1szd Citations

Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

Proc Natl Acad Sci U S A 101 8563-8 (2004)
Related entries: 1q14, 1q17, 1q1a, 1szc

Cited: 107 times
EuropePMC logo PMID: 15150415

Abstract

Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules.

Reviews - 1szd mentioned but not cited (2)

  1. Structural basis for sirtuin activity and inhibition. Yuan H, Marmorstein R. J Biol Chem 287 42428-42435 (2012)
  2. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr Pharm Des 19 578-613 (2013)

Articles - 1szd mentioned but not cited (5)

  1. Hormonal control of androgen receptor function through SIRT1. Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, Powell MJ, Yang T, Gu W, Avantaggiati ML, Pattabiraman N, Pestell TG, Wang F, Quong AA, Wang C, Pestell RG. Mol Cell Biol 26 8122-8135 (2006)
  2. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases. Zhao K, Harshaw R, Chai X, Marmorstein R. Proc Natl Acad Sci U S A 101 8563-8568 (2004)
  3. Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes. Sanders BD, Zhao K, Slama JT, Marmorstein R. Mol Cell 25 463-472 (2007)
  4. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Hsu HC, Wang CL, Wang M, Yang N, Chen Z, Sternglanz R, Xu RM. Genes Dev 27 64-73 (2013)
  5. Damped-dynamics flexible fitting. Kovacs JA, Yeager M, Abagyan R. Biophys J 95 3192-3207 (2008)


Reviews citing this publication (42)

  1. The biochemistry of sirtuins. Sauve AA, Wolberger C, Schramm VL, Boeke JD. Annu Rev Biochem 75 435-465 (2006)
  2. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Hassa PO, Haenni SS, Elser M, Hottiger MO. Microbiol Mol Biol Rev 70 789-829 (2006)
  3. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Hubbard BP, Sinclair DA. Trends Pharmacol Sci 35 146-154 (2014)
  4. Chemical mechanisms of histone lysine and arginine modifications. Smith BC, Denu JM. Biochim Biophys Acta 1789 45-57 (2009)
  5. The Sir 2 family of protein deacetylases. Denu JM. Curr Opin Chem Biol 9 431-440 (2005)
  6. Protective effects and mechanisms of sirtuins in the nervous system. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J. Prog Neurobiol 95 373-395 (2011)
  7. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Hodawadekar SC, Marmorstein R. Oncogene 26 5528-5540 (2007)
  8. Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes. Biel M, Wascholowski V, Giannis A. Angew Chem Int Ed Engl 44 3186-3216 (2005)
  9. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Porcu M, Chiarugi A. Trends Pharmacol Sci 26 94-103 (2005)
  10. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Hentchel KL, Escalante-Semerena JC. Microbiol Mol Biol Rev 79 321-346 (2015)
  11. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Greiss S, Gartner A. Mol Cells 28 407-415 (2009)
  12. The Substrate Specificity of Sirtuins. Bheda P, Jing H, Wolberger C, Lin H. Annu Rev Biochem 85 405-429 (2016)
  13. Structural basis for sirtuin function: what we know and what we don't. Sanders BD, Jackson B, Marmorstein R. Biochim Biophys Acta 1804 1604-1616 (2010)
  14. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Satoh A, Stein L, Imai S. Handb Exp Pharmacol 206 125-162 (2011)
  15. Mechanisms and molecular probes of sirtuins. Smith BC, Hallows WC, Denu JM. Chem Biol 15 1002-1013 (2008)
  16. Sirtuin chemical mechanisms. Sauve AA. Biochim Biophys Acta 1804 1591-1603 (2010)
  17. Sirtuin 1 (SIRT1): the misunderstood HDAC. Stünkel W, Campbell RM. J Biomol Screen 16 1153-1169 (2011)
  18. Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity? Yang H, Lavu S, Sinclair DA. Exp Gerontol 41 718-726 (2006)
  19. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Hwang ES, Song SB. Cell Mol Life Sci 74 3347-3362 (2017)
  20. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Mech Ageing Dev 146-148 28-41 (2015)
  21. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Front Microbiol 10 1604 (2019)
  22. Potential Modulation of Sirtuins by Oxidative Stress. Santos L, Escande C, Denicola A. Oxid Med Cell Longev 2016 9831825 (2016)
  23. Powerful signals for weak muscles. Saini A, Faulkner S, Al-Shanti N, Stewart C. Ageing Res Rev 8 251-267 (2009)
  24. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  25. Vitamin B3 and sirtuin function. Denu JM. Trends Biochem Sci 30 479-483 (2005)
  26. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. de Lera AR, Ganesan A. Clin Epigenetics 8 105 (2016)
  27. Sirtuins (histone deacetylases III) in the cellular response to DNA damage--facts and hypotheses. Kruszewski M, Szumiel I. DNA Repair (Amst) 4 1306-1313 (2005)
  28. Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation. Wang Y. Diabetes Metab J 38 321-329 (2014)
  29. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Abo Alrob O, Lopaschuk GD. Biochem Soc Trans 42 1043-1051 (2014)
  30. Nicotinamide adenine dinucleotide: beyond a redox coenzyme. Lin H. Org Biomol Chem 5 2541-2554 (2007)
  31. Mitochondrial sirtuins and metabolic homeostasis. Pirinen E, Lo Sasso G, Auwerx J. Best Pract Res Clin Endocrinol Metab 26 759-770 (2012)
  32. Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). Hisahara S, Chiba S, Matsumoto H, Horio Y. J Pharmacol Sci 98 200-204 (2005)
  33. Chemical and structural biology of protein lysine deacetylases. Yoshida M, Kudo N, Kosono S, Ito A. Proc Jpn Acad Ser B Phys Biol Sci 93 297-321 (2017)
  34. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Klein MA, Denu JM. J Biol Chem 295 11021-11041 (2020)
  35. Explorative study on isoform-selective histone deacetylase inhibitors. Suzuki T. Chem Pharm Bull (Tokyo) 57 897-906 (2009)
  36. Emerging role of silent information regulator 1 (SIRT1) in hepatocellular carcinoma: a potential therapeutic target. Wu Y, Meng X, Huang C, Li J. Tumour Biol 36 4063-4074 (2015)
  37. Catalysis and mechanistic insights into sirtuin activation. Dittenhafer-Reed KE, Feldman JL, Denu JM. Chembiochem 12 281-289 (2011)
  38. Sirtuins in neurodegenerative diseases: a biological-chemical perspective. Raghavan A, Shah ZA. Neurodegener Dis 9 1-10 (2012)
  39. The sirtuin family in health and disease. Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. Signal Transduct Target Ther 7 402 (2022)
  40. Post-Translational Modifications Evoked by Reactive Carbonyl Species in Ultraviolet-A-Exposed Skin: Implication in Fibroblast Senescence and Skin Photoaging. Negre-Salvayre A, Salvayre R. Antioxidants (Basel) 11 2281 (2022)
  41. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Kim ME, Kim DH, Lee JS. Int J Mol Sci 23 13882 (2022)
  42. Synthesis and Biological Studies of Benzo[b]furan Derivatives: A Review from 2011 to 2022. Arce-Ramos L, Castillo JC, Becerra D. Pharmaceuticals (Basel) 16 1265 (2023)

Articles citing this publication (58)

  1. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Avalos JL, Bever KM, Wolberger C. Mol Cell 17 855-868 (2005)
  2. Structure and biochemical functions of SIRT6. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. J Biol Chem 286 14575-14587 (2011)
  3. A molecular mechanism for direct sirtuin activation by resveratrol. Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C, Wolters D, Steegborn C. PLoS One 7 e49761 (2012)
  4. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN. Structure 15 377-389 (2007)
  5. Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R. Nat Struct Mol Biol 13 921-929 (2006)
  6. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek MR, Milne JC, Westphal CH, Perni RB. J Biol Chem 284 24394-24405 (2009)
  7. Structural and functional analysis of human SIRT1. Davenport AM, Huber FM, Hoelz A. J Mol Biol 426 526-541 (2014)
  8. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Hoff KG, Avalos JL, Sens K, Wolberger C. Structure 14 1231-1240 (2006)
  9. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine. Smith BC, Denu JM. Biochemistry 45 272-282 (2006)
  10. Design and synthesis of compounds that extend yeast replicative lifespan. Yang H, Baur JA, Chen A, Miller C, Adams JK, Kisielewski A, Howitz KT, Zipkin RE, Sinclair DA. Aging Cell 6 35-43 (2007)
  11. Emerging Roles for SIRT5 in Metabolism and Cancer. Bringman-Rodenbarger LR, Guo AH, Lyssiotis CA, Lombard DB. Antioxid Redox Signal 28 677-690 (2018)
  12. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y, Ortmayer M, Leidecker O, Cameron DR, Matic I, Peleg AY, Leys D, Traven A, Ahel I. Mol Cell 59 309-320 (2015)
  13. Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by ab initio QM/MM molecular dynamics simulations. Hu P, Wang S, Zhang Y. J Am Chem Soc 130 16721-16728 (2008)
  14. SIRT3 substrate specificity determined by peptide arrays and machine learning. Smith BC, Settles B, Hallows WC, Craven MW, Denu JM. ACS Chem Biol 6 146-157 (2011)
  15. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). Zhou Y, Zhang H, He B, Du J, Lin H, Cerione RA, Hao Q. J Biol Chem 287 28307-28314 (2012)
  16. Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae. Yang B, Kirchmaier AL. Mol Biol Cell 17 5287-5297 (2006)
  17. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein. Autiero I, Costantini S, Colonna G. PLoS One 4 e7350 (2008)
  18. Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice. Xu C, Bai B, Fan P, Cai Y, Huang B, Law IK, Liu L, Xu A, Tung C, Li X, Siu FM, Che CM, Vanhoutte PM, Wang Y. Am J Transl Res 5 412-426 (2013)
  19. Comparative and pharmacophore model for deacetylase SIRT1. Huhtiniemi T, Wittekindt C, Laitinen T, Leppänen J, Salminen A, Poso A, Lahtela-Kakkonen M. J Comput Aided Mol Des 20 589-599 (2006)
  20. 2-Anilinobenzamides as SIRT inhibitors. Suzuki T, Imai K, Nakagawa H, Miyata N. ChemMedChem 1 1059-1062 (2006)
  21. Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Mitchell SR, Larkin K, Grieselhuber NR, Lai TH, Cannon M, Orwick S, Sharma P, Asemelash Y, Zhang P, Goettl VM, Beaver L, Mims A, Puduvalli VK, Blachly JS, Lehman A, Harrington B, Henderson S, Breitbach JT, Williams KE, Dong S, Baloglu E, Senapedis W, Kirschner K, Sampath D, Lapalombella R, Byrd JC. Blood Adv 3 242-255 (2019)
  22. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae. Yang B, Britton J, Kirchmaier AL. J Mol Biol 381 826-844 (2008)
  23. Primers on chromatin. Lall S. Nat Struct Mol Biol 14 1110-1115 (2007)
  24. Biochemical characterization of Plasmodium falciparum Sir2, a NAD+-dependent deacetylase. Chakrabarty SP, Saikumari YK, Bopanna MP, Balaram H. Mol Biochem Parasitol 158 139-151 (2008)
  25. Structure-function analysis of the yeast NAD+-dependent tRNA 2'-phosphotransferase Tpt1. Sawaya R, Schwer B, Shuman S. RNA 11 107-113 (2005)
  26. Interactomic and pharmacological insights on human sirt-1. Sharma A, Gautam V, Costantini S, Paladino A, Colonna G. Front Pharmacol 3 40 (2012)
  27. SIRT1 Protects Human Lens Epithelial Cells Against Oxidative Stress by Inhibiting p53-Dependent Apoptosis. Zheng T, Lu Y. Curr Eye Res 41 1068-1075 (2016)
  28. A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Bürger M, Willige BC, Chory J. Nat Commun 8 2201 (2017)
  29. Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop. Shi Y, Zhou Y, Wang S, Zhang Y. J Phys Chem Lett 4 491-495 (2013)
  30. Knock-down of PQBP1 impairs anxiety-related cognition in mouse. Ito H, Yoshimura N, Kurosawa M, Ishii S, Nukina N, Okazawa H. Hum Mol Genet 18 4239-4254 (2009)
  31. Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases. Mead J, McCord R, Youngster L, Sharma M, Gartenberg MR, Vershon AK. Mol Cell Biol 27 2466-2475 (2007)
  32. N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2. Huhtiniemi T, Suuronen T, Lahtela-Kakkonen M, Bruijn T, Jääskeläinen S, Poso A, Salminen A, Leppänen J, Jarho E. Bioorg Med Chem 18 5616-5625 (2010)
  33. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Kang H, Oka S, Lee DY, Park J, Aponte AM, Jung YS, Bitterman J, Zhai P, He Y, Kooshapur H, Ghirlando R, Tjandra N, Lee SB, Kim MK, Sadoshima J, Chung JH. Nat Commun 8 15560 (2017)
  34. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues. Xu C, Cai Y, Fan P, Bai B, Chen J, Deng HB, Che CM, Xu A, Vanhoutte PM, Wang Y. Diabetes 64 1576-1590 (2015)
  35. Molecular modeling study for conformational changes of Sirtuin 2 due to substrate and inhibitor binding. Sakkiah S, Chandrasekaran M, Lee Y, Kim S, Lee KW. J Biomol Struct Dyn 30 235-254 (2012)
  36. NADH oxidase activity of Bacillus subtilis nitroreductase NfrA1: insight into its biological role. Cortial S, Chaignon P, Iorga BI, Aymerich S, Truan G, Gueguen-Chaignon V, Meyer P, Moréra S, Ouazzani J. FEBS Lett 584 3916-3922 (2010)
  37. Mimetics of hormetic agents: stress-resistance triggers. Sonneborn JS. Dose Response 8 97-121 (2010)
  38. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. PLoS One 10 e0139095 (2015)
  39. New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Soto S, Vaz E, Dell'Aversana C, Álvarez R, Altucci L, de Lera ÁR. Org Biomol Chem 10 2101-2112 (2012)
  40. Theoretical framework for the histone modification network: modifications in the unstructured histone tails form a robust scale-free network. Hayashi Y, Senda T, Sano N, Horikoshi M. Genes Cells 14 789-806 (2009)
  41. Characterization of CobB kinetics and inhibition by nicotinamide. Gallego-Jara J, Écija Conesa A, de Diego Puente T, Lozano Terol G, Cánovas Díaz M. PLoS One 12 e0189689 (2017)
  42. DNA Methylation and Transcription Factors Competitively Regulate SIRT4 Promoter Activity in Bovine Adipocytes: Roles of NRF1 and CMYB. Hong J, Wang X, Mei C, Wang H, Zan L. DNA Cell Biol 38 63-75 (2019)
  43. High-affinity Na(+)-dependent dicarboxylate cotransporter promotes cellular senescence by inhibiting SIRT1. Liu W, Hong Q, Bai XY, Fu B, Xie Y, Zhang X, Li J, Shi S, Lv Y, Sun X, Chen X. Mech Ageing Dev 131 601-613 (2010)
  44. Molecular docking and dynamics simulation, receptor-based hypothesis: application to identify novel sirtuin 2 inhibitors. Sakkiah S, Thangapandian S, Park C, Son M, Lee KW. Chem Biol Drug Des 80 315-327 (2012)
  45. News Sirtuins caught in the act. Smith BC, Denu JM. Structure 14 1207-1208 (2006)
  46. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. PLoS One 13 e0193602 (2018)
  47. Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease. Gaspar L, Coron RP, KongThoo Lin P, Costa DM, Perez-Cabezas B, Tavares J, Roura-Ferrer M, Ramos I, Ronin C, Major LL, Ciesielski F, Pemberton IK, MacDougall J, Ciapetti P, Smith TK, Cordeiro-da-Silva A. PLoS Negl Trop Dis 12 e0006180 (2018)
  48. A Genome-Wide Screen with Nicotinamide to Identify Sirtuin-Dependent Pathways in Saccharomyces cerevisiae. Choy JS, Qadri B, Henry L, Shroff K, Bifarin O, Basrai MA. G3 (Bethesda) 6 485-494 (2015)
  49. Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and regulates the number of microtubular assemblies during the cell cycle. Dam S, Lohia A. Cell Microbiol 12 1002-1014 (2010)
  50. Evolved, Selective Erasers of Distinct Lysine Acylations. Spinck M, Neumann-Staubitz P, Ecke M, Gasper R, Neumann H. Angew Chem Int Ed Engl 59 11142-11149 (2020)
  51. How Does Fusarium oxysporum Sense and Respond to Nicotinaldehyde, an Inhibitor of the NAD+ Salvage Biosynthesis Pathway? Anand G, Waiger D, Vital N, Maman J, Ma LJ, Covo S. Front Microbiol 10 329 (2019)
  52. beta-1,2,3-Triazolyl-nucleosides as nicotinamide riboside mimics. Amigues EJ, Armstrong E, Dvorakova M, Migaud ME, Huang M. Nucleosides Nucleotides Nucleic Acids 28 238-259 (2009)
  53. Biophysical characterization of hit compounds for mechanism-based enzyme activation. Guan X, Upadhyay A, Munshi S, Chakrabarti R. PLoS One 13 e0194175 (2018)
  54. Contributions of a Histone Deacetylase (SirT2/Hst2) to Beauveria bassiana Growth, Development, and Virulence. Cai Q, Tian L, Xie JT, Jiang DH, Keyhani NO. J Fungi (Basel) 8 236 (2022)
  55. Histone-deacetylase inhibitors may accelerate the aging process in stem cell-dependent mammals: stem cells, Ku70, and Drosophila at the crossroads. Tapia PC. Med Hypotheses 66 332-336 (2006)
  56. Discovery of 2-(4-Acrylamidophenyl)-Quinoline-4-Carboxylic Acid Derivatives as Potent SIRT3 Inhibitors. Hui Q, Li X, Fan W, Gao C, Zhang L, Qin H, Wei L, Zhang L. Front Chem 10 880067 (2022)
  57. Physical nature of intermolecular interactions inside Sir2 homolog active site: molecular dynamics and ab initio study. Czeleń P, Czyżnikowska Ż. J Mol Model 22 120 (2016)
  58. Epigenetic mechanisms of cadmium-induced nephrotoxicity. Guo AH, Kumar S, Lombard DB. Curr Opin Toxicol 32 100372 (2022)


Related citations provided by authors (2)

  1. Structure and autoregulation of the yeast Hst2 homolog of Sir2.. Zhao K, Chai X, Clements A, Marmorstein R Nat Struct Biol 10 864-71 (2003)
  2. Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide.. Zhao K, Chai X, Marmorstein R Structure 11 1403-11 (2003)