1spr Citations

Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms.

Cell 72 779-90 (1993)
Cited: 407 times
EuropePMC logo PMID: 7680960

Abstract

The crystal structure of the Src SH2 domain complexed with a high affinity 11-residue phosphopeptide has been determined at 2.7 A resolution by X-ray diffraction. The peptide binds in an extended conformation and makes primary interactions with the SH2 domain at six central residues: PQ(pY)EEI. The phosphotyrosine and the isoleucine are tightly bound by two well-defined pockets on the protein surface, resulting in a complex that resembles a two-pronged plug engaging a two-holed socket. The glutamate residues are in solvent-exposed environments in the vicinity of basic side chains of the SH2 domain, and the two N-terminal residues cap the phosphotyrosine-binding site. The crystal structure of Src SH2 in the absence of peptide has been determined at 2.5 A resolution, and comparison with the structure of the high affinity complex reveals only localized and relatively small changes.

Articles - 1spr mentioned but not cited (4)

  1. Protein folding: defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Maxwell KL, Wildes D, Zarrine-Afsar A, De Los Rios MA, Brown AG, Friel CT, Hedberg L, Horng JC, Bona D, Miller EJ, Vallée-Bélisle A, Main ER, Bemporad F, Qiu L, Teilum K, Vu ND, Edwards AM, Ruczinski I, Poulsen FM, Kragelund BB, Michnick SW, Chiti F, Bai Y, Hagen SJ, Serrano L, Oliveberg M, Raleigh DP, Wittung-Stafshede P, Radford SE, Jackson SE, Sosnick TR, Marqusee S, Davidson AR, Plaxco KW. Protein Sci 14 602-616 (2005)
  2. Native state energetics of the Src SH2 domain: evidence for a partially structured state in the denatured ensemble. Wildes D, Anderson LM, Sabogal A, Marqusee S. Protein Sci 15 1769-1779 (2006)
  3. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. Li H, Lu L, Chen R, Quan L, Xia X, Lü Q. PLoS One 9 e94769 (2014)
  4. Structure of the interleukin-2 tyrosine kinase Src homology 2 domain; comparison between X-ray and NMR-derived structures. Joseph RE, Ginder ND, Hoy JA, Nix JC, Fulton DB, Honzatko RB, Andreotti AH. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 145-153 (2012)


Reviews citing this publication (92)

  1. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu Rev Cell Dev Biol 13 513-609 (1997)
  2. Protein modules and signalling networks. Pawson T. Nature 373 573-580 (1995)
  3. Dimerization of cell surface receptors in signal transduction. Heldin CH. Cell 80 213-223 (1995)
  4. Regulation, substrates and functions of src. Brown MT, Cooper JA. Biochim Biophys Acta 1287 121-149 (1996)
  5. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  6. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Pawson T. Cell 116 191-203 (2004)
  7. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  8. Protein-protein interactions: methods for detection and analysis. Phizicky EM, Fields S. Microbiol Rev 59 94-123 (1995)
  9. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat Rev Mol Cell Biol 7 473-483 (2006)
  10. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  11. Molecular bases for the recognition of tyrosine-based sorting signals. Bonifacino JS, Dell'Angelica EC. J Cell Biol 145 923-926 (1999)
  12. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Li SS. Biochem J 390 641-653 (2005)
  13. SH2/SH3 signaling proteins. Schlessinger J. Curr Opin Genet Dev 4 25-30 (1994)
  14. Signalling via integrins: implications for cell survival and anticancer strategies. Hehlgans S, Haase M, Cordes N. Biochim Biophys Acta 1775 163-180 (2007)
  15. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Hunter T. Philos Trans R Soc Lond B Biol Sci 353 583-605 (1998)
  16. Recognition and specificity in protein tyrosine kinase-mediated signalling. Songyang Z, Cantley LC. Trends Biochem Sci 20 470-475 (1995)
  17. Phosphotyrosine-binding domains in signal transduction. Yaffe MB. Nat Rev Mol Cell Biol 3 177-186 (2002)
  18. Physical mechanisms of signal integration by WASP family proteins. Padrick SB, Rosen MK. Annu Rev Biochem 79 707-735 (2010)
  19. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat Rev Mol Cell Biol 14 563-580 (2013)
  20. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci STKE 2003 RE12 (2003)
  21. Structure and dynamic regulation of Src-family kinases. Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, Bahar I, Smithgall TE. Cell Mol Life Sci 65 3058-3073 (2008)
  22. Structure-function relationships in Src family and related protein tyrosine kinases. Superti-Furga G, Courtneidge SA. Bioessays 17 321-330 (1995)
  23. Peptide-surface association: the case of PDZ and PTB domains. Harrison SC. Cell 86 341-343 (1996)
  24. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr Opin Struct Biol 5 103-113 (1995)
  25. Structure, regulation and function of phosphoinositide 3-kinases. Fry MJ. Biochim Biophys Acta 1226 237-268 (1994)
  26. The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Siligardi G, Drake AF. Biopolymers 37 281-292 (1995)
  27. RTK mutations and human syndromeswhen good receptors turn bad. Robertson SC, Tynan JA, Donoghue DJ. Trends Genet 16 265-271 (2000)
  28. Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Scrutton NS, Raine AR. Biochem J 319 ( Pt 1) 1-8 (1996)
  29. Protein tyrosine phosphatases take off. Barford D, Jia Z, Tonks NK. Nat Struct Biol 2 1043-1053 (1995)
  30. Interaction domains: from simple binding events to complex cellular behavior. Pawson T, Raina M, Nash P. FEBS Lett 513 2-10 (2002)
  31. Monobodies and other synthetic binding proteins for expanding protein science. Sha F, Salzman G, Gupta A, Koide S. Protein Sci 26 910-924 (2017)
  32. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim Biophys Acta 1422 187-204 (1999)
  33. The biology and mechanism of action of suppressor of cytokine signaling 3. Babon JJ, Nicola NA. Growth Factors 30 207-219 (2012)
  34. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett 586 2597-2605 (2012)
  35. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  36. Src homology-2 domains: structure, mechanisms, and drug discovery. Sawyer TK. Biopolymers 47 243-261 (1998)
  37. Phospholipid-binding protein domains. Bottomley MJ, Salim K, Panayotou G. Biochim Biophys Acta 1436 165-183 (1998)
  38. Bruton's tyrosine kinase is a key regulator in B-cell development. Rawlings DJ, Witte ON. Immunol Rev 138 105-119 (1994)
  39. Plant GRAS and metazoan STATs: one family? Richards DE, Peng J, Harberd NP. Bioessays 22 573-577 (2000)
  40. Macrocycles as protein-protein interaction inhibitors. Dougherty PG, Qian Z, Pei D. Biochem J 474 1109-1125 (2017)
  41. Oncogenic activation of tyrosine kinases. Rodrigues GA, Park M. Curr Opin Genet Dev 4 15-24 (1994)
  42. Progress towards the development of SH2 domain inhibitors. Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Chem Soc Rev 42 3337-3370 (2013)
  43. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Shapiro P. Crit Rev Clin Lab Sci 39 285-330 (2002)
  44. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Shoelson SE. Curr Opin Chem Biol 1 227-234 (1997)
  45. PhosphoSerine/threonine binding domains: you can't pSERious? Yaffe MB, Smerdon SJ. Structure 9 R33-8 (2001)
  46. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr Top Microbiol Immunol 346 87-114 (2010)
  47. src-related protein tyrosine kinases and their surface receptors. Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. Biochim Biophys Acta 1155 239-266 (1993)
  48. Proximity versus allostery: the role of regulated protein dimerization in biology. Austin DJ, Crabtree GR, Schreiber SL. Chem Biol 1 131-136 (1994)
  49. BTKbase: a database of XLA-causing mutations. International Study Group. Vihinen M, Cooper MD, de Saint Basile G, Fischer A, Good RA, Hendriks RW, Kinnon C, Kwan SP, Litman GW, Notarangelo LD. Immunol Today 16 460-465 (1995)
  50. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit Rev Biochem Mol Biol 53 535-563 (2018)
  51. The discovery of modular binding domains: building blocks of cell signalling. Mayer BJ. Nat Rev Mol Cell Biol 16 691-698 (2015)
  52. Enthalpy-entropy compensation: the role of solvation. Dragan AI, Read CM, Crane-Robinson C. Eur Biophys J 46 301-308 (2017)
  53. Regulation of the Src protein tyrosine kinase. Superti-Furga G. FEBS Lett 369 62-66 (1995)
  54. Signal transduction pathways involving Ras. Mini review. Wiesmüller L, Wittinghofer F. Cell Signal 6 247-267 (1994)
  55. The GRB family of SH2 domain proteins. Margolis B. Prog Biophys Mol Biol 62 223-244 (1994)
  56. Structure and function of vav. Romero F, Fischer S. Cell Signal 8 545-553 (1996)
  57. Recognition and regulation of primary-sequence motifs by signaling modular domains. Songyang Z. Prog Biophys Mol Biol 71 359-372 (1999)
  58. Signal transduction through the conserved motifs of the high affinity IgE receptor Fc epsilon RI. Jouvin MH, Numerof RP, Kinet JP. Semin Immunol 7 29-35 (1995)
  59. Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. Bardelli A, Ponzetto C, Comoglio PM. J Biotechnol 37 109-122 (1994)
  60. New insights into protein-tyrosine kinase receptor signaling complexes. Fry MJ, Panayotou G, Booker GW, Waterfield MD. Protein Sci 2 1785-1797 (1993)
  61. The FHA domain in DNA repair and checkpoint signaling. Durocher D, Smerdon SJ, Yaffe MB, Jackson SP. Cold Spring Harb Symp Quant Biol 65 423-431 (2000)
  62. Peptides with anticancer use or potential. Janin YL. Amino Acids 25 1-40 (2003)
  63. SH2 domain structure and function. Schaffhausen B. Biochim Biophys Acta 1242 61-75 (1995)
  64. Modular peptide binding: from a comparison of natural binders to designed armadillo repeat proteins. Reichen C, Hansen S, Plückthun A. J Struct Biol 185 147-162 (2014)
  65. Tyrosine kinases: modular signaling enzymes with tunable specificities. Shokat KM. Chem Biol 2 509-514 (1995)
  66. The application of modular protein domains in proteomics. Jadwin JA, Ogiue-Ikeda M, Machida K. FEBS Lett 586 2586-2596 (2012)
  67. Src inhibitors: genomics to therapeutics. Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Expert Opin Investig Drugs 10 1327-1344 (2001)
  68. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Gerbec ZJ, Thakar MS, Malarkannan S. Front Immunol 6 472 (2015)
  69. The PI/PTB domain: a new protein interaction domain involved in growth factor receptor signaling. Margolis B. J Lab Clin Med 128 235-241 (1996)
  70. Understanding SOCS protein specificity. Linossi EM, Calleja DJ, Nicholson SE. Growth Factors 36 104-117 (2018)
  71. SH2 domains: from structure to energetics, a dual approach to the study of structure-function relationships. Grucza RA, Bradshaw JM, Fütterer K, Waksman G. Med Res Rev 19 273-293 (1999)
  72. Intracellular signaling by growth factors. Seedorf K. Metabolism 44 24-32 (1995)
  73. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Geahlen RL, Handley MD, Harrison ML. Oncogene 23 8024-8032 (2004)
  74. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Roque AC, Lowe CR. Biotechnol Bioeng 91 546-555 (2005)
  75. The Src family of tyrosine protein kinases in hemopoietic signal transduction. Tsygankov A, Bolen J. Stem Cells 11 371-380 (1993)
  76. Light regulation of the insulin receptor in the retina. Rajala RV, Anderson RE. Mol Neurobiol 28 123-138 (2003)
  77. Tonic B-cell and viral ITAM signaling: context is everything. Grande SM, Bannish G, Fuentes-Panana EM, Katz E, Monroe JG. Immunol Rev 218 214-234 (2007)
  78. Peptide-protein interactions: an overview. Zvelebil MJ, Thornton JM. Q Rev Biophys 26 333-363 (1993)
  79. Phosphotyrosine isosteres: past, present and future. Cerulli RA, Kritzer JA. Org Biomol Chem 18 583-605 (2020)
  80. SH2 Domain Binding: Diverse FLVRs of Partnership. Jaber Chehayeb R, Boggon TJ. Front Endocrinol (Lausanne) 11 575220 (2020)
  81. Structure-based organic synthesis of drug prototypes: a personal odyssey. Hanessian S. ChemMedChem 1 1301-1330 (2006)
  82. SH2 domain protein interaction and possibilities for pharmacological intervention. Beattie J. Cell Signal 8 75-86 (1996)
  83. Targeting signal transduction in the discovery of antiproliferative drugs. Saltiel AR, Sawyer TK. Chem Biol 3 887-893 (1996)
  84. Why modules matter. Nash PD. FEBS Lett 586 2572-2574 (2012)
  85. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem Biol 6 R241-6 (1999)
  86. The brain as a symbol-processing machine. Rocha AF. Prog Neurobiol 53 121-198 (1997)
  87. Dancing with multiple partners. Woodside DG. Sci STKE 2002 pe14 (2002)
  88. SH2 Domains: Folding, Binding and Therapeutical Approaches. Diop A, Santorelli D, Malagrinò F, Nardella C, Pennacchietti V, Pagano L, Marcocci L, Pietrangeli P, Gianni S, Toto A. Int J Mol Sci 23 15944 (2022)
  89. Novel Roles of SH2 and SH3 Domains in Lipid Binding. Sipeki S, Koprivanacz K, Takács T, Kurilla A, László L, Vas V, Buday L. Cells 10 1191 (2021)
  90. Why two heads are better. Mayer BJ. Structure 3 977-980 (1995)
  91. Nonreceptor protein tyrosine kinase involvement in signal transduction and immunodeficiency disease. Saouaf SJ, Burkhardt AL, Bolen JB. Clin Immunol Immunopathol 76 S151-7 (1995)
  92. Signal transduction pathways: new targets in oncology. Sweeb RK, Beijnen JH. Pharm World Sci 15 233-242 (1993)

Articles citing this publication (311)

  1. Three-dimensional structure of the tyrosine kinase c-Src. Xu W, Harrison SC, Eck MJ. Nature 385 595-602 (1997)
  2. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Mol Cell Biol 14 1680-1688 (1994)
  3. Crystal structure of the Src family tyrosine kinase Hck. Sicheri F, Moarefi I, Kuriyan J. Nature 385 602-609 (1997)
  4. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM. Cell 77 261-271 (1994)
  5. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T. Mol Cell Biol 14 2777-2785 (1994)
  6. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. Wakao H, Gouilleux F, Groner B. EMBO J 13 2182-2191 (1994)
  7. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A. EMBO J 14 2816-2826 (1995)
  8. SH2 and SH3 domains. Pawson T, Schlessingert J. Curr Biol 3 434-442 (1993)
  9. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Nature 384 173-176 (1996)
  10. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA. EMBO J 19 6141-6149 (2000)
  11. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Armon A, Graur D, Ben-Tal N. J Mol Biol 307 447-463 (2001)
  12. Calculation of absolute protein-ligand binding free energy from computer simulations. Woo HJ, Roux B. Proc Natl Acad Sci U S A 102 6825-6830 (2005)
  13. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Shah K, Liu Y, Deirmengian C, Shokat KM. Proc Natl Acad Sci U S A 94 3565-3570 (1997)
  14. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J. Mol Cell Biol 14 5192-5201 (1994)
  15. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Sun XJ, Crimmins DL, Myers MG, Miralpeix M, White MF. Mol Cell Biol 13 7418-7428 (1993)
  16. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Zhong Z, Wen Z, Darnell JE. Proc Natl Acad Sci U S A 91 4806-4810 (1994)
  17. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Hatada MH, Lu X, Laird ER, Green J, Morgenstern JP, Lou M, Marr CS, Phillips TB, Ram MK, Theriault K. Nature 377 32-38 (1995)
  18. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Zhou MM, Ravichandran KS, Olejniczak EF, Petros AM, Meadows RP, Sattler M, Harlan JE, Wade WS, Burakoff SJ, Fesik SW. Nature 378 584-592 (1995)
  19. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. EMBO J 13 764-773 (1994)
  20. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T. Proc Natl Acad Sci U S A 93 4181-4186 (1996)
  21. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. Mol Cell 22 851-868 (2006)
  22. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. Cell 121 271-280 (2005)
  23. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Fu XY, Zhang JJ. Cell 74 1135-1145 (1993)
  24. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL. Cell 85 639-650 (1996)
  25. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE. Cell 85 695-705 (1996)
  26. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Yi T, Mui AL, Krystal G, Ihle JN. Mol Cell Biol 13 7577-7586 (1993)
  27. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. Gerhartz C, Heesel B, Sasse J, Hemmann U, Landgraf C, Schneider-Mergener J, Horn F, Heinrich PC, Graeve L. J Biol Chem 271 12991-12998 (1996)
  28. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Ladbury JE, Lemmon MA, Zhou M, Green J, Botfield MC, Schlessinger J. Proc Natl Acad Sci U S A 92 3199-3203 (1995)
  29. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mikita T, Campbell D, Wu P, Williamson K, Schindler U. Mol Cell Biol 16 5811-5820 (1996)
  30. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Eck MJ, Atwell SK, Shoelson SE, Harrison SC. Nature 368 764-769 (1994)
  31. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ. Mol Cell 4 555-561 (1999)
  32. Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C. J Neurosci 24 8994-9004 (2004)
  33. Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta. Sanchez M, Misulovin Z, Burkhardt AL, Mahajan S, Costa T, Franke R, Bolen JB, Nussenzweig M. J Exp Med 178 1049-1055 (1993)
  34. Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. Noble ME, Musacchio A, Saraste M, Courtneidge SA, Wierenga RK. EMBO J 12 2617-2624 (1993)
  35. Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Yamamoto K, Quelle FW, Thierfelder WE, Kreider BL, Gilbert DJ, Jenkins NA, Copeland NG, Silvennoinen O, Ihle JN. Mol Cell Biol 14 4342-4349 (1994)
  36. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T. Proc Natl Acad Sci U S A 95 13130-13134 (1998)
  37. Syntrophin binds to an alternatively spliced exon of dystrophin. Ahn AH, Kunkel LM. J Cell Biol 128 363-371 (1995)
  38. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T. EMBO J 21 5766-5774 (2002)
  39. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. Fütterer K, Wong J, Grucza RA, Chan AC, Waksman G. J Mol Biol 281 523-537 (1998)
  40. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Lee CH, Kominos D, Jacques S, Margolis B, Schlessinger J, Shoelson SE, Kuriyan J. Structure 2 423-438 (1994)
  41. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. Alonso G, Koegl M, Mazurenko N, Courtneidge SA. J Biol Chem 270 9840-9848 (1995)
  42. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Perego M. Proc Natl Acad Sci U S A 94 8612-8617 (1997)
  43. Letter Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Rahuel J, Gay B, Erdmann D, Strauss A, Garcia-Echeverría C, Furet P, Caravatti G, Fretz H, Schoepfer J, Grütter MG. Nat Struct Biol 3 586-589 (1996)
  44. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Torres E, Rosen MK. Mol Cell 11 1215-1227 (2003)
  45. Role of IRS-1-GRB-2 complexes in insulin signaling. Myers MG, Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF. Mol Cell Biol 14 3577-3587 (1994)
  46. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. Zhang Z, Lee CH, Mandiyan V, Borg JP, Margolis B, Schlessinger J, Kuriyan J. EMBO J 16 6141-6150 (1997)
  47. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA. Mol Cell Biol 18 2089-2099 (1998)
  48. Engineering Src family protein kinases with unnatural nucleotide specificity. Liu Y, Shah K, Yang F, Witucki L, Shokat KM. Chem Biol 5 91-101 (1998)
  49. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S. Nat Struct Mol Biol 17 519-527 (2010)
  50. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Nishimura R, Li W, Kashishian A, Mondino A, Zhou M, Cooper J, Schlessinger J. Mol Cell Biol 13 6889-6896 (1993)
  51. Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. Yan H, Krishnan K, Greenlund AC, Gupta S, Lim JT, Schreiber RD, Schindler CW, Krolewski JJ. EMBO J 15 1064-1074 (1996)
  52. SH2 domain specificity and activity modified by a single residue. Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ, Cantley LC, Pawson T. Nature 369 502-505 (1994)
  53. Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Lee CH, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG, White MF, Schlessinger J, Skolnik EY. Proc Natl Acad Sci U S A 90 11713-11717 (1993)
  54. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J. Cell 138 514-524 (2009)
  55. Vav family proteins couple to diverse cell surface receptors. Moores SL, Selfors LM, Fredericks J, Breit T, Fujikawa K, Alt FW, Brugge JS, Swat W. Mol Cell Biol 20 6364-6373 (2000)
  56. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK. Proc Natl Acad Sci U S A 96 9021-9026 (1999)
  57. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Cary LA, Klinghoffer RA, Sachsenmaier C, Cooper JA. Mol Cell Biol 22 2427-2440 (2002)
  58. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Dowler S, Currie RA, Downes CP, Alessi DR. Biochem J 342 ( Pt 1) 7-12 (1999)
  59. Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. Improta T, Schindler C, Horvath CM, Kerr IM, Stark GR, Darnell JE. Proc Natl Acad Sci U S A 91 4776-4780 (1994)
  60. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C. EMBO J 20 5840-5852 (2001)
  61. Arginine phosphorylation marks proteins for degradation by a Clp protease. Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T. Nature 539 48-53 (2016)
  62. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Covassin LD, Siekmann AF, Kacergis MC, Laver E, Moore JC, Villefranc JA, Weinstein BM, Lawson ND. Dev Biol 329 212-226 (2009)
  63. Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-gamma 2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. Pleiman CM, Clark MR, Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC. Mol Cell Biol 13 5877-5887 (1993)
  64. Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Rosen MK, Yamazaki T, Gish GD, Kay CM, Pawson T, Kay LE. Nature 374 477-479 (1995)
  65. Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI. Shiue L, Green J, Green OM, Karas JL, Morgenstern JP, Ram MK, Taylor MK, Zoller MJ, Zydowsky LD, Bolen JB. Mol Cell Biol 15 272-281 (1995)
  66. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Pronk GJ, de Vries-Smits AM, Buday L, Downward J, Maassen JA, Medema RH, Bos JL. Mol Cell Biol 14 1575-1581 (1994)
  67. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nolte RT, Eck MJ, Schlessinger J, Shoelson SE, Harrison SC. Nat Struct Biol 3 364-374 (1996)
  68. Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR. Mol Cell 12 1379-1389 (2003)
  69. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. Bradshaw JM, Mitaxov V, Waksman G. J Mol Biol 293 971-985 (1999)
  70. Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides. Bibbins KB, Boeuf H, Varmus HE. Mol Cell Biol 13 7278-7287 (1993)
  71. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen GC. Sci Signal 5 ra50 (2012)
  72. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Shakespeare W, Yang M, Bohacek R, Cerasoli F, Stebbins K, Sundaramoorthi R, Azimioara M, Vu C, Pradeepan S, Metcalf C, Haraldson C, Merry T, Dalgarno D, Narula S, Hatada M, Lu X, van Schravendijk MR, Adams S, Violette S, Smith J, Guan W, Bartlett C, Herson J, Iuliucci J, Weigele M, Sawyer T. Proc Natl Acad Sci U S A 97 9373-9378 (2000)
  73. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. Hekerman P, Zeidler J, Bamberg-Lemper S, Knobelspies H, Lavens D, Tavernier J, Joost HG, Becker W. FEBS J 272 109-119 (2005)
  74. Correlation between binding and dynamics at SH2 domain interfaces. Kay LE, Muhandiram DR, Wolf G, Shoelson SE, Forman-Kay JD. Nat Struct Biol 5 156-163 (1998)
  75. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Pleiman CM, Abrams C, Gauen LT, Bedzyk W, Jongstra J, Shaw AS, Cambier JC. Proc Natl Acad Sci U S A 91 4268-4272 (1994)
  76. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Chudasama KK, Winnay J, Johansson S, Claudi T, König R, Haldorsen I, Johansson B, Woo JR, Aarskog D, Sagen JV, Kahn CR, Molven A, Njølstad PR. Am J Hum Genet 93 150-157 (2013)
  77. Differential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1. Pei D, Wang J, Walsh CT. Proc Natl Acad Sci U S A 93 1141-1145 (1996)
  78. The Grb2 adaptor. Chardin P, Cussac D, Maignan S, Ducruix A. FEBS Lett 369 47-51 (1995)
  79. Brief report: a point mutation in the SH2 domain of Bruton's tyrosine kinase in atypical X-linked agammaglobulinemia. Saffran DC, Parolini O, Fitch-Hilgenberg ME, Rawlings DJ, Afar DE, Witte ON, Conley ME. N Engl J Med 330 1488-1491 (1994)
  80. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Li SC, Gish G, Yang D, Coffey AJ, Forman-Kay JD, Ernberg I, Kay LE, Pawson T. Curr Biol 9 1355-1362 (1999)
  81. A mammalian adaptor protein with conserved Src homology 2 and phosphotyrosine-binding domains is related to Shc and is specifically expressed in the brain. O'Bryan JP, Songyang Z, Cantley L, Der CJ, Pawson T. Proc Natl Acad Sci U S A 93 2729-2734 (1996)
  82. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O. Proc Natl Acad Sci U S A 110 14924-14929 (2013)
  83. Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Zhang YL, Zhang ZY. Anal Biochem 261 139-148 (1998)
  84. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. J Virol 74 10417-10429 (2000)
  85. Kinetics of p56lck and p60src Src homology 2 domain binding to tyrosine-phosphorylated peptides determined by a competition assay or surface plasmon resonance. Payne G, Shoelson SE, Gish GD, Pawson T, Walsh CT. Proc Natl Acad Sci U S A 90 4902-4906 (1993)
  86. Superbinder SH2 domains act as antagonists of cell signaling. Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SS. Sci Signal 5 ra68 (2012)
  87. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Mol Cell Biol 26 6936-6949 (2006)
  88. Loops govern SH2 domain specificity by controlling access to binding pockets. Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SS. Sci Signal 3 ra34 (2010)
  89. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs. Cussac D, Frech M, Chardin P. EMBO J 13 4011-4021 (1994)
  90. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding. Mayo KH, Ilyina E, Roongta V, Dundas M, Joseph J, Lai CK, Maione T, Daly TJ. Biochem J 312 ( Pt 2) 357-365 (1995)
  91. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. van der Geer P, Wiley S, Gish GD, Lai VK, Stephens R, White MF, Kaplan D, Pawson T. Proc Natl Acad Sci U S A 93 963-968 (1996)
  92. Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. Encinas M, Crowder RJ, Milbrandt J, Johnson EM. J Biol Chem 279 18262-18269 (2004)
  93. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. Kibbey RG, Rizo J, Gierasch LM, Anderson RG. J Cell Biol 142 59-67 (1998)
  94. Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. Hu J, Hubbard SR. J Biol Chem 280 18943-18949 (2005)
  95. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J Mol Biol 267 933-952 (1997)
  96. Kinase activation through dimerization by human SH2-B. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Mol Cell Biol 25 2607-2621 (2005)
  97. alpha2-chimaerin, a Cdc42/Rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in N1E-115 neuroblastoma cells. Hall C, Michael GJ, Cann N, Ferrari G, Teo M, Jacobs T, Monfries C, Lim L. J Neurosci 21 5191-5202 (2001)
  98. A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure. Mallabiabarrena A, Jiménez MA, Rico M, Alarcón B. EMBO J 14 2257-2268 (1995)
  99. Characterization of the signaling capacities of the novel gp130-like cytokine receptor. Dreuw A, Radtke S, Pflanz S, Lippok BE, Heinrich PC, Hermanns HM. J Biol Chem 279 36112-36120 (2004)
  100. In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Baumann G, Maier D, Freuler F, Tschopp C, Baudisch K, Wienands J. Eur J Immunol 24 1799-1807 (1994)
  101. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins. Park MJ, Sheng R, Silkov A, Jung DJ, Wang ZG, Xin Y, Kim H, Thiagarajan-Rosenkranz P, Song S, Yoon Y, Nam W, Kim I, Kim E, Lee DG, Chen Y, Singaram I, Wang L, Jang MH, Hwang CS, Honig B, Ryu S, Lorieau J, Kim YM, Cho W. Mol Cell 62 7-20 (2016)
  102. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. Shvartsman DE, Donaldson JC, Diaz B, Gutman O, Martin GS, Henis YI. J Cell Biol 178 675-686 (2007)
  103. Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Koyasu S, Tse AG, Moingeon P, Hussey RE, Mildonian A, Hannisian J, Clayton LK, Reinherz EL. Proc Natl Acad Sci U S A 91 6693-6697 (1994)
  104. PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. Kalia LV, Pitcher GM, Pelkey KA, Salter MW. EMBO J 25 4971-4982 (2006)
  105. CH/pi interactions as demonstrated in the crystal structure of guanine-nucleotide binding proteins, Src homology-2 domains and human growth hormone in complex with their specific ligands. Umezawa Y, Nishio M. Bioorg Med Chem 6 493-504 (1998)
  106. Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Lock LS, Maroun CR, Naujokas MA, Park M. Mol Biol Cell 13 2132-2146 (2002)
  107. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun Signal 10 32 (2012)
  108. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn. Panchamoorthy G, Fukazawa T, Stolz L, Payne G, Reedquist K, Shoelson S, Songyang Z, Cantley L, Walsh C, Band H. Mol Cell Biol 14 6372-6385 (1994)
  109. STAT activation by the PDGF receptor requires juxtamembrane phosphorylation sites but not Src tyrosine kinase activation. Sachsenmaier C, Sadowski HB, Cooper JA. Oncogene 18 3583-3592 (1999)
  110. The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Raab M, Yamamoto M, Rudd CE. Mol Cell Biol 14 2862-2870 (1994)
  111. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. Ohya K, Kajigaya S, Kitanaka A, Yoshida K, Miyazato A, Yamashita Y, Yamanaka T, Ikeda U, Shimada K, Ozawa K, Mano H. Proc Natl Acad Sci U S A 96 11976-11981 (1999)
  112. Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain. Babon JJ, Yao S, DeSouza DP, Harrison CF, Fabri LJ, Liepinsh E, Scrofani SD, Baca M, Norton RS. FEBS J 272 6120-6130 (2005)
  113. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. Close D, Johnson SJ, Sdano MA, McDonald SM, Robinson H, Formosa T, Hill CP. J Mol Biol 408 697-713 (2011)
  114. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. Diebold ML, Loeliger E, Koch M, Winston F, Cavarelli J, Romier C. J Biol Chem 285 38389-38398 (2010)
  115. Solution structure of the Shc SH2 domain complexed with a tyrosine-phosphorylated peptide from the T-cell receptor. Zhou MM, Meadows RP, Logan TM, Yoon HS, Wade WS, Ravichandran KS, Burakoff SJ, Fesik SW. Proc Natl Acad Sci U S A 92 7784-7788 (1995)
  116. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Bergamin E, Wu J, Hubbard SR. Structure 14 1285-1292 (2006)
  117. The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5. Stern MJ, Marengere LE, Daly RJ, Lowenstein EJ, Kokel M, Batzer A, Olivier P, Pawson T, Schlessinger J. Mol Biol Cell 4 1175-1188 (1993)
  118. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD, Ketela T, Tucholska M, Taylor L, Bowtell DD, Moffat J, Ikura M, Li SS, Sidhu SS, Rossant J, Pawson T. Cell 152 1008-1020 (2013)
  119. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. Pang YP, Kozikowski AP. J Comput Aided Mol Des 8 669-681 (1994)
  120. Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Patel BK, Pierce JH, LaRochelle WJ. Proc Natl Acad Sci U S A 95 172-177 (1998)
  121. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase. Siegal G, Davis B, Kristensen SM, Sankar A, Linacre J, Stein RC, Panayotou G, Waterfield MD, Driscoll PC. J Mol Biol 276 461-478 (1998)
  122. Structure and in vivo requirement of the yeast Spt6 SH2 domain. Dengl S, Mayer A, Sun M, Cramer P. J Mol Biol 389 211-225 (2009)
  123. Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. Rajala MS, Rajala RV, Astley RA, Butt AL, Chodosh J. J Virol 79 12332-12341 (2005)
  124. Nonsense mutations in the C-terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours. Friedman E, Gejman PV, Martin GA, McCormick F. Nat Genet 5 242-247 (1993)
  125. Solution structure of the C-terminal SH2 domain of the human tyrosine kinase Syk complexed with a phosphotyrosine pentapeptide. Narula SS, Yuan RW, Adams SE, Green OM, Green J, Philips TB, Zydowsky LD, Botfield MC, Hatada M, Laird ER. Structure 3 1061-1073 (1995)
  126. Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling. Mandal PK, Limbrick D, Coleman DR, Dyer GA, Ren Z, Birtwistle JS, Xiong C, Chen X, Briggs JM, McMurray JS. J Med Chem 52 2429-2442 (2009)
  127. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Chung E, Henriques D, Renzoni D, Zvelebil M, Bradshaw JM, Waksman G, Robinson CV, Ladbury JE. Structure 6 1141-1151 (1998)
  128. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  129. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins. Ghose R, Fushman D, Cowburn D. J Magn Reson 149 204-217 (2001)
  130. Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase. Breeze AL, Kara BV, Barratt DG, Anderson M, Smith JC, Luke RW, Best JR, Cartlidge SA. EMBO J 15 3579-3589 (1996)
  131. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA. BMC Struct Biol 7 58 (2007)
  132. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Zhou Y, Abagyan R. Fold Des 3 513-522 (1998)
  133. Evolving specificity from variability for protein interaction domains. Kaneko T, Sidhu SS, Li SS. Trends Biochem Sci 36 183-190 (2011)
  134. Structural basis for the high affinity of amino-aromatic SH2 phosphopeptide ligands. Rahuel J, García-Echeverría C, Furet P, Strauss A, Caravatti G, Fretz H, Schoepfer J, Gay B. J Mol Biol 279 1013-1022 (1998)
  135. A statistical score for assessing the quality of multiple sequence alignments. Ahola V, Aittokallio T, Vihinen M, Uusipaikka E. BMC Bioinformatics 7 484 (2006)
  136. Regulation of FynT function by dual domain docking on PAG/Cbp. Solheim SA, Torgersen KM, Taskén K, Berge T. J Biol Chem 283 2773-2783 (2008)
  137. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. Sheinerman FB, Al-Lazikani B, Honig B. J Mol Biol 334 823-841 (2003)
  138. Biophysical prediction of protein-peptide interactions and signaling networks using machine learning. Cunningham JM, Koytiger G, Sorger PK, AlQuraishi M. Nat Methods 17 175-183 (2020)
  139. Mutational investigation of the specificity determining region of the Src SH2 domain. Bradshaw JM, Mitaxov V, Waksman G. J Mol Biol 299 521-535 (2000)
  140. Peptoid - peptide hybrids that bind Syk SH2 domains involved in signal transduction. Ruijtenbeek R, Kruijtzer JA, van de Wiel W, Fischer MJ, Flück M, Redegeld FA, Liskamp RM, Nijkamp FP. Chembiochem 2 171-179 (2001)
  141. Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Nam HJ, Haser WG, Roberts TM, Frederick CA. Structure 4 1105-1114 (1996)
  142. Structural basis for specificity switching of the Src SH2 domain. Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF. Mol Cell 5 1043-1049 (2000)
  143. A computational method for the analysis and prediction of protein:phosphopeptide-binding sites. Joughin BA, Tidor B, Yaffe MB. Protein Sci 14 131-139 (2005)
  144. Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding. Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB. J Am Chem Soc 132 11058-11070 (2010)
  145. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. Yuan C, Yongkiettrakul S, Byeon IJ, Zhou S, Tsai MD. J Mol Biol 314 563-575 (2001)
  146. Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS. Hu J, Hubbard SR. J Mol Biol 361 69-79 (2006)
  147. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values. Singer AU, Forman-Kay JD. Protein Sci 6 1910-1919 (1997)
  148. Binding specificity of SH2 domains: insight from free energy simulations. Gan W, Roux B. Proteins 74 996-1007 (2009)
  149. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. J Biol Chem 286 29218-29226 (2011)
  150. Stability and peptide binding specificity of Btk SH2 domain: molecular basis for X-linked agammaglobulinemia. Tzeng SR, Pai MT, Lung FD, Wu CW, Roller PP, Lei B, Wei CJ, Tu SC, Chen SH, Soong WJ, Cheng JW. Protein Sci 9 2377-2385 (2000)
  151. The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct. Gosser YQ, Zheng J, Overduin M, Mayer BJ, Cowburn D. Structure 3 1075-1086 (1995)
  152. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Henriques DA, Ladbury JE, Jackson RM. Protein Sci 9 1975-1985 (2000)
  153. Grb7-SH2 domain dimerisation is affected by a single point mutation. Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA. Eur Biophys J 34 454-460 (2005)
  154. Phosphopeptide binding to the N-terminal SH2 domain of the p85 alpha subunit of PI 3'-kinase: a heteronuclear NMR study. Hensmann M, Booker GW, Panayotou G, Boyd J, Linacre J, Waterfield M, Campbell ID. Protein Sci 3 1020-1030 (1994)
  155. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase. Banerjee M, Duan Q, Xie Z. PLoS One 10 e0142119 (2015)
  156. The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Mulhern TD, Shaw GL, Morton CJ, Day AJ, Campbell ID. Structure 5 1313-1323 (1997)
  157. The hidden thermodynamics of a zinc finger. Lachenmann MJ, Ladbury JE, Phillips NB, Narayana N, Qian X, Weiss MA. J Mol Biol 316 969-989 (2002)
  158. A repertoire library that allows the selection of synthetic SH2s with altered binding specificities. Malabarba MG, Milia E, Faretta M, Zamponi R, Pelicci PG, Di Fiore PP. Oncogene 20 5186-5194 (2001)
  159. Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to Netrin and Slit to regulate the assembly of neural circuits. O'Donnell MP, Bashaw GJ. Development 140 2724-2733 (2013)
  160. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. Ivancic M, Daly RJ, Lyons BA. J Biomol NMR 27 205-219 (2003)
  161. Structure and specificity of the SH2 domain. Waksman G, Kuriyan J. Cell 116 S45-8, 3 p following S48 (2004)
  162. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  163. Alternative modes of binding of proteins with tandem SH2 domains. O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Protein Sci 9 570-579 (2000)
  164. DNA-controlled reversible switching of peptide conformation and bioactivity. Röglin L, Ahmadian MR, Seitz O. Angew Chem Int Ed Engl 46 2704-2707 (2007)
  165. Gain-of-function mutations in a member of the Src family kinases cause autoinflammatory bone disease in mice and humans. Abe K, Cox A, Takamatsu N, Velez G, Laxer RM, Tse SML, Mahajan VB, Bassuk AG, Fuchs H, Ferguson PJ, Hrabe de Angelis M. Proc Natl Acad Sci U S A 116 11872-11877 (2019)
  166. Insulin signal transduction pathways. Quon MJ, Quon MJ, Butte AJ, Taylor SI. Trends Endocrinol Metab 5 369-376 (1994)
  167. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies. Kükenshöner T, Schmit NE, Bouda E, Sha F, Pojer F, Koide A, Seeliger M, Koide S, Hantschel O. J Mol Biol 429 1364-1380 (2017)
  168. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity. Jin LL, Wybenga-Groot LE, Tong J, Taylor P, Minden MD, Trudel S, McGlade CJ, Moran MF. Mol Cell Proteomics 14 695-706 (2015)
  169. Using a phage display library to identify basic residues in A-Raf required to mediate binding to the Src homology 2 domains of the p85 subunit of phosphatidylinositol 3'-kinase. King TR, Fang Y, Mahon ES, Anderson DH. J Biol Chem 275 36450-36456 (2000)
  170. Deletion and mutational analyses of bluetongue virus NS2 protein indicate that the amino but not the carboxy terminus of the protein is critical for RNA-protein interactions. Zhao Y, Thomas C, Bremer C, Roy P. J Virol 68 2179-2185 (1994)
  171. Genetic analysis of a phosphatidylinositol 3-kinase SH2 domain reveals determinants of specificity. Yoakim M, Hou W, Songyang Z, Liu Y, Cantley L, Schaffhausen B. Mol Cell Biol 14 5929-5938 (1994)
  172. Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation. Taylor JD, Gilbert PJ, Williams MA, Pitt WR, Ladbury JE. Proteins 67 981-990 (2007)
  173. Monocarboxylic-based phosphotyrosyl mimetics in the design of GRB2 SH2 domain inhibitors. Burke TR, Luo J, Yao ZJ, Gao Y, Zhao H, Milne GW, Guo R, Voigt JH, King CR, Yang D. Bioorg Med Chem Lett 9 347-352 (1999)
  174. Letter An SH2-SH3 domain hybrid. Russell RB, Russell RB, Barton GJ. Nature 364 765 (1993)
  175. Analysis of lipopolysaccharide-response genes in B-lineage cells demonstrates that they can have differentiation stage-restricted expression and contain SH2 domains. Kerr WG, Heller M, Herzenberg LA. Proc Natl Acad Sci U S A 93 3947-3952 (1996)
  176. Computational protein design as a tool for fold recognition. am Busch MS, Mignon D, Simonson T. Proteins 77 139-158 (2009)
  177. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate. Hoedemaeker FJ, Siegal G, Roe SM, Driscoll PC, Abrahams JP. J Mol Biol 292 763-770 (1999)
  178. Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain. Zhang Y, Zhang J, Yuan C, Hard RL, Park IH, Li C, Bell C, Pei D. Biochemistry 50 7637-7646 (2011)
  179. The phosphopeptide-binding specificity of Src family SH2 domains. Payne G, Stolz LA, Pei D, Band H, Shoelson SE, Walsh CT. Chem Biol 1 99-105 (1994)
  180. The roles of autophosphorylation and phosphorylation in the life of osteopontin. Saavedra RA. Bioessays 16 913-918 (1994)
  181. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. Ozawa T, Okazaki K. J Comput Chem 29 2656-2666 (2008)
  182. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. Sheng R, Jung DJ, Silkov A, Kim H, Singaram I, Wang ZG, Xin Y, Kim E, Park MJ, Thiagarajan-Rosenkranz P, Smrt S, Honig B, Baek K, Ryu S, Lorieau J, Kim YM, Cho W. J Biol Chem 291 17639-17650 (2016)
  183. Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases: molecular mechanisms and biological consequences. Ren SY, Bolton E, Mohi MG, Morrione A, Neel BG, Skorski T. Mol Cell Biol 25 8001-8008 (2005)
  184. DNA and RNA-controlled switching of protein kinase activity. Röglin L, Altenbrunn F, Seitz O. Chembiochem 10 758-765 (2009)
  185. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat Struct Biol 4 256-260 (1997)
  186. Single phosphorylation of Tyr304 in the cytoplasmic tail of ephrin B2 confers high-affinity and bifunctional binding to both the SH2 domain of Grb4 and the PDZ domain of the PDZ-RGS3 protein. Su Z, Xu P, Ni F. Eur J Biochem 271 1725-1736 (2004)
  187. Specificity and regulation of phosphotyrosine signaling through SH2 domains. Marasco M, Carlomagno T. J Struct Biol X 4 100026 (2020)
  188. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Lorenz S, Deng P, Hantschel O, Superti-Furga G, Kuriyan J. Biochem J 468 283-291 (2015)
  189. Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents. Burke TR. Int J Pept Res Ther 12 33-48 (2006)
  190. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Clin Immunol 96 108-118 (2000)
  191. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem Biophys Res Commun 269 124-130 (2000)
  192. Temperature-sensitive transformation by an Abelson virus mutant encoding an altered SH2 domain. Mainville CA, Parmar K, Unnikrishnan I, Gong L, Raffel GD, Rosenberg N. J Virol 75 1816-1823 (2001)
  193. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. J Mol Recognit 20 245-252 (2007)
  194. Crystal structures of a high-affinity macrocyclic peptide mimetic in complex with the Grb2 SH2 domain. Phan J, Shi ZD, Burke TR, Waugh DS. J Mol Biol 353 104-115 (2005)
  195. Estrogen and Progesterone Integration in an in vitro Model of RP3V Kisspeptin Neurons. Mittelman-Smith MA, Wong AM, Micevych PE. Neuroendocrinology 106 101-115 (2018)
  196. Fyn-induced phosphorylation of beta-adducin at tyrosine 489 and its role in their subcellular localization. Gotoh H, Okumura N, Yagi T, Okumura A, Shima T, Nagai K. Biochem Biophys Res Commun 346 600-605 (2006)
  197. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design. Henriques DA, Ladbury JE. Arch Biochem Biophys 390 158-168 (2001)
  198. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J Mol Recognit 19 30-38 (2006)
  199. Potent inhibitory ligands of the GRB2 SH2 domain from recombinant peptide libraries. Hart CP, Martin JE, Reed MA, Keval AA, Pustelnik MJ, Northrop JP, Patel DV, Grove JR. Cell Signal 11 453-464 (1999)
  200. ZIP codes for delivering SH2 domains. Songyang Z, Cantley LC. Cell 116 S41-3, 2 p following S48 (2004)
  201. Phosphorylated T cell receptor zeta-chain and ZAP70 tandem SH2 domains form a 1:3 complex in vitro. Weissenhorn W, Eck MJ, Harrison SC, Wiley DC. Eur J Biochem 238 440-445 (1996)
  202. Probing the nature of interactions in SH2 binding interfaces--evidence from electrospray ionization mass spectrometry. Chung EW, Henriques DA, Renzoni D, Morton CJ, Mulhern TD, Pitkeathly MC, Ladbury JE, Robinson CV. Protein Sci 8 1962-1970 (1999)
  203. Structure, dynamics, and binding thermodynamics of the v-Src SH2 domain: implications for drug design. Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE. Proteins 73 929-940 (2008)
  204. Structure-activity relationships of a novel class of Src SH2 inhibitors. Buchanan JL, Vu CB, Merry TJ, Corpuz EG, Pradeepan SG, Mani UN, Yang M, Plake HR, Varkhedkar VM, Lynch BA, MacNeil IA, Loiacono KA, Tiong CL, Holt DA. Bioorg Med Chem Lett 9 2359-2364 (1999)
  205. Structure-based design and synthesis of a novel class of Src SH2 inhibitors. Buchanan JL, Bohacek RS, Luke GP, Hatada M, Lu X, Dalgarno DC, Narula SS, Yuan R, Holt DA. Bioorg Med Chem Lett 9 2353-2358 (1999)
  206. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. Laham LE, Mukhopadhyay N, Roberts TM. Oncogene 19 3961-3970 (2000)
  207. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Wunderlich Z, Mirny LA. Nucleic Acids Res 37 4629-4641 (2009)
  208. Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA. Protein Sci 14 1556-1569 (2005)
  209. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. Catalina MI, Fischer MJ, Dekker FJ, Liskamp RM, Heck AJ. J Am Soc Mass Spectrom 16 1039-1051 (2005)
  210. Conformation of an Shc-derived phosphotyrosine-containing peptide complexed with the Grb2 SH2 domain. Ogura K, Tsuchiya S, Terasawa H, Yuzawa S, Hatanaka H, Mandiyan V, Schlessinger J, Inagaki F. J Biomol NMR 10 273-278 (1997)
  211. Induced alignment and measurement of dipolar couplings of an SH2 domain through direct binding with filamentous phage. Dahlke Ojennus D, Mitton-Fry RM, Wuttke DS. J Biomol NMR 14 175-179 (1999)
  212. Solution structure of the Src homology 2 domain from the human feline sarcoma oncogene Fes. Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P. J Biomol NMR 31 357-361 (2005)
  213. Solution studies of the SH2 domain from the fyn tyrosine kinase: secondary structure, backbone dynamics and protein association. Pintar A, Hensmann M, Jumel K, Pitkeathly M, Harding SE, Campbell ID. Eur Biophys J 24 371-380 (1996)
  214. Src homology domains of v-Src stabilize an active conformation of the tyrosine kinase catalytic domain. Xu B, Miller WT. Mol Cell Biochem 158 57-63 (1996)
  215. Src is the primary target of aripiprazole, an atypical antipsychotic drug, in its anti-tumor action. Kim MS, Yoo BC, Yang WS, Han SY, Jeong D, Song JM, Kim KH, Aravinthan A, Kim JH, Kim JH, Kim SC, Cho JY. Oncotarget 9 5979-5992 (2018)
  216. Three-dimensional structure of the Hck SH2 domain in solution. Zhang W, Smithgall TE, Gmeiner WH. J Biomol NMR 10 263-272 (1997)
  217. Evolution of the src-related protein tyrosine kinases. Hughes AL. J Mol Evol 42 247-256 (1996)
  218. Improved convergence of binding affinities with free energy perturbation: application to nonpeptide ligands with pp60src SH2 domain. Price DJ, Jorgensen WL. J Comput Aided Mol Des 15 681-695 (2001)
  219. Interaction of the non-phosphorylated peptide G7-18NATE with Grb7-SH2 domain requires phosphate for enhanced affinity and specificity. Gunzburg MJ, Ambaye ND, Del Borgo MP, Pero SC, Krag DN, Wilce MC, Wilce JA. J Mol Recognit 25 57-67 (2012)
  220. Molecular recognition of sulfotyrosine and phosphotyrosine by the Src homology 2 domain. Ju T, Niu W, Cerny R, Bollman J, Roy A, Guo J. Mol Biosyst 9 1829-1832 (2013)
  221. Relative Binding Enthalpies from Molecular Dynamics Simulations Using a Direct Method. Roy A, Hua DP, Ward JM, Post CB. J Chem Theory Comput 10 2759-2768 (2014)
  222. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. Hammond S, Wagenknecht-Wiesner A, Veatch SL, Holowka D, Baird B. J Struct Biol 168 161-167 (2009)
  223. Structural and thermodynamic basis for the interaction of the Src SH2 domain with the activated form of the PDGF beta-receptor. Lubman OY, Waksman G. J Mol Biol 328 655-668 (2003)
  224. Study on the synthesis and characterization of peptides containing phosphorylated tyrosine. Bonewald LF, Bibbs L, Kates SA, Khatri A, McMurray JS, Medzihradszky KF, Weintraub ST. J Pept Res 53 161-169 (1999)
  225. Coevolution of the domains of cytoplasmic tyrosine kinases. Nars M, Vihinen M. Mol Biol Evol 18 312-321 (2001)
  226. Dissection of the energetic coupling across the Src SH2 domain-tyrosyl phosphopeptide interface. Lubman OY, Waksman G. J Mol Biol 316 291-304 (2002)
  227. Identification of novel Bruton's tyrosine kinase mutations in 10 unrelated subjects with X linked agammaglobulinaemia. Brooimans RA, van den Berg AJ, Rijkers GT, Sanders LA, van Amstel JK, Tilanus MG, Grubben MJ, Zegers BJ. J Med Genet 34 484-488 (1997)
  228. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Mavri J, Vogel HJ. Proteins 24 495-501 (1996)
  229. Positive surface charge of GluN1 N-terminus mediates the direct interaction with EphB2 and NMDAR mobility. Washburn HR, Xia NL, Zhou W, Mao YT, Dalva MB. Nat Commun 11 570 (2020)
  230. Semisynthetic Src SH2 domains demonstrate altered phosphopeptide specificity induced by incorporation of unnatural lysine derivatives. Virdee S, Macmillan D, Waksman G. Chem Biol 17 274-284 (2010)
  231. Surface Loops in a Single SH2 Domain Are Capable of Encoding the Spectrum of Specificity of the SH2 Family. Liu H, Huang H, Voss C, Kaneko T, Qin WT, Sidhu S, Li SS. Mol Cell Proteomics 18 372-382 (2019)
  232. A free terminal carboxylate group is required for PhrA pentapeptide inhibition of RapA phosphatase. Core LJ, Ishikawa S, Perego M. Peptides 22 1549-1553 (2001)
  233. Characterization of germline mutations of the gene encoding Bruton's tyrosine kinase in families with X-linked agammaglobulinemia. Hagemann TL, Rosen FS, Kwan SP. Hum Mutat 5 296-302 (1995)
  234. Design of peptidomimetic ligands for the pp60src SH2 domain. Plummer MS, Lunney EA, Para KS, Shahripour A, Stankovic CJ, Humblet C, Fergus JH, Marks JS, Herrera R, Hubbell S, Saltiel A, Sawyer TK. Bioorg Med Chem 5 41-47 (1997)
  235. Interaction between the SH2 domains of ZAP-70 and the tyrosine-based activation motif 1 sequence of the zeta subunit of the T-cell receptor. Labadia ME, Jakes S, Grygon CA, Greenwood DJ, Schembri-King J, Lukas SM, Warren TC, Ingraham RH. Arch Biochem Biophys 342 117-125 (1997)
  236. MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory. Rubenstein AB, Pethe MA, Khare SD. PLoS Comput Biol 13 e1005614 (2017)
  237. Monobodies as possible next-generation protein therapeutics - a perspective. Hantschel O. Swiss Med Wkly 147 w14545 (2017)
  238. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide. Papaioannou D, Geibel S, Kunze MB, Kay CW, Waksman G. Protein Sci 25 627-637 (2016)
  239. The energetics of phosphate binding to a protein complex. Edgcomb SP, Baker BM, Murphy KP. Protein Sci 9 927-933 (2000)
  240. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain. Alligood KJ, Charifson PS, Crosby R, Consler TG, Feldman PL, Gampe RT, Gilmer TM, Jordan SR, Milstead MW, Mohr C, Peel MR, Rocque W, Rodriguez M, Rusnak DW, Shewchuk LM, Sternbach DD. Bioorg Med Chem Lett 8 1189-1194 (1998)
  241. The kinetics of folding of the NSH2 domain from p85. Visconti L, Malagrinò F, Toto A, Gianni S. Sci Rep 9 4058 (2019)
  242. 13C-NMR relation study of heparin-disaccharide interactions with tripeptides GRG and GKG. Mikhailov D, Mayo KH, Pervin A, Linhardt RJ. Biochem J 315 ( Pt 2) 447-454 (1996)
  243. Calculation of affinities of peptides for proteins. Donnini S, Juffer AH. J Comput Chem 25 393-411 (2004)
  244. Computational binding studies of human pp60c-src SH2 domain with a series of nonpeptide, phosphophenyl-containing ligands. Price DJ, Jorgensen WL. Bioorg Med Chem Lett 10 2067-2070 (2000)
  245. Functional characterization of phospholipase C-γ2 mutant protein causing both somatic ibrutinib resistance and a germline monogenic autoinflammatory disorder. Walliser C, Wist M, Hermkes E, Zhou Y, Schade A, Haas J, Deinzer J, Désiré L, Li SSC, Stilgenbauer S, Milner JD, Gierschik P. Oncotarget 9 34357-34378 (2018)
  246. Identification of alternative splicing form of Stat2. Sugiyama T, Nishio Y, Kishimoto T, Akira S. FEBS Lett 381 191-194 (1996)
  247. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain. Dekker FJ, de Mol NJ, Bultinck P, Kemmink J, Hilbers HW, Liskamp RM. Bioorg Med Chem 11 941-949 (2003)
  248. The Csk homologous kinase, Chk, binds tyrosine phosphorylated paxillin in human blastic T cells. Grgurevich S, Mikhael A, McVicar DW. Biochem Biophys Res Commun 256 668-675 (1999)
  249. Understanding the Mechanism of Recognition of Gab2 by the N-SH2 Domain of SHP2. Visconti L, Malagrinò F, Pagano L, Toto A. Life (Basel) 10 E85 (2020)
  250. Autophosphorylation is required for high kinase activity and efficient transformation ability of proteins encoded by host range alleles of v-src. Woods KM, Verderame MF. J Virol 68 7267-7274 (1994)
  251. Conformational determinants of phosphotyrosine peptides complexed with the Src SH2 domain. Nachman J, Gish G, Virag C, Pawson T, Pomès R, Pai E. PLoS One 5 e11215 (2010)
  252. Engineering of a Small Protein Scaffold To Recognize Sulfotyrosine with High Specificity. Lawrie J, Waldrop S, Morozov A, Niu W, Guo J. ACS Chem Biol 16 1508-1517 (2021)
  253. Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Proteins 45 456-470 (2001)
  254. Identification of a new interaction mode between the Src homology 2 domain of C-terminal Src kinase (Csk) and Csk-binding protein/phosphoprotein associated with glycosphingolipid microdomains. Tanaka H, Akagi K, Oneyama C, Tanaka M, Sasaki Y, Kanou T, Lee YH, Yokogawa D, Dobenecker MW, Nakagawa A, Okada M, Ikegami T. J Biol Chem 288 15240-15254 (2013)
  255. Selection of phage displayed peptides from a random 10-mer library recognising a peptide target. Bremnes T, Lauvrak V, Lindqvist B, Bakke O. Immunotechnology 4 21-28 (1998)
  256. News Signalling an interest. Yu H, Schreiber SL. Nat Struct Biol 1 417-420 (1994)
  257. Structure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila. Pinotsis N, Waksman G. J Biol Chem 292 9240-9251 (2017)
  258. Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry. Sundaramoorthi R, Kawahata N, Yang MG, Shakespeare WC, Metcalf CA, Wang Y, Merry T, Eyermann CJ, Bohacek RS, Narula S, Dalgarno DC, Sawyer TK. Biopolymers 71 717-729 (2003)
  259. The GTPase-activating protein p120RasGAP has an evolutionarily conserved "FLVR-unique" SH2 domain. Jaber Chehayeb R, Wang J, Stiegler AL, Boggon TJ. J Biol Chem 295 10511-10521 (2020)
  260. The role of water in computational and experimental derivation of binding thermodynamics in SH2 domains. Geroult S, Virdee S, Waksman G. Chem Biol Drug Des 67 38-45 (2006)
  261. Tyrosine- versus serine-phosphorylation leads to conformational changes in a synthetic tau peptide. Fabian H, Otvos L, Szendrei GI, Lang E, Mantsch HH. J Biomol Struct Dyn 12 573-579 (1994)
  262. pH-Dependent self-association of the Src homology 2 (SH2) domain of the Src homologous and collagen-like (SHC) protein. Réty S, Fütterer K, Grucza RA, Munoz CM, Frazier WA, Waksman G. Protein Sci 5 405-413 (1996)
  263. A quantum mechanical study on phosphotyrosyl peptide binding to the SH2 domain of p56lck tyrosine kinase with insights into the biochemistry of intracellular signal transduction events. Pichierri F. Biophys Chem 109 295-304 (2004)
  264. Chemical shift assignments and secondary structure of the Grb2 SH2 domain by heteronuclear NMR spectroscopy. Wang YS, Frederick AF, Senior MM, Lyons BA, Black S, Kirschmeier P, Perkins LM, Wilson O. J Biomol NMR 7 89-98 (1996)
  265. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins. Majkut P, Claußnitzer I, Merk H, Freund C, Hackenberger CP, Gerrits M. PLoS One 8 e82352 (2013)
  266. Crystallization and preliminary X-ray diffraction studies of the WW4 domain of the Nedd4-2 ubiquitin-protein ligase. Umadevi N, Kumar S, Narayana N. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 1084-1086 (2005)
  267. Design and synthesis of a pyridone-based phosphotyrosine mimetic. Fu JM, Castelhano AL. Bioorg Med Chem Lett 8 2813-2816 (1998)
  268. Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Linossi EM, Li K, Veggiani G, Tan C, Dehkhoda F, Hockings C, Calleja DJ, Keating N, Feltham R, Brooks AJ, Li SS, Sidhu SS, Babon JJ, Kershaw NJ, Nicholson SE. Nat Commun 12 7032 (2021)
  269. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Höfener M, Heinzlmeir S, Kuster B, Sewald N. Proteome Sci 12 41 (2014)
  270. Structural insights into the intertwined dimer of fyn SH2. Huculeci R, Garcia-Pino A, Buts L, Lenaerts T, van Nuland N. Protein Sci 24 1964-1978 (2015)
  271. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy. Lindfors HE, Drijfhout JW, Ubbink M. IUBMB Life 64 538-544 (2012)
  272. Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro. Brázda P, Krejčíková M, Kasiliauskaite A, Šmiřáková E, Klumpler T, Vácha R, Kubíček K, Štefl R. J Mol Biol 432 4092-4107 (2020)
  273. An investigation of phosphopeptide binding to SH2 domain. Lee JK, Moon T, Chi MW, Song JS, Choi YS, Yoon CN. Biochem Biophys Res Commun 306 225-230 (2003)
  274. Common and distinct elements in insulin and PDGF signaling. Myers MG, Cheatham B, Fisher TL, Jachna BR, Kahn CR, Backer JM, White MF. Ann N Y Acad Sci 766 369-387 (1995)
  275. Demonstration of Binding Induced Structural Plasticity in a SH2 Domain. Visconti L, Toto A, Jarvis JA, Troilo F, Malagrinò F, De Simone A, Gianni S. Front Mol Biosci 7 89 (2020)
  276. Editorial Do low-affinity ErbB receptor protein interactions represent the base of a cell signaling iceberg? Jones RB. Expert Rev Proteomics 10 115-118 (2013)
  277. Evaluating the dynamics and electrostatic interactions of folded proteins in implicit solvents. Hua DP, Huang H, Roy A, Post CB. Protein Sci 25 204-218 (2016)
  278. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem Biophys Res Commun 242 351-356 (1998)
  279. Phosphorylated tyrosine 93 of hepatitis C virus nonstructural protein 5A is essential for interaction with host c-Src and efficient viral replication. Klinker S, Stindt S, Gremer L, Bode JG, Gertzen CGW, Gohlke H, Weiergräber OH, Hoffmann S, Willbold D. J Biol Chem 294 7388-7402 (2019)
  280. Small ligands interacting with the phosphotyrosine binding pocket of the Src SH2 protein. Deprez P, Mandine E, Gofflo D, Meunier S, Lesuisse D. Bioorg Med Chem Lett 12 1295-1298 (2002)
  281. Structural basis for a novel interaction between TXNIP and Vav2. Liu S, Wu X, Zong M, Tempel W, Loppnau P, Liu Y. FEBS Lett 590 857-865 (2016)
  282. Structure, modelling, and molecular dynamics studies of the inhibition of protein tyrosine phosphatase 1B by sulfotyrosine peptides. Glover NR, Tracey AS. Biochem Cell Biol 77 469-486 (1999)
  283. The SH2 domain is crucial for function of Fyn in neuronal migration and cortical lamination. Lu X, Hu X, Song L, An L, Duan M, Chen S, Zhao S. BMB Rep 48 97-102 (2015)
  284. Distinct mechanisms of a phosphotyrosyl peptide binding to two SH2 domains. Pang X, Zhou HX. J Theor Comput Chem 13 1440003 (2014)
  285. Electrostatic interactions in the reconstitution of an SH2 domain from constituent peptide fragments. Ojennus DD, Lehto SE, Wuttke DS. Protein Sci 12 44-55 (2003)
  286. From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Kharas MG, Daley GQ. Genes Cancer 1 1164-1169 (2010)
  287. Prediction of solvation sites at the interface of Src SH2 domain complexes using molecular dynamics simulations. Geroult S, Hooda M, Virdee S, Waksman G. Chem Biol Drug Des 70 87-99 (2007)
  288. Reconstitution of a native-like SH2 domain from disordered peptide fragments examined by multidimensional heteronuclear NMR. Ojennus DD, Fleissner MR, Wuttke DS. Protein Sci 10 2162-2175 (2001)
  289. Solution structure of the human Grb14-SH2 domain and comparison with the structures of the human Grb7-SH2/erbB2 peptide complex and human Grb10-SH2 domain. Scharf PJ, Witney J, Daly R, Lyons BA. Protein Sci 13 2541-2546 (2004)
  290. The Effect of Proline cis-trans Isomerization on the Folding of the C-Terminal SH2 Domain from p85. Troilo F, Malagrinò F, Visconti L, Toto A, Gianni S. Int J Mol Sci 21 E125 (2019)
  291. The three-dimensional solution structure of the SRC homology domain-2 of the growth factor receptor-bound protein-2. Senior MM, Frederick AF, Black S, Murgolo NJ, Perkins LM, Wilson O, Snow ME, Wang YS. J Biomol NMR 11 153-164 (1998)
  292. pp60v-src transformation of rat cells but not chicken cells strongly correlates with low-affinity phosphopeptide binding by the SH2 domain. Verderame MF. Mol Biol Cell 8 843-854 (1997)
  293. An intramolecular energetic network regulates ligand recognition in a SH2 domain. Nardella C, Pagano L, Pennacchietti V, Felice MD, Matteo SD, Diop A, Malagrinò F, Marcocci L, Pietrangeli P, Gianni S, Toto A. Protein Sci 32 e4729 (2023)
  294. C-SH2 point mutation converts p85β regulatory subunit of phosphoinositide 3-kinase to an anti-aging gene. Kano Y, Hiragami F, Motoda H, Akiyama J, Koike Y, Gomita Y, Inoue S, Kawaura A, Furuta T, Kawamura K. Sci Rep 9 12683 (2019)
  295. Conformational analysis of cyclic hexapeptides designed as constrained ligands for the SH2 domain of the p85 subunit of phosphatidylinositol-3-OH kinase. Barchi JJ, Nomizu M, Otaka A, Roller PP, Burke TR. Biopolymers 38 191-208 (1996)
  296. Domain Analysis and Motif Matcher (DAMM): A Program to Predict Selectivity Determinants in Monosiga brevicollis PDZ Domains Using Human PDZ Data. Wofford HA, Myers-Dean J, Vogel BA, Alamo KAE, Longshore-Neate FA, Jagodzinski F, Amacher JF. Molecules 26 6034 (2021)
  297. The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): an in silico analysis. Pati S, Gurudutta GU, Kalra OP, Mukhopadhyay A. BMC Res Notes 3 14 (2010)
  298. An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex. Sueda S, Shinboku Y, Kusaba T. Anal Sci 29 491-497 (2013)
  299. Discovery of highly potent Src SH2 binders: structure-activity studies and X-ray structures. Deprez P, Baholet I, Burlet S, Lange G, Amengual R, Schoot B, Vermond A, Mandine E, Lesuisse D. Bioorg Med Chem Lett 12 1291-1294 (2002)
  300. Discovery of thioazepinone ligands for Src SH2: from non-specific to specific binding. Lesuisse D, Deprez P, Albert E, Duc TT, Sortais B, Gofflo D, Jean-Baptiste V, Marquette J, Schoot B, Sarubbi E, Lange G, Broto P, Mandine E. Bioorg Med Chem Lett 11 2127-2131 (2001)
  301. Efficient chemoenzymatic synthesis of (S)- and (R)-5-(1-aminoethyl)-2-(cyclohexylmethoxy)benzamide: key intermediate for Src-SH2 inhibitor. Kamal A, Sandbhor M. Bioorg Med Chem Lett 12 1735-1738 (2002)
  302. High-resolution structural analysis shows how different crystallographic environments can induce alternative modes of binding of a phosphotyrosine peptide to the SH2 domain of Fer tyrosine kinase. Matsuura Y. Protein Sci 28 2011-2019 (2019)
  303. Using Linear Motif Database Resources to Identify SH2 Domain Binders. Sámano-Sánchez H, Gibson TJ, Chemes LB. Methods Mol Biol 2705 153-197 (2023)
  304. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. Nat Commun 14 6548 (2023)
  305. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics. Chang A, Leutert M, Rodriguez-Mias RA, Villén J. J Proteome Res 22 1868-1880 (2023)
  306. Differentiation of peptide molecular recognition by phospholipase C gamma-1 Src homology-2 domain and a mutant Tyr phosphatase PTP1bC215S. MacLean D, Sefler AM, Zhu G, Decker SJ, Saltiel AR, Singh J, McNamara D, Dobrusin EM, Sawyer TK. Protein Sci 4 13-20 (1995)
  307. Expression and purification of 15N-labeled 2-SH2 protein domain of SHP-2 from Homo sapiens in Escherichia coli for NMR studies and applications. Wu Y, Guo JF. Int J Biol Macromol 45 1-7 (2009)
  308. Human Lp(a): regions in sequences of apoproteins similar to domains in signal transduction proteins. Guevara J, Valentinova NV, Davison D, Morrisett JD, Sparrow JT. Endocr Pract 1 440-448 (1995)
  309. NMR studies of the RRsrc peptide, a tyrosine kinase substrate. Brockbank RL, Vogel HJ. Biochem Cell Biol 75 163-169 (1997)
  310. Naturally occurring anti-idiotypic antibodies to anti-phosphotyrosine in systemic lupus erythematosus interact with SRC-homology 2 domains. Stefanescu M, Onu A, Matache C, Ramos-Morales F, Fischer S, Szegli G. Autoimmunity 22 81-86 (1995)
  311. Thermodynamics of phosphotyrosine peptide-peptoid hybrids binding to the p56lck SH2 domain. Dekker FJ, Mol NJ, Liskamp RM. J Pept Sci 16 322-328 (2010)