1sje Citations

A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition.

Proc Natl Acad Sci U S A 101 13279-84 (2004)
Cited: 62 times
EuropePMC logo PMID: 15331779

Abstract

T cells generally recognize peptide antigens bound to MHC proteins through contacts with residues found within or immediately flanking the seven- to nine-residue sequence accommodated in the MHC peptide-binding groove. However, some T cells require peptide residues outside this region for activation, the structural basis for which is unknown. Here, we have investigated a HIV Gag-specific T cell clone that requires an unusually long peptide antigen for activation. The crystal structure of a minimally antigenic 16-mer bound to HLA-DR1 shows that the peptide C-terminal region bends sharply into a hairpin turn as it exits the binding site, orienting peptide residues outside the MHC-binding region in position to interact with a T cell receptor. Peptide truncation and substitution studies show that both the hairpin turn and the extreme C-terminal residues are required for T cell activation. These results demonstrate a previously unrecognized mode of MHC-peptide-T cell receptor interaction.

Reviews - 1sje mentioned but not cited (1)

Articles - 1sje mentioned but not cited (25)

  1. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. PLoS Comput Biol 4 e1000048 (2008)
  2. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O. PLoS Comput Biol 4 e1000107 (2008)
  3. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Immunogenetics 67 641-650 (2015)
  4. Model for the peptide-free conformation of class II MHC proteins. Painter CA, Cruz A, López GE, Stern LJ, Zavala-Ruiz Z. PLoS One 3 e2403 (2008)
  5. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. PLoS One 7 e30483 (2012)
  6. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. Calvo-Calle JM, Strug I, Nastke MD, Baker SP, Stern LJ. PLoS Pathog 3 1511-1529 (2007)
  7. A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition. Zavala-Ruiz Z, Strug I, Walker BD, Norris PJ, Stern LJ. Proc Natl Acad Sci U S A 101 13279-13284 (2004)
  8. Susceptibility to HLA-DM protein is determined by a dynamic conformation of major histocompatibility complex class II molecule bound with peptide. Yin L, Trenh P, Guce A, Wieczorek M, Lange S, Sticht J, Jiang W, Bylsma M, Mellins ED, Freund C, Stern LJ. J Biol Chem 289 23449-23464 (2014)
  9. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. Oyarzún P, Ellis JJ, Bodén M, Kobe B. BMC Bioinformatics 14 52 (2013)
  10. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. Zhang H, Wang P, Papangelopoulos N, Xu Y, Sette A, Bourne PE, Lund O, Ponomarenko J, Nielsen M, Peters B. PLoS One 5 e9272 (2010)
  11. Characterization of structural features controlling the receptiveness of empty class II MHC molecules. Rupp B, Günther S, Makhmoor T, Schlundt A, Dickhaut K, Gupta S, Choudhary I, Wiesmüller KH, Jung G, Freund C, Falk K, Rötzschke O, Kühne R. PLoS One 6 e18662 (2011)
  12. pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes. Khan JM, Ranganathan S. Immunome Res 6 Suppl 1 S2 (2010)
  13. Association of HLA-DR1 with the allergic response to the major mugwort pollen allergen: molecular background. Knapp B, Fischer G, Van Hemelen D, Fae I, Maillere B, Ebner C, Schreiner W, Bohle B, Jahn-Schmid B. BMC Immunol 13 43 (2012)
  14. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. Bordner AJ. PLoS One 5 e14383 (2010)
  15. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model. Bordner AJ, Mittelmann HD. BMC Bioinformatics 11 41 (2010)
  16. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design. Hossain MS, Azad AK, Chowdhury PA, Wakayama M. Biomed Res Int 2017 4826030 (2017)
  17. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles. Shen WJ, Zhang S, Wong HS. Proteome Sci 11 S15 (2013)
  18. Predicting MHC-II binding affinity using multiple instance regression. EL-Manzalawy Y, Dobbs D, Honavar V. IEEE/ACM Trans Comput Biol Bioinform 8 1067-1079 (2011)
  19. Binding property of HIV p24 and Reverse transcriptase by chalcones from Pongamia pinnata seeds. Mathaiyan M, Suresh A, Balamurugan R. Bioinformation 14 279-284 (2018)
  20. A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information. Li Z, Zhao Y, Pan G, Tang J, Guo F. Biomed Res Int 2016 3832176 (2016)
  21. Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders. Ochoa R, Laskowski RA, Thornton JM, Cossio P. Front Mol Biosci 8 636562 (2021)
  22. Structural Insights Into HLA-DM Mediated MHC II Peptide Exchange. Painter CA, Stern LJ. Curr Top Biochem Res 13 39-55 (2011)
  23. Deciphering the Structural Enigma of HLA Class-II Binding Peptides for Enhanced Immunoinformatics-based Prediction of Vaccine Epitopes. Chatterjee D, Priyadarshini P, Das DK, Mushtaq K, Singh B, Agrewala JN. J Proteome Res 19 4655-4669 (2020)
  24. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)
  25. PANDORA v2.0: Benchmarking peptide-MHC II models and software improvements. Parizi FM, Marzella DF, Ramakrishnan G, 't Hoen PAC, Karimi-Jafari MH, Xue LC. Front Immunol 14 1285899 (2023)


Reviews citing this publication (6)

  1. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Sant AJ, Chaves FA, Jenks SA, Richards KA, Menges P, Weaver JM, Lazarski CA. Immunol Rev 207 261-278 (2005)
  2. HLA-DR: molecular insights and vaccine design. Stern LJ, Calvo-Calle JM. Curr Pharm Des 15 3249-3261 (2009)
  3. Conformational isomers of a peptide-class II major histocompatibility complex. Lovitch SB, Unanue ER. Immunol Rev 207 293-313 (2005)
  4. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings. Ayres CM, Corcelli SA, Baker BM. Front Immunol 8 935 (2017)
  5. From Chickens to Humans: The Importance of Peptide Repertoires for MHC Class I Alleles. Kaufman J. Front Immunol 11 601089 (2020)
  6. New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system. Halabi S, Kaufman J. Front Immunol 13 886672 (2022)

Articles citing this publication (30)

  1. Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM. Immunity 38 373-383 (2013)
  2. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, Burrows JM, Kjer-Nielsen L, Kostenko L, Purcell AW, McCluskey J, Rossjohn J. Nat Immunol 6 1114-1122 (2005)
  3. High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance. Tynan FE, Borg NA, Miles JJ, Beddoe T, El-Hassen D, Silins SL, van Zuylen WJ, Purcell AW, Kjer-Nielsen L, McCluskey J, Burrows SR, Rossjohn J. J Biol Chem 280 23900-23909 (2005)
  4. Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Juliarena MA, Poli M, Sala L, Ceriani C, Gutierrez S, Dolcini G, Rodríguez EM, Mariño B, Rodríguez-Dubra C, Esteban EN. Anim Genet 39 432-438 (2008)
  5. A photocontrolled beta-hairpin peptide. Dong SL, Löweneck M, Schrader TE, Schreier WJ, Zinth W, Moroder L, Renner C. Chemistry 12 1114-1120 (2006)
  6. HLA-DM constrains epitope selection in the human CD4 T cell response to vaccinia virus by favoring the presentation of peptides with longer HLA-DM-mediated half-lives. Yin L, Calvo-Calle JM, Dominguez-Amorocho O, Stern LJ. J Immunol 189 3983-3994 (2012)
  7. Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores. Salomon J, Flower DR. BMC Bioinformatics 7 501 (2006)
  8. DRB1*0401-restricted human T cell clone specific for the major proinsulin73-90 epitope expresses a down-regulatory T helper 2 phenotype. Durinovic-Belló I, Rosinger S, Olson JA, Congia M, Ahmad RC, Rickert M, Hampl J, Kalbacher H, Drijfhout JW, Mellins ED, Al Dahouk S, Kamradt T, Maeurer MJ, Nhan C, Roep BO, Boehm BO, Polychronakos C, Nepom GT, Karges W, McDevitt HO, Sønderstrup G. Proc Natl Acad Sci U S A 103 11683-11688 (2006)
  9. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough. Holland CJ, Cole DK, Godkin A. Front Immunol 4 172 (2013)
  10. Proinsulin C-peptide is an autoantigen in people with type 1 diabetes. So M, Elso CM, Tresoldi E, Pakusch M, Pathiraja V, Wentworth JM, Harrison LC, Krishnamurthy B, Thomas HE, Rodda C, Cameron FJ, McMahon J, Kay TWH, Mannering SI. Proc Natl Acad Sci U S A 115 10732-10737 (2018)
  11. Conformationally constrained peptides from CD2 to modulate protein-protein interactions between CD2 and CD58. Gokhale A, Weldeghiorghis TK, Taneja V, Satyanarayanajois SD. J Med Chem 54 5307-5319 (2011)
  12. Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4⁺ T-cell repertoire selection. Cole DK, Gallagher K, Lemercier B, Holland CJ, Junaid S, Hindley JP, Wynn KK, Gostick E, Sewell AK, Gallimore AM, Ladell K, Price DA, Gougeon ML, Godkin A. Nat Commun 3 665 (2012)
  13. Engineering enhanced protein stability through beta-turn optimization: insights for the design of stable peptide beta-hairpin systems. Simpson ER, Meldrum JK, Bofill R, Crespo MD, Holmes E, Searle MS. Angew Chem Int Ed Engl 44 4939-4944 (2005)
  14. Antigen-specific T cell phenotyping microarrays using grating coupled surface plasmon resonance imaging and surface plasmon coupled emission. Rice JM, Stern LJ, Guignon EF, Lawrence DA, Lynes MA. Biosens Bioelectron 31 264-269 (2012)
  15. Association of BoLA-DRB3.2 Alleles with BLV Infection Profiles (Persistent Lymphocytosis/Lymphosarcoma) and Lymphocyte Subsets in Iranian Holstein Cattle. Nikbakht Brujeni G, Ghorbanpour R, Esmailnejad A. Biochem Genet 54 194-207 (2016)
  16. BOLA-DRB3 gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle. Carignano HA, Beribe MJ, Caffaro ME, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Miretti MM, Poli MA. Anim Genet 48 420-430 (2017)
  17. Antagonism of HIV-specific CD4+ T cells by C-terminal truncation of a minimum epitope. Norris PJ, Stone JD, Anikeeva N, Heitman JW, Wilson IC, Hirschkorn DF, Clark MJ, Moffett HF, Cameron TO, Sykulev Y, Stern LJ, Walker BD. Mol Immunol 43 1349-1357 (2006)
  18. Folding of an MHC class II-restricted tumor antigen controls its antigenicity via MHC-guided processing. Mimura Y, Mimura-Kimura Y, Doores K, Golgher D, Davis BG, Dwek RA, Rudd PM, Elliott T. Proc Natl Acad Sci U S A 104 5983-5988 (2007)
  19. MHC Class II Binding Prediction by Molecular Docking. Atanasova M, Dimitrov I, Flower DR, Doytchinova I. Mol Inform 30 368-375 (2011)
  20. Synthesis and structural investigations of functionalizable hybrid β-hairpin. Bandyopadhyay A, Mali SM, Lunawat P, Raja KM, Gopi HN. Org Lett 13 4482-4485 (2011)
  21. The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif. Halabi S, Ghosh M, Stevanović S, Rammensee HG, Bertzbach LD, Kaufer BB, Moncrieffe MC, Kaspers B, Härtle S, Kaufman J. PLoS Biol 19 e3001057 (2021)
  22. Human leukocyte antigen (HLA) class II peptide flanking residues tune the immunogenicity of a human tumor-derived epitope. MacLachlan BJ, Dolton G, Papakyriakou A, Greenshields-Watson A, Mason GH, Schauenburg A, Besneux M, Szomolay B, Elliott T, Sewell AK, Gallimore A, Rizkallah P, Cole DK, Godkin A. J Biol Chem 294 20246-20258 (2019)
  23. A CD4+ T cell antagonist epitope down-regulates activating signaling proteins, up-regulates inhibitory signaling proteins and abrogates HIV-specific T cell function. Jacobs ES, Persad D, Ran L, Danesh A, Heitman JW, Deng X, Cameron MJ, Kelvin DJ, Norris PJ. Retrovirology 11 57 (2014)
  24. Amino acid signatures in the HLA class II peptide-binding region associated with protection/susceptibility to the severe West Nile Virus disease. Sarri CA, Papadopoulos GE, Papa A, Tsakris A, Pervanidou D, Baka A, Politis C, Billinis C, Hadjichristodoulou C, Mamuris Z, MALWEST project. PLoS One 13 e0205557 (2018)
  25. Homology modeling and molecular dynamics simulations of MUC1-9/H-2K(b) complex suggest novel binding interactions. Stavrakoudis A, Tsoulos IG, Uray K, Hudecz F, Apostolopoulos V. J Mol Model 17 1817-1829 (2011)
  26. Elongating modified conserved peptides eliminates their immunogenicity and protective efficacy against P. falciparum malaria. Espejo F, Bermúdez A, Vanegas M, Rivera Z, Torres E, Salazar LM, Patarroyo ME. J Struct Biol 150 245-258 (2005)
  27. Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution. Li C, Huang R, Nie F, Li J, Zhu W, Shi X, Guo Y, Chen Y, Wang S, Zhang L, Chen L, Li R, Liu X, Zheng C, Zhang C, Ma RZ. Front Immunol 11 260 (2020)
  28. Synthesis of a 6,6-spiroketal amino acid and its incorporation into a peptide turn sequence using solid-phase peptide synthesis. Kueh JT, Choi KW, Williams GM, Moehle K, Bacsa B, Robinson JA, Brimble MA. Chemistry 19 3807-3811 (2013)
  29. A Photochromic Azobenzene Peptidomimetic of a β-Turn Model Peptide Structure as a Conformational Switch. Nuti F, Gellini C, Larregola M, Squillantini L, Chelli R, Salvi PR, Lequin O, Pietraperzia G, Papini AM. Front Chem 7 180 (2019)
  30. Conformation study of HA(306-318) antigenic peptide of the haemagglutinin influenza virus protein. Bertrand A, Brito RM, Alix AJ, Lancelin JM, Carvalho RA, Geraldes CF, Lakhdar-Ghazal F. Spectrochim Acta A Mol Biomol Spectrosc 65 711-718 (2006)