1tde Citations

Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.

J Mol Biol 236 800-16 (1994)
Cited: 108 times
EuropePMC logo PMID: 8114095

Abstract

The crystal structures of three forms of Escherichia coli thioredoxin reductase have been refined: the oxidized form of the wild-type enzyme at 2.1 A resolution, a variant containing a cysteine to serine mutation at the active site (Cys138Ser) at 2.0 A resolution, and a complex of this variant with nicotinamide adenine dinucleotide phosphate (NADP+) at 2.3 A resolution. The enzyme mechanism involves the transfer of reducing equivalents from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to a disulfide bond in the enzyme, via a flavin adenine dinucleotide (FAD). Thioredoxin reductase contains FAD and NADPH binding domains that are structurally similar to the corresponding domains of the related enzyme glutathione reductase. The relative orientation of these domains is, however, very different in the two enzymes: when the FAD domains of thioredoxin and glutathione reductases are superimposed, the NADPH domain of one is rotated by 66 degrees with respect to the other. The observed binding mode of NADP+ in thioredoxin reductase is non-productive in that the nicotinamide ring is more than 17 A from the flavin ring system. While in glutathione reductase the redox active disulfide is located in the FAD domain, in thioredoxin reductase it is in the NADPH domain and is part of a four-residue sequence (Cys-Ala-Thr-Cys) that is close in structure to the corresponding region of thioredoxin (Cys-Gly-Pro-Cys), with a root-mean-square deviation of 0.22 A for atoms in the disulfide bonded ring. There are no significant conformational differences between the structure of the wild-type enzyme and that of the Cys138Ser mutant, except that a disulfide bond is not present in the latter. The disulfide bond is positioned productively in this conformation of the enzyme, i.e. it stacks against the flavin ring system in a position that would facilitate its reduction by the flavin. However, the cysteine residues are relatively inaccessible for interaction with the substrate, thioredoxin. These results suggest that thioredoxin reductase must undergo conformational changes during enzyme catalysis. All three structures reported here are for the same conformation of the enzyme and no direct evidence is available as yet for such conformational changes. The simplest possibility is that the NADPH domain rotates between the conformation observed here and an orientation similar to that seen in glutathione reductase. This would alternately place the nicotinamide ring and the disulfide bond near the flavin ring, and expose the cysteine residues for reaction with thioredoxin in the hypothetical conformation.(ABSTRACT TRUNCATED AT 400 WORDS)

Articles - 1tde mentioned but not cited (16)

  1. Protein hydration in solution: experimental observation by x-ray and neutron scattering. Svergun DI, Richard S, Koch MH, Sayers Z, Kuprin S, Zaccai G. Proc. Natl. Acad. Sci. U.S.A. 95 2267-2272 (1998)
  2. Reductive genome evolution in Buchnera aphidicola. van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A. Proc. Natl. Acad. Sci. U.S.A. 100 581-586 (2003)
  3. A comparison of position-specific score matrices based on sequence and structure alignments. Panchenko AR, Bryant SH. Protein Sci. 11 361-370 (2002)
  4. Predicting protein function from structure: unique structural features of proteases. Stawiski EW, Baucom AE, Lohr SC, Gregoret LM. Proc. Natl. Acad. Sci. U.S.A. 97 3954-3958 (2000)
  5. Thioredoxin reductase from Thermoplasma acidophilum: a new twist on redox regulation. Hernandez HH, Jaquez OA, Hamill MJ, Elliott SJ, Drennan CL. Biochemistry 47 9728-9737 (2008)
  6. Thioredoxin system from Deinococcus radiodurans. Obiero J, Pittet V, Bonderoff SA, Sanders DA. J. Bacteriol. 192 494-501 (2010)
  7. Docking protein domains in contact space. Lise S, Walker-Taylor A, Jones DT. BMC Bioinformatics 7 310 (2006)
  8. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism. Kirkensgaard KG, Hägglund P, Finnie C, Svensson B, Henriksen A. Acta Crystallogr. D Biol. Crystallogr. 65 932-941 (2009)
  9. The structural basis of an NADP⁺-independent dithiol oxidase in FK228 biosynthesis. Li J, Wang C, Zhang ZM, Cheng YQ, Zhou J. Sci Rep 4 4145 (2014)
  10. Redox-dependent dynamics of a dual thioredoxin fold protein: evolution of specialized folds. Hall A, Parsonage D, Horita D, Karplus PA, Poole LB, Barbar E. Biochemistry 48 5984-5993 (2009)
  11. Rosetta design with co-evolutionary information retains protein function. Schmitz S, Ertelt M, Merkl R, Meiler J. PLoS Comput Biol 17 e1008568 (2021)
  12. Crystallization and preliminary X-ray studies of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum. Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 186-189 (2008)
  13. Thioredoxin reductase from Bacillus cereus exhibits distinct reduction and NADPH-binding properties. Shoor M, Gudim I, Hersleth HP, Hammerstad M. FEBS Open Bio 11 3019-3031 (2021)
  14. Consequences of Genetic Recombination on Protein Folding Stability. Del Amparo R, González-Vázquez LD, Rodríguez-Moure L, Bastolla U, Arenas M. J Mol Evol 91 33-45 (2023)
  15. Novel starting points for fragment-based drug design against mycobacterial thioredoxin reductase identified using crystallographic fragment screening. Füsser FT, Wollenhaupt J, Weiss MS, Kümmel D, Koch O. Acta Crystallogr D Struct Biol 79 857-865 (2023)
  16. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage. Skjoldager N, Blanner Bang M, Rykær M, Björnberg O, Davies MJ, Svensson B, Harris P, Hägglund P. Sci Rep 7 46282 (2017)


Reviews citing this publication (15)

  1. Thioredoxin reductase. Mustacich D, Powis G. Biochem. J. 346 Pt 1 1-8 (2000)
  2. The thioredoxin system--from science to clinic. Gromer S, Urig S, Becker K. Med Res Rev 24 40-89 (2004)
  3. Thioredoxin reductase two modes of catalysis have evolved. Williams CH, Arscott LD, Müller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH. Eur. J. Biochem. 267 6110-6117 (2000)
  4. Structure and function of the radical enzyme ribonucleotide reductase. Eklund H, Uhlin U, Färnegårdh M, Logan DT, Nordlund P. Prog. Biophys. Mol. Biol. 77 177-268 (2001)
  5. Redox signalling and the control of cell growth and death. Powis G, Briehl M, Oblong J. Pharmacol. Ther. 68 149-173 (1995)
  6. AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Poole LB, Reynolds CM, Wood ZA, Karplus PA, Ellis HR, Li Calzi M. Eur. J. Biochem. 267 6126-6133 (2000)
  7. The diversity and evolution of thioredoxin reductase: new perspectives. Hirt RP, Müller S, Embley TM, Coombs GH. Trends Parasitol. 18 302-308 (2002)
  8. Link between macrophage migration inhibitory factor and cellular redox regulation. Thiele M, Bernhagen J. Antioxid. Redox Signal. 7 1234-1248 (2005)
  9. Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Jacquot JP, Eklund H, Rouhier N, Schürmann P. Trends Plant Sci. 14 336-343 (2009)
  10. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol. 11 65 (2013)
  11. Azobenzene as photoresponsive conformational switch in cyclic peptides. Renner C, Kusebauch U, Löweneck M, Milbradt AG, Moroder L. J. Pept. Res. 65 4-14 (2005)
  12. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch. Nagahara N. Amino Acids 41 59-72 (2011)
  13. New drug target in protozoan parasites: the role of thioredoxin reductase. Andrade RM, Reed SL. Front Microbiol 6 975 (2015)
  14. Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes. Qin J, Yang Y, Velyvis A, Gronenborn A. Antioxid. Redox Signal. 2 827-840 (2000)
  15. The Thioredoxin System of Mammalian Cells and Its Modulators. Hasan AA, Kalinina E, Tatarskiy V, Shtil A. Biomedicines 10 1757 (2022)

Articles citing this publication (77)

  1. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Svergun DI. Biophys. J. 76 2879-2886 (1999)
  2. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G. Proc. Natl. Acad. Sci. U.S.A. 98 9533-9538 (2001)
  3. Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. Eriksson M, Uhlin U, Ramaswamy S, Ekberg M, Regnström K, Sjöberg BM, Eklund H. Structure 5 1077-1092 (1997)
  4. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH. Proc. Natl. Acad. Sci. U.S.A. 94 3621-3626 (1997)
  5. 1-Chloro-2,4-dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase. Loss of thioredoxin disulfide reductase activity is accompanied by a large increase in NADPH oxidase activity. Arnér ES, Björnstedt M, Holmgren A. J. Biol. Chem. 270 3479-3482 (1995)
  6. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC. J. Bacteriol. 187 1392-1404 (2005)
  7. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data. de Groot BL, Hayward S, van Aalten DM, Amadei A, Berendsen HJ. Proteins 31 116-127 (1998)
  8. The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE. J. Mol. Biol. 289 981-990 (1999)
  9. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Lennon BW, Williams CH, Ludwig ML. Protein Sci. 8 2366-2379 (1999)
  10. A 16-residue peptide fragment of macrophage migration inhibitory factor, MIF-(50-65), exhibits redox activity and has MIF-like biological functions. Nguyen MT, Beck J, Lue H, Fünfzig H, Kleemann R, Koolwijk P, Kapurniotu A, Bernhagen J. J. Biol. Chem. 278 33654-33671 (2003)
  11. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution. Dai S, Saarinen M, Ramaswamy S, Meyer Y, Jacquot JP, Eklund H. J. Mol. Biol. 264 1044-1057 (1996)
  12. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Mattevi A, Tedeschi G, Bacchella L, Coda A, Negri A, Ronchi S. Structure 7 745-756 (1999)
  13. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Hedderich R, Koch J, Linder D, Thauer RK. Eur. J. Biochem. 225 253-261 (1994)
  14. Plant thioredoxins and glutaredoxins: identity and putative roles. Meyer Y, Verdoucq L, Vignols F. Trends Plant Sci. 4 388-394 (1999)
  15. An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. Wang C, Wesener SR, Zhang H, Cheng YQ. Chem. Biol. 16 585-593 (2009)
  16. Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. Vido K, Diemer H, Van Dorsselaer A, Leize E, Juillard V, Gruss A, Gaudu P. J. Bacteriol. 187 601-610 (2005)
  17. Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes. Bell CE, Yeates TO, Eisenberg D. Protein Sci. 6 2084-2096 (1997)
  18. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Parsonage D, Desrosiers DC, Hazlett KR, Sun Y, Nelson KJ, Cox DL, Radolf JD, Poole LB. Proc. Natl. Acad. Sci. U.S.A. 107 6240-6245 (2010)
  19. Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Hagelueken G, Wiehlmann L, Adams TM, Kolmar H, Heinz DW, Tümmler B, Schubert WD. Proc. Natl. Acad. Sci. U.S.A. 104 12276-12281 (2007)
  20. The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. Gilberger TW, Bergmann B, Walter RD, Müller S. FEBS Lett. 425 407-410 (1998)
  21. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Jönsson TJ, Ellis HR, Poole LB. Biochemistry 46 5709-5721 (2007)
  22. Unique gene organization of thioredoxin and thioredoxin reductase in Mycobacterium leprae. Wieles B, van Soolingen D, Holmgren A, Offringa R, Ottenhoff T, Thole J. Mol. Microbiol. 16 921-929 (1995)
  23. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+. Didierjean C, Rahuel-Clermont S, Vitoux B, Dideberg O, Branlant G, Aubry A. J. Mol. Biol. 268 739-759 (1997)
  24. Redox-active cyclic bis(cysteinyl)peptides as catalysts for in vitro oxidative protein folding. Cabrele C, Fiori S, Pegoraro S, Moroder L. Chem. Biol. 9 731-740 (2002)
  25. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin. Veine DM, Mulrooney SB, Wang PF, Williams CH. Protein Sci. 7 1441-1450 (1998)
  26. Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from Escherichia coli. Dip PV, Kamariah N, Subramanian Manimekalai MS, Nartey W, Balakrishna AM, Eisenhaber F, Eisenhaber B, Grüber G. Acta Crystallogr. D Biol. Crystallogr. 70 2848-2862 (2014)
  27. A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase. Ruocco MR, Ruggiero A, Masullo L, Arcari P, Masullo M. Biochimie 86 883-892 (2004)
  28. Application of a single-plasmid vector for mutagenesis and high-level expression of thioredoxin reductase and its use to examine flavin cofactor incorporation. Mulrooney SB. Protein Expr. Purif. 9 372-378 (1997)
  29. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P. Tanner JJ, Tu SC, Barbour LJ, Barnes CL, Krause KL. Protein Sci 8 1725-1732 (1999)
  30. Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies. Phadnis PP, Mugesh G. Org. Biomol. Chem. 3 2476-2481 (2005)
  31. The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive. Pérez-Ruiz JM, González M, Spínola MC, Sandalio LM, Cejudo FJ. Mol Plant 2 457-467 (2009)
  32. Asymmetric dimeric structure of ferredoxin-NAD(P)+ oxidoreductase from the green sulfur bacterium Chlorobaculum tepidum: implications for binding ferredoxin and NADP+. Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G. J. Mol. Biol. 401 403-414 (2010)
  33. Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation. Mulrooney SB, Williams CH. Protein Sci. 6 2188-2195 (1997)
  34. Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy. Sharma M, Khanna S, Bulusu G, Mitra A. J. Mol. Graph. Model. 27 665-675 (2009)
  35. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity. Komori H, Seo D, Sakurai T, Higuchi Y. Protein Sci. 19 2279-2290 (2010)
  36. Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Veine DM, Ohnishi K, Williams CH. Protein Sci. 7 369-375 (1998)
  37. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. Ohnishi K, Niimura Y, Hidaka M, Masaki H, Suzuki H, Uozumi T, Nishino T. J. Biol. Chem. 270 5812-5817 (1995)
  38. Differential cold-adaptation among protein components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125. Cotugno R, Rosaria Ruocco M, Marco S, Falasca P, Evangelista G, Raimo G, Chambery A, Di Maro A, Masullo M, De Vendittis E. Mol Biosyst 5 519-528 (2009)
  39. From proteomics to structural studies of cytosolic/mitochondrial-type thioredoxin systems in barley seeds. Shahpiri A, Svensson B, Finnie C. Mol Plant 2 378-389 (2009)
  40. Flavoenzyme-catalyzed formation of disulfide bonds in natural products. Scharf DH, Groll M, Habel A, Heinekamp T, Hertweck C, Brakhage AA, Huber EM. Angew. Chem. Int. Ed. Engl. 53 2221-2224 (2014)
  41. X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. Parsonage D, Sheng F, Hirata K, Debnath A, McKerrow JH, Reed SL, Abagyan R, Poole LB, Podust LM. J. Struct. Biol. 194 180-190 (2016)
  42. 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eisenreich W, Kemter K, Bacher A, Mulrooney SB, Williams CH, Müller F. Eur. J. Biochem. 271 1437-1452 (2004)
  43. Crystal structure of the catalytic core component of the alkylhydroperoxide reductase AhpF from Escherichia coli. Bieger B, Essen LO. J. Mol. Biol. 307 1-8 (2001)
  44. Exploring the conformational equilibrium of E. coli thioredoxin reductase: characterization of two catalytically important states by ultrafast flavin fluorescence spectroscopy. van den Berg PA, Mulrooney SB, Gobets B, van Stokkum IH, van Hoek A, Williams CH, Visser AJ. Protein Sci. 10 2037-2049 (2001)
  45. Computational reconstruction of primordial prototypes of elementary functional loops in modern proteins. Goncearenco A, Berezovsky IN. Bioinformatics 27 2368-2375 (2011)
  46. Domain swing upon His to Ala mutation in nitrite reductase of Pseudomonas aeruginosa. Brown K, Roig-Zamboni V, Cutruzzola' F, Arese M, Sun W, Brunori M, Cambillau C, Tegoni M. J. Mol. Biol. 312 541-554 (2001)
  47. Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis. Tedeschi G, Negri A, Ceciliani F, Mattevi A, Ronchi S. Eur. J. Biochem. 260 896-903 (1999)
  48. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Van Driessche G, Koh M, Chen ZW, Mathews FS, Meyer TE, Bartsch RG, Cusanovich MA, Van Beeumen JJ. Protein Sci. 5 1753-1764 (1996)
  49. Protein-protein interactions at an enzyme-substrate interface: characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase. Negri A, Rodríguez-Larrea D, Marco E, Jiménez-Ruiz A, Sánchez-Ruiz JM, Gago F. Proteins 78 36-51 (2010)
  50. pH-Dependent self-association of the Src homology 2 (SH2) domain of the Src homologous and collagen-like (SHC) protein. Réty S, Fütterer K, Grucza RA, Munoz CM, Frazier WA, Waksman G. Protein Sci. 5 405-413 (1996)
  51. A thioredoxin reductase-like protein from the thermophile, Thermus scotoductus SA-01, displaying iron reductase activity. Bester PA, Litthauer D, Piater LA, van Heerden E. FEMS Microbiol. Lett. 302 182-188 (2010)
  52. Direct electrochemical analyses of a thermophilic thioredoxin reductase: interplay between conformational change and redox chemistry. Hamill MJ, Chobot SE, Hernandez HH, Drennan CL, Elliott SJ. Biochemistry 47 9738-9746 (2008)
  53. Salting-out in the aqueous single-protein solution: the effect of shape factor. Chang BH, Bae YC. Biophys. Chem. 104 523-533 (2003)
  54. Structural characterization of Giardia duodenalis thioredoxin reductase (gTrxR) and computational analysis of its interaction with NBDHEX. Brogi S, Fiorillo A, Chemi G, Butini S, Lalle M, Ilari A, Gemma S, Campiani G. Eur J Med Chem 135 479-490 (2017)
  55. New insights into the disulfide bond formation enzymes in epidithiodiketopiperazine alkaloids. Liu H, Fan J, Zhang P, Hu Y, Liu X, Li SM, Yin WB. Chem Sci 12 4132-4138 (2021)
  56. Crystallization and preliminary X-ray crystallographic analysis of Sulfolobus solfataricus thioredoxin reductase. Ruggiero A, Ruocco MR, Grimaldi P, Arcari P, Masullo M, Zagari A, Vitagliano L. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 906-909 (2005)
  57. Enzymatic Activity and Thermodynamic Stability of Biliverdin IXβ Reductase Are Maintained by an Active Site Serine. Chu WT, Nesbitt NM, Gnatenko DV, Li Z, Zhang B, Seeliger MA, Browne S, Mantle TJ, Bahou WF, Wang J. Chemistry 23 1891-1900 (2017)
  58. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. Golden E, Karton A, Vrielink A. Acta Crystallogr. D Biol. Crystallogr. 70 3155-3166 (2014)
  59. Cloud-point temperatures of lysozyme in electrolyte solutions by thermooptical analysis technique. Park EJ, Bae YC. Biophys. Chem. 109 169-188 (2004)
  60. Crystallization and preliminary X-ray studies of ferredoxin-NADP+ oxidoreductase encoded by Bacillus subtilis yumC. Komori H, Seo D, Sakurai T, Higuchi Y. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 301-303 (2010)
  61. Kinetics of NADP+/NADPH reduction-oxidation catalyzed by the ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobaculum tepidum. Seo D, Kitashima M, Sakurai T, Inoue K. Photosyn. Res. 130 479-489 (2016)
  62. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH. Seo D, Naito H, Nishimura E, Sakurai T. Photosyn. Res. 125 321-328 (2015)
  63. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Gao J, Yuan W, Li Y, Bai F, Jiang Y. Microb. Cell Fact. 16 181 (2017)
  64. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I). Salinas G, Gao W, Wang Y, Bonilla M, Yu L, Novikov A, Virginio VG, Ferreira HB, Vieites M, Gladyshev VN, Gambino D, Dai S. Antioxid. Redox Signal. 27 1491-1504 (2017)
  65. Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Buey RM, Arellano JB, López-Maury L, Galindo-Trigo S, Velázquez-Campoy A, Revuelta JL, de Pereda JM, Florencio FJ, Schürmann P, Buchanan BB, Balsera M. Proc. Natl. Acad. Sci. U.S.A. 114 12725-12730 (2017)
  66. Crystallization and preliminary X-ray diffraction analysis of NADPH-dependent thioredoxin reductase I from Saccharomyces cerevisiae. Oliveira MA, Discola KF, Alves SV, Barbosa JA, Medrano FJ, Netto LE, Guimarães BG. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 387-390 (2005)
  67. Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging. Hudson DA, Caplan JL, Thorpe C. Biochemistry 57 1178-1189 (2018)
  68. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala). Guevara-Flores A, Herrera-Juárez ÁM, Martínez-González JJ, Del Arenal Mena IP, Flores-Herrera Ó, Rendón JL. PLoS ONE 12 e0182499 (2017)
  69. Preferred conformations of cyclic Ac-Cys-Pro-Xaa-Cys-NHMe peptides: a model for chain reversal and active site of disulfide oxidoreductase. Park HS, Kim C, Kang YK. Biophys. Chem. 105 89-104 (2003)
  70. Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells. Xie K, Varatnitskaya M, Maghnouj A, Bader V, Winklhofer KF, Hahn S, Leichert LI. Redox Biol 28 101344 (2020)
  71. Biography of Martha L. Ludwig. Hitt E. Proc. Natl. Acad. Sci. U.S.A. 101 3727-3728 (2004)
  72. C-terminal residues of ferredoxin-NAD(P)+ reductase from Chlorobaculum tepidum are responsible for reaction dynamics in the hydride transfer and redox equilibria with NADP+/NADPH. Seo D, Asano T. Photosyn. Res. 136 275-290 (2018)
  73. Computer simulations reveal changes in the conformational space of the transcriptional regulator MosR upon the formation of a disulphide bond and in the collective motions that regulate its DNA-binding affinity. Câmara AS, Horjales E. PLoS ONE 13 e0192826 (2018)
  74. Functional Diversity of Homologous Oxidoreductases-Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction. Hammerstad M, Rugtveit AK, Dahlen S, Andersen HK, Hersleth HP. Antioxidants (Basel) 12 1224 (2023)
  75. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus. Kitazume Y, Mutoh M, Shiraki M, Koyama N. Res. Microbiol. 157 956-959 (2006)
  76. Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Marshall AC, Kidd SE, Lamont-Friedrich SJ, Arentz G, Hoffmann P, Coad BR, Bruning JB. Antimicrob. Agents Chemother. 63 (2019)
  77. The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin. Seo D. Antioxidants (Basel) 12 1741 (2023)