamieson AC, Miller JC, Pabo CO. Nat Rev Drug Discov 2 361-368 (2003)
  10. Mechanism of action in thalidomide teratogenesis. Stephens TD, Bunde CJ, Fillmore BJ. Biochem Pharmacol 59 1489-1499 (2000)
  11. Having it both ways: transcription factors that bind DNA and RNA. Cassiday LA, Maher LJ. Nucleic Acids Res 30 4118-4126 (2002)
  12. Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. Giedroc DP, Chen X, Apuy JL. Antioxid Redox Signal 3 577-596 (2001)
  13. 5 S rRNA: structure and interactions. Szymański M, Barciszewska MZ, Erdmann VA, Barciszewski J. Biochem J 371 641-651 (2003)
  14. Roles of intrinsic disorder in protein-nucleic acid interactions. Dyson HJ. Mol Biosyst 8 97-104 (2012)
  15. UV-Induced DNA Damage and Mutagenesis in Chromatin. Mao P, Wyrick JJ, Roberts SA, Smerdon MJ. Photochem Photobiol 93 216-228 (2017)
  16. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Quintal SM, dePaula QA, Farrell NP. Metallomics 3 121-139 (2011)
  17. New redesigned zinc-finger proteins: design strategy and its application. Negi S, Imanishi M, Matsumoto M, Sugiura Y. Chemistry 14 3236-3249 (2008)
  18. Design of novel sequence-specific DNA-binding proteins. Segal DJ, Barbas CF. Curr Opin Chem Biol 4 34-39 (2000)
  19. Regulation of gene expression with pyrrole-imidazole polyamides. Melander C, Burnett R, Gottesfeld JM. J Biotechnol 112 195-220 (2004)
  20. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C. FEBS J 282 4480-4496 (2015)
  21. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Ordemann JM, Austin RN. Metallomics 8 579-588 (2016)
  22. Designed transcription factors as tools for therapeutics and functional genomics. Urnov FD, Rebar EJ. Biochem Pharmacol 64 919-923 (2002)
  23. Potato Spindle Tuber Viroid RNA-Templated Transcription: Factors and Regulation. Dissanayaka Mudiyanselage SD, Qu J, Tian N, Jiang J, Wang Y. Viruses 10 E503 (2018)
  24. Structure, function and regulation of Transcription Factor IIIA: From Xenopus to Arabidopsis. Layat E, Probst AV, Tourmente S. Biochim Biophys Acta 1829 274-282 (2013)
  25. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. Vannini A. Biochim Biophys Acta 1829 258-264 (2013)
  26. In vitro chromatin templates to study nucleotide excision repair. Liu X. DNA Repair (Amst) 36 68-76 (2015)
  27. Structural studies of eukaryotic elongation factors. Andersen GR, Nyborg J. Cold Spring Harb Symp Quant Biol 66 425-437 (2001)
  28. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system. Yang Z, Hayes JJ. Biochem Cell Biol 81 177-184 (2003)
  29. Structure-specific nucleic acid recognition by L-motifs and their diverse roles in expression and regulation of the genome. Thapar R. Biochim Biophys Acta 1849 677-687 (2015)
  30. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Neuhaus D. Prog Nucl Magn Reson Spectrosc 130-131 62-105 (2022)
  31. Gene therapy for obesity. Zolotukhin S. Expert Opin Biol Ther 5 347-357 (2005)
  32. A half century of exploring DNA excision repair in chromatin. Smerdon MJ, Wyrick JJ, Delaney S. J Biol Chem 299 105118 (2023)

Articles citing this publication (87)

  1. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB. Nature 415 813-817 (2002)
  2. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Segal DJ, Dreier B, Beerli RR, Barbas CF. Proc Natl Acad Sci U S A 96 2758-2763 (1999)
  3. A-form conformational motifs in ligand-bound DNA structures. Lu XJ, Shakked Z, Olson WK. J Mol Biol 300 819-840 (2000)
  4. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  5. Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA. Hashimoto H, Wang D, Horton JR, Zhang X, Corces VG, Cheng X. Mol Cell 66 711-720.e3 (2017)
  6. Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors. Dreier B, Fuller RP, Segal DJ, Lund CV, Blancafort P, Huber A, Koksch B, Barbas CF. J Biol Chem 280 35588-35597 (2005)
  7. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. Wolfe SA, Greisman HA, Ramm EI, Pabo CO. J Mol Biol 285 1917-1934 (1999)
  8. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Lu D, Searles MA, Klug A. Nature 426 96-100 (2003)
  9. Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains. Dreier B, Segal DJ, Barbas CF. J Mol Biol 303 489-502 (2000)
  10. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. Laity JH, Dyson HJ, Wright PE. J Mol Biol 295 719-727 (2000)
  11. Predicting DNA recognition by Cys2His2 zinc finger proteins. Persikov AV, Osada R, Singh M. Bioinformatics 25 22-29 (2009)
  12. Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. Stoll R, Lee BM, Debler EW, Laity JH, Wilson IA, Dyson HJ, Wright PE. J Mol Biol 372 1227-1245 (2007)
  13. The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Schuetz A, Nana D, Rose C, Zocher G, Milanovic M, Koenigsmann J, Blasig R, Heinemann U, Carstanjen D. Cell Mol Life Sci 68 3121-3131 (2011)
  14. Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Yin M, Wang J, Wang M, Li X, Zhang M, Wu Q, Wang Y. Cell Res 27 1365-1377 (2017)
  15. Design of polyzinc finger peptides with structured linkers. Moore M, Choo Y, Klug A. Proc Natl Acad Sci U S A 98 1432-1436 (2001)
  16. Induced fit and "lock and key" recognition of 5S RNA by zinc fingers of transcription factor IIIA. Lee BM, Xu J, Clarkson BK, Martinez-Yamout MA, Dyson HJ, Case DA, Gottesfeld JM, Wright PE. J Mol Biol 357 275-291 (2006)
  17. The Hantavirus Glycoprotein G1 Tail Contains Dual CCHC-type Classical Zinc Fingers. Estrada DF, Boudreaux DM, Zhong D, St Jeor SC, De Guzman RN. J Biol Chem 284 8654-8660 (2009)
  18. Zn-, Cd-, and Pb-transcription factor IIIA: properties, DNA binding, and comparison with TFIIIA-finger 3 metal complexes. Huang M, Krepkiy D, Hu W, Petering DH. J Inorg Biochem 98 775-785 (2004)
  19. 5S ribosomal RNA database Y2K. Szymanski M, Barciszewska MZ, Barciszewski J, Erdmann VA. Nucleic Acids Res 28 166-167 (2000)
  20. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. Han L, Marcus E, D'Silva S, Phizicky EM. RNA 23 406-419 (2017)
  21. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex. Tsui V, Radhakrishnan I, Wright PE, Case DA. J Mol Biol 302 1101-1117 (2000)
  22. Solution structure of the transactivation domain of ATF-2 comprising a zinc finger-like subdomain and a flexible subdomain. Nagadoi A, Nakazawa K, Uda H, Okuno K, Maekawa T, Ishii S, Nishimura Y. J Mol Biol 287 593-607 (1999)
  23. Identification of a transcription factor IIIA-interacting protein. Moreland RJ, Dresser ME, Rodgers JS, Roe BA, Conaway JW, Conaway RC, Hanas JS. Nucleic Acids Res 28 1986-1993 (2000)
  24. Crystallographic snapshots along a protein-induced DNA-bending pathway. Horton NC, Perona JJ. Proc Natl Acad Sci U S A 97 5729-5734 (2000)
  25. Structure-based design of an RNA-binding zinc finger. McColl DJ, Honchell CD, Frankel AD. Proc Natl Acad Sci U S A 96 9521-9526 (1999)
  26. ZNF322, a novel human C2H2 Kruppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways. Li Y, Wang Y, Zhang C, Yuan W, Wang J, Zhu C, Chen L, Huang W, Zeng W, Wu X, Liu M. Biochem Biophys Res Commun 325 1383-1392 (2004)
  27. Interprotein metal exchange between transcription factor IIIa and apo-metallothionein. Huang M, Shaw III CF, Petering DH. J Inorg Biochem 98 639-648 (2004)
  28. Metal binding properties of zinc fingers with a naturally altered metal binding site. Kluska K, Adamczyk J, Krężel A. Metallomics 10 248-263 (2018)
  29. Selected base sequence outside the target binding site of zinc finger protein Sp1. Nagaoka M, Shiraishi Y, Sugiura Y. Nucleic Acids Res 29 4920-4929 (2001)
  30. Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Röser M, Winterfeld G, Grebenstein B, Hemleben V. Mol Phylogenet Evol 21 198-217 (2001)
  31. Assessment of zinc finger orientations by residual dipolar coupling constants. Tsui V, Zhu L, Huang TH, Wright PE, Case DA. J Biomol NMR 16 9-21 (2000)
  32. DNA binding and gene activation properties of the Nmp4 nuclear matrix transcription factors. Torrungruang K, Alvarez M, Shah R, Onyia JE, Rhodes SJ, Bidwell JP. J Biol Chem 277 16153-16159 (2002)
  33. The core histone N-terminal tail domains negatively regulate binding of transcription factor IIIA to a nucleosome containing a 5S RNA gene via a novel mechanism. Yang Z, Zheng C, Thiriet C, Hayes JJ. Mol Cell Biol 25 241-249 (2005)
  34. The hidden thermodynamics of a zinc finger. Lachenmann MJ, Ladbury JE, Phillips NB, Narayana N, Qian X, Weiss MA. J Mol Biol 316 969-989 (2002)
  35. Deep sequencing of large library selections allows computational discovery of diverse sets of zinc fingers that bind common targets. Persikov AV, Rowland EF, Oakes BL, Singh M, Noyes MB. Nucleic Acids Res 42 1497-1508 (2014)
  36. Point mutations in BCL6 DNA-binding domain reveal distinct roles for the six zinc fingers. Mascle X, Albagli O, Lemercier C. Biochem Biophys Res Commun 300 391-396 (2003)
  37. The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA. Searles MA, Lu D, Klug A. J Mol Biol 301 47-60 (2000)
  38. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain. Nunez N, Clifton MMK, Funnell APW, Artuz C, Hallal S, Quinlan KGR, Font J, Vandevenne M, Setiyaputra S, Pearson RCM, Mackay JP, Crossley M. J Biol Chem 286 38190-38201 (2011)
  39. The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity. Wai DC, Shihab M, Low JK, Mackay JP. Nucleic Acids Res 44 9153-9165 (2016)
  40. Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase. Longo A, Leonard CW, Bassi GS, Berndt D, Krahn JM, Hall TM, Weeks KM. Nat Struct Mol Biol 12 779-787 (2005)
  41. Tight correlation between inhibition of DNA repair in vitro and transcription factor IIIA binding in a 5S ribosomal RNA gene. Conconi A, Liu X, Koriazova L, Ackerman EJ, Smerdon MJ. EMBO J 18 1387-1396 (1999)
  42. ZNF418, a novel human KRAB/C2H2 zinc finger protein, suppresses MAPK signaling pathway. Li Y, Yang D, Bai Y, Mo X, Huang W, Yuan W, Yin Z, Deng Y, Murashko O, Wang Y, Fan X, Zhu C, Ocorr K, Bodmer R, Wu X. Mol Cell Biochem 310 141-151 (2008)
  43. Significant effect of linker sequence on DNA recognition by multi-zinc finger protein. Nagaoka M, Nomura W, Shiraishi Y, Sugiura Y. Biochem Biophys Res Commun 282 1001-1007 (2001)
  44. 5S Ribosomal RNA Data Bank. Szymanski M, Barciszewska MZ, Barciszewski J, Erdmann VA. Nucleic Acids Res 27 158-160 (1999)
  45. Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R. Nucleic Acids Res 48 3869-3887 (2020)
  46. Interaction identification of Zif268 and TATA(ZF) proteins with GC-/AT-rich DNA sequence: A theoretical study. Yang B, Zhu Y, Wang Y, Chen G. J Comput Chem 32 416-428 (2011)
  47. 5'-flanking sequences required for efficient transcription in vitro of 5S RNA genes, in the related nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Nelson DW, Linning RM, Davison PJ, Honda BM. Gene 218 9-16 (1998)
  48. Identification and characterization of transcription factor IIIA from Schizosaccharomyces pombe. Schulman DB, Setzer DR. Nucleic Acids Res 30 2772-2781 (2002)
  49. Cell-free selection of RNA-binding proteins using in vitro compartmentalization. Chen Y, Mandic J, Varani G. Nucleic Acids Res 36 e128 (2008)
  50. Lipid dependant disorder-to-order conformational transitions in apolipoprotein CI derived peptides. Mendoza-Espinosa P, Moreno A, Castillo R, Mas-Oliva J. Biochem Biophys Res Commun 365 8-15 (2008)
  51. ZNF418 overexpression protects against gastric carcinoma and prompts a good prognosis. Hui HX, Hu ZW, Jiang C, Wu J, Gao Y, Wang XW. Onco Targets Ther 11 2763-2770 (2018)
  52. Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites. Wang D, Horton JR, Zheng Y, Blumenthal RM, Zhang X, Cheng X. Nucleic Acids Res 46 3864-3877 (2018)
  53. Structural organization of Staf-DNA complexes. Schaub M, Krol A, Carbon P. Nucleic Acids Res 28 2114-2121 (2000)
  54. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA. Neely LS, Lee BM, Xu J, Wright PE, Gottesfeld JM. J Mol Biol 291 549-560 (1999)
  55. Binding of zinc finger protein transcription factor IIIA to its cognate DNA sequence with single UV photoproducts at specific sites and its effect on DNA repair. Kwon Y, Smerdon MJ. J Biol Chem 278 45451-45459 (2003)
  56. Crystal structures of REF6 and its complex with DNA reveal diverse recognition mechanisms. Tian Z, Li X, Li M, Wu W, Zhang M, Tang C, Li Z, Liu Y, Chen Z, Yang M, Ma L, Caba C, Tong Y, Lam HM, Dai S, Chen Z. Cell Discov 6 17 (2020)
  57. Solvation and the hidden thermodynamics of a zinc finger probed by nonstandard repair of a protein crevice. Lachenmann MJ, Ladbury JE, Qian X, Huang K, Singh R, Weiss MA. Protein Sci 13 3115-3126 (2004)
  58. cDNA cloning, DNA binding, and evolution of mammalian transcription factor IIIA. Hanas JS, Hocker JR, Cheng YG, Lerner MR, Brackett DJ, Lightfoot SA, Hanas RJ, Madhusudhan KT, Moreland RJ. Gene 282 43-52 (2002)
  59. Biomolecular mirror-image recognition: reciprocal chiral-specific DNA binding of synthetic enantiomers of zinc finger domain from GAGA factor. Negi S, Dhanasekaran M, Hirata T, Urata H, Sugiura Y. Chirality 18 254-258 (2006)
  60. Effects of linking 15-zinc finger domains on DNA binding specificity and multiple DNA binding modes. Hirata T, Nomura W, Imanishi M, Sugiura Y. Bioorg Med Chem Lett 15 2197-2201 (2005)
  61. News All wrapped up. Choo Y, Schwabe JW. Nat Struct Biol 5 253-255 (1998)
  62. Cell lines for drug discovery: elevating target-protein levels using engineered transcription factors. Liu PQ, Morton MF, Reik A, de la Rosa R, Mendel MC, Li XY, Case CC, Pabo CO, Moreno V, Kempf A, Pyati J, Shankley NP. J Biomol Screen 9 44-51 (2004)
  63. DNA repair in a protein-DNA complex: searching for the key to get in. Kwon Y, Smerdon MJ. Mutat Res 577 118-130 (2005)
  64. Structural features of transcription factor IIIA bound to a nucleosome in solution. Vitolo JM, Yang Z, Basavappa R, Hayes JJ. Mol Cell Biol 24 697-707 (2004)
  65. Zinc finger transcriptional activators of yeasts. Bussereau F, Lafay JF, Bolotin-Fukuhara M. FEMS Yeast Res 4 445-458 (2004)
  66. Zinc fingers 1 and 7 of yeast TFIIIA are essential for assembly of a functional transcription complex on the 5 S RNA gene. Rothfels K, Rowland O, Segall J. Nucleic Acids Res 35 4869-4881 (2007)
  67. A Krüppel-like factor 1 (KLF1) Mutation Associated with Severe Congenital Dyserythropoietic Anemia Alters Its DNA-Binding Specificity. Kulczynska K, Bieker JJ, Siatecka M. Mol Cell Biol 40 e00444-19 (2020)
  68. A novel human KRAB-related zinc finger gene ZNF425 inhibits mitogen-activated protein kinase signaling pathway. Wang Y, Ye X, Zhou J, Wan Y, Xie H, Deng Y, Yan Y, Li Y, Fan X, Yuan W, Mo X, Wu X. BMB Rep 44 58-63 (2011)
  69. Restricted specificity of Xenopus TFIIIA for transcription of somatic 5S rRNA genes. Ghose R, Malik M, Huber PW. Mol Cell Biol 24 2467-2477 (2004)
  70. Genetic analysis of Xenopus transcription factor IIIA. Bumbulis MJ, Wroblewski G, McKean D, Setzer DR. J Mol Biol 284 1307-1322 (1998)
  71. On the dependent recognition of some long zinc finger proteins. Zuo Z, Billings T, Walker M, Petkov PM, Fordyce PM, Stormo GD. Nucleic Acids Res 51 5364-5376 (2023)
  72. Recognition rules for binding of Zn-Cys2His2 transcription factors to operator DNA. Polozov RV, Sivozhelezov VS, Chirgadze YN, Ivanov VV. J Biomol Struct Dyn 33 253-266 (2015)
  73. Structural Insights into c-Myc-interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding. Bédard M, Roy V, Montagne M, Lavigne P. J Biol Chem 292 3323-3340 (2017)
  74. Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor. Zhang Y, Hu W, Shen J, Tong X, Yang Z, Shen Z, Lan W, Wu H, Cao C. Biochem Biophys Res Commun 414 309-314 (2011)
  75. DNA recognition patterns of the multi-zinc-finger protein CTCF: a mutagenesis study. Guo J, Li N, Han J, Pei F, Wang T, Lu D, Jiang J. Acta Pharm Sin B 8 900-908 (2018)
  76. Developmental expression pattern and DNA-binding properties of the zinc finger transcription factor Krox-26. Teo W, Chen H, Poon T, Ganss B. Connect Tissue Res 44 Suppl 1 161-166 (2003)
  77. Electrophoretic mobility shift assay of zinc finger proteins: competition for Zn(2+) bound to Sp1 in protocols including EDTA. Kothinti R, Tabatabai NM, Petering DH. J Inorg Biochem 105 569-576 (2011)
  78. Influence of TFIIIA-type linker at the N- or C-terminal of nine-zinc finger protein on DNA-binding site. Nomura W, Nagaoka M, Shiraishi Y, Sugiura Y. Biochem Biophys Res Commun 300 87-92 (2003)
  79. Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. Malik MQ, Bertke MM, Huber PW. J Biol Chem 289 35468-35481 (2014)
  80. Analysis of the 5S rRNA gene promoter from Acanthamoeba castellanii. Peng Z, Bateman E. Mol Microbiol 52 1123-1132 (2004)
  81. News Fingering nucleic acids: the RNA did it. Berg JM. Nat Struct Biol 10 986-987 (2003)
  82. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Mol Cell 83 2641-2652.e7 (2023)
  83. Is there a dynamic DNA-protein interface in the transcription factor IIIA-5 S rRNA gene complex? Brady KL, Setzer DR. J Biol Chem 280 16115-16124 (2005)
  84. A deterministic code for transcription factor-DNA recognition through computation of binding interfaces. Trerotola M, Antolini L, Beni L, Guerra E, Spadaccini M, Verzulli D, Moschella A, Alberti S. NAR Genom Bioinform 4 lqac008 (2022)
  85. DNA-dependent RNA polymerases in plants. Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. Plant Cell 35 3641-3661 (2023)
  86. Ovarian Transcriptomic Analyses in the Urban Human Health Pest, the Western Black Widow Spider. Miles LS, Ayoub NA, Garb JE, Haney RA, Verrelli BC. Genes (Basel) 11 E87 (2020)
  87. The third zinc finger of TFIIIA stabilizes a hairpin structure of the non-coding strand in the internal control region of 5S RNA gene. Miura T, Okada A, Kaneta M, Urayama Y, Takeuchi H. J Inorg Biochem 82 207-213 (2000)