1seb Citations

Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen.

Abstract

The structure of a bacterial superantigen, Staphylococcus aureus enterotoxin B, bound to a human class II histocompatibility complex molecule (HLA-DR1) has been determined by X-ray crystallography. The superantigen binds as an intact protein outside the conventional peptide antigen-binding site of the class II major histocompatibility complex (MHC) molecule. No large conformational changes occur upon complex formation in either the DR1 or the enterotoxin B molecules. The structure of the complex helps explain how different class II molecules and superantigens associate and suggests a model for ternary complex formation with the T-cell antigen receptor (TCR), in which unconventional TCR-MHC contacts are possible.

Reviews - 1seb mentioned but not cited (5)

  1. The evolving field of biodefence: therapeutic developments and diagnostics. Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. Nat Rev Drug Discov 4 281-297 (2005)
  2. Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Painter CA, Stern LJ. Immunol Rev 250 144-157 (2012)
  3. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Deacy AM, Gan SK, Derrick JP. Front Immunol 12 731845 (2021)
  4. 50 Years of structural immunology. Wilson IA, Stanfield RL. J Biol Chem 296 100745 (2021)
  5. Do polyproline II helix associations modulate biomolecular condensates? Mompeán M, Oroz J, Laurents DV. FEBS Open Bio 11 2390-2399 (2021)

Articles - 1seb mentioned but not cited (8)

  1. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  2. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies. Dutta K, Varshney AK, Franklin MC, Goger M, Wang X, Fries BC. J. Biol. Chem. 290 6715-6730 (2015)
  3. The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants. Kano FS, Souza-Silva FA, Torres LM, Lima BA, Sousa TN, Alves JR, Rocha RS, Fontes CJ, Sanchez BA, Adams JH, Brito CF, Pires DE, Ascher DB, Sell AM, Carvalho LH. PLoS Negl Trop Dis 10 e0005177 (2016)
  4. Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data. Adrian PE, Rajaseger G, Mathura VS, Sakharkar MK, Kangueane P. BMC Struct. Biol. 2 2 (2002)
  5. Structural basis for abrogated binding between staphylococcal enterotoxin A superantigen vaccine and MHC-IIalpha. Krupka HI, Segelke BW, Ulrich RG, Ringhofer S, Knapp M, Rupp B. Protein Sci. 11 642-651 (2002)
  6. Structural Insights Into HLA-DM Mediated MHC II Peptide Exchange. Painter CA, Stern LJ. Curr Top Biochem Res 13 39-55 (2011)
  7. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)
  8. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, Kaempfer R, Tuosto L. Front Immunol 14 1170821 (2023)


Reviews citing this publication (103)

  1. Exotoxins of Staphylococcus aureus. Dinges MM, Orwin PM, Schlievert PM. Clin. Microbiol. Rev. 13 16-34, table of contents (2000)
  2. Ligand recognition by alpha beta T cell receptors. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y. Annu. Rev. Immunol. 16 523-544 (1998)
  3. Toxic shock syndrome and bacterial superantigens: an update. McCormick JK, Yarwood JM, Schlievert PM. Annu. Rev. Microbiol. 55 77-104 (2001)
  4. Staphylococcal enterotoxins. Balaban N, Rasooly A. Int. J. Food Microbiol. 61 1-10 (2000)
  5. Structural basis of T cell recognition. Garcia KC, Teyton L, Wilson IA. Annu. Rev. Immunol. 17 369-397 (1999)
  6. Bacterial superantigens. Proft T, Fraser JD. Clin. Exp. Immunol. 133 299-306 (2003)
  7. The structural basis of T cell activation by superantigens. Li H, Llera A, Malchiodi EL, Mariuzza RA. Annu. Rev. Immunol. 17 435-466 (1999)
  8. Superantigens: microbial agents that corrupt immunity. Llewelyn M, Cohen J. Lancet Infect Dis 2 156-162 (2002)
  9. Staphylococcal manipulation of host immune responses. Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Nat. Rev. Microbiol. 13 529-543 (2015)
  10. Bacterial pyrogenic exotoxins as superantigens. Kotb M. Clin. Microbiol. Rev. 8 411-426 (1995)
  11. Staphylococcal enterotoxins. Pinchuk IV, Beswick EJ, Reyes VE. Toxins (Basel) 2 2177-2197 (2010)
  12. The enigma of the natural killer cell. Gumperz JE, Parham P. Nature 378 245-248 (1995)
  13. Staphylococcal and streptococcal superantigen exotoxins. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Clin. Microbiol. Rev. 26 422-447 (2013)
  14. Immune response to staphylococcal superantigens. Krakauer T. Immunol. Res. 20 163-173 (1999)
  15. Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. Schlievert PM, Strandberg KL, Lin YC, Peterson ML, Leung DY. J. Allergy Clin. Immunol. 125 39-49 (2010)
  16. Superantigens - powerful modifiers of the immune system. Fraser J, Arcus V, Kong P, Baker E, Proft T. Mol Med Today 6 125-132 (2000)
  17. Structural and thermodynamic correlates of T cell signaling. Rudolph MG, Luz JG, Wilson IA. Annu Rev Biophys Biomol Struct 31 121-149 (2002)
  18. MHC class II signaling in B-cell activation. Scholl PR, Geha RS. Immunol. Today 15 418-422 (1994)
  19. Microbial superantigens: from structure to function. Papageorgiou AC, Acharya KR. Trends Microbiol. 8 369-375 (2000)
  20. Perspective on antigen processing and presentation. Unanue ER. Immunol. Rev. 185 86-102 (2002)
  21. Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. Brosnahan AJ, Schlievert PM. FEBS J. 278 4649-4667 (2011)
  22. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Alouf JE, Müller-Alouf H. Int. J. Med. Microbiol. 292 429-440 (2003)
  23. Superantigens: structure-function relationships. Baker MD, Acharya KR. Int. J. Med. Microbiol. 293 529-537 (2004)
  24. Staphylococcal superantigens in colonization and disease. Xu SX, McCormick JK. Front Cell Infect Microbiol 2 52 (2012)
  25. T-cell activation by superantigens. Webb SR, Gascoigne NR. Curr. Opin. Immunol. 6 467-475 (1994)
  26. TCR recognition of peptide/MHC class II complexes and superantigens. Sundberg EJ, Deng L, Mariuzza RA. Semin. Immunol. 19 262-271 (2007)
  27. MHC superfamily structure and the immune system. Maenaka K, Jones EY. Curr. Opin. Struct. Biol. 9 745-753 (1999)
  28. Interactions between MHC molecules and co-receptors of the TCR. König R. Curr. Opin. Immunol. 14 75-83 (2002)
  29. MHC class I and class II structures. Jones EY. Curr. Opin. Immunol. 9 75-79 (1997)
  30. Vaccines against the category B toxins: Staphylococcal enterotoxin B, epsilon toxin and ricin. Mantis NJ. Adv. Drug Deliv. Rev. 57 1424-1439 (2005)
  31. Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Ortega E, Abriouel H, Lucas R, Gálvez A. Toxins (Basel) 2 2117-2131 (2010)
  32. The structure of the T cell antigen receptor. Bentley GA, Mariuzza RA. Annu. Rev. Immunol. 14 563-590 (1996)
  33. Biophysical studies of T-cell receptors and their ligands. Fremont DH, Rees WA, Kozono H. Curr. Opin. Immunol. 8 93-100 (1996)
  34. Interplay between superantigens and immunoreceptors. Petersson K, Forsberg G, Walse B. Scand. J. Immunol. 59 345-355 (2004)
  35. Understanding the mechanism of action of bacterial superantigens from a decade of research. Lavoie PM, Thibodeau J, Erard F, Sékaly RP. Immunol. Rev. 168 257-269 (1999)
  36. Superantigen bacterial toxins: state of the art. Müller-Alouf H, Carnoy C, Simonet M, Alouf JE. Toxicon 39 1691-1701 (2001)
  37. Bacterial superantigens in human disease: structure, function and diversity. Ulrich RG, Bavari S, Olson MA. Trends Microbiol. 3 463-468 (1995)
  38. So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Sundberg EJ, Li Y, Mariuzza RA. Curr. Opin. Immunol. 14 36-44 (2002)
  39. T-cell receptor structure and TCR complexes. Wilson IA, Garcia KC. Curr. Opin. Struct. Biol. 7 839-848 (1997)
  40. Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Wilson IA, Bjorkman PJ. Curr. Opin. Immunol. 10 67-73 (1998)
  41. Peptide binding by class I and class II MHC molecules. Batalia MA, Collins EJ. Biopolymers 43 281-302 (1997)
  42. Superantigens as immunomodulators: recent structural insights. Papageorgiou AC, Acharya KR. Structure 5 991-996 (1997)
  43. Immunology and genetics of type 1 diabetes. Morran MP, Omenn GS, Pietropaolo M. Mt. Sinai J. Med. 75 314-327 (2008)
  44. Structure and function of the T-cell receptor: insights from X-ray crystallography. Fields BA, Mariuzza RA. Immunol. Today 17 330-336 (1996)
  45. The staphylococcal enterotoxin (SE) family: SEB and siblings. Krakauer T, Stiles BG. Virulence 4 759-773 (2013)
  46. In vivo effects of superantigens. Blackman MA, Woodland DL. Life Sci. 57 1717-1735 (1995)
  47. Structures of two classes of MHC molecules elucidated: crucial differences and similarities. Bjorkman PJ, Burmeister WP. Curr. Opin. Struct. Biol. 4 852-856 (1994)
  48. Superantigens of gram-positive bacteria: structure-function analyses and their implications for biological activity. Kotb M. Curr. Opin. Microbiol. 1 56-65 (1998)
  49. Antigen presentation by MHC class II molecules. Weenink SM, Gautam AM. Immunol. Cell Biol. 75 69-81 (1997)
  50. Virus-encoded superantigens. Huber BT, Hsu PN, Sutkowski N. Microbiol. Rev. 60 473-482 (1996)
  51. Mechanisms of staphylococcal enterotoxin-induced emesis. Hu DL, Nakane A. Eur. J. Pharmacol. 722 95-107 (2014)
  52. Structure-function studies of T-cell receptor-superantigen interactions. Li H, Llera A, Mariuzza RA. Immunol. Rev. 163 177-186 (1998)
  53. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Reglinski M, Sriskandan S. Virulence 5 127-136 (2014)
  54. Why do superantigens care about peptides? Woodland DL, Wen R, Blackman MA. Immunol. Today 18 18-22 (1997)
  55. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Tam K, Torres VJ. Microbiol Spectr 7 (2019)
  56. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Med Res Rev 32 727-764 (2012)
  57. Therapeutic approaches to superantigen-based diseases: a review. Hong-Geller E, Gupta G. J. Mol. Recognit. 16 91-101 (2003)
  58. Review article: Inflammatory bowel disease and genetics. Weersma RK, van Dullemen HM, van der Steege G, Nolte IM, Kleibeuker JH, Dijkstra G. Aliment. Pharmacol. Ther. 26 Suppl 2 57-65 (2007)
  59. Staphylococcal Superantigens Spark Host-Mediated Danger Signals. Krakauer T, Pradhan K, Stiles BG. Front Immunol 7 23 (2016)
  60. Genetic variation in the extended major histocompatibility complex and susceptibility to childhood acute lymphoblastic leukemia: a review of the evidence. Urayama KY, Thompson PD, Taylor M, Trachtenberg EA, Chokkalingam AP. Front Oncol 3 300 (2013)
  61. Biophysical and structural studies of TCRs and ligands: implications for T cell signaling. Ward ES, Qadri A. Curr. Opin. Immunol. 9 97-106 (1997)
  62. Human leukocyte antigen polymorphisms and personalized medicine for rheumatoid arthritis. Furukawa H, Oka S, Shimada K, Hashimoto A, Tohma S. J. Hum. Genet. 60 691-696 (2015)
  63. B cell superantigens: potential modifiers of the normal human B cell repertoire. Domiati-Saad R, Lipsky PE. Int. Rev. Immunol. 14 309-324 (1997)
  64. Novel molecules related to MHC antigens. Stroynowski I, Forman J. Curr. Opin. Immunol. 7 97-102 (1995)
  65. Staphylococcal Enterotoxin C-An Update on SEC Variants, Their Structure and Properties, and Their Role in Foodborne Intoxications. Etter D, Schelin J, Schuppler M, Johler S. Toxins (Basel) 12 E584 (2020)
  66. CD28: direct and critical receptor for superantigen toxins. Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z. Toxins (Basel) 5 1531-1542 (2013)
  67. MHC class II-dependent peptide antigen versus superantigen presentation to T cells. Shoukry NH, Lavoie PM, Thibodeau J, D'Souza S, Sekaly RP. Hum. Immunol. 54 194-201 (1997)
  68. Role of the T cell receptor alpha-chain in superantigen recognition. Blackman MA, Woodland DL. Immunol. Res. 15 98-113 (1996)
  69. The Immune System of HIV-Exposed Uninfected Infants. Abu-Raya B, Kollmann TR, Marchant A, MacGillivray DM. Front Immunol 7 383 (2016)
  70. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. Pareja E, Tobes R, Martín J, Nieto A. Tissue Antigens 50 421-428 (1997)
  71. Far East Scarlet-Like Fever: A Review of the Epidemiology, Symptomatology, and Role of Superantigenic Toxin: Yersinia pseudotuberculosis-Derived Mitogen A. Amphlett A. Open Forum Infect Dis 3 ofv202 (2016)
  72. Kawasaki disease: update on diagnosis, treatment, and a still controversial etiology. Fischer P, Uttenreuther-Fischer MM, Naoe S, Gaedicke G. Pediatr Hematol Oncol 13 487-501 (1996)
  73. Peptide binding and antigen presentation by class II histocompatibility glycoproteins. Jensen PE. Biopolymers 43 303-322 (1997)
  74. Staphylococcal enterotoxins B and C. Structural requirements for superantigenic and entertoxigenic activities. Bohach GA. Prep. Biochem. Biotechnol. 27 79-110 (1997)
  75. Superantigens as etiopathogenetic factors in the development of insulin-dependent diabetes mellitus. Conrad B, Trucco M. Diabetes Metab Rev 10 309-338 (1994)
  76. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Furukawa H, Oka S, Tsuchiya N, Shimada K, Hashimoto A, Tohma S, Kawasaki A. Genes Immun. 18 1-7 (2017)
  77. Do superantigens play a role in lymphoproliferation? Amariglio N, Rechavi G. Leuk. Lymphoma 22 237-243 (1996)
  78. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. Sharma P, Wang N, Kranz DM. Toxins (Basel) 6 556-574 (2014)
  79. Staphylococcal enterotoxins in the etiopathogenesis of mucosal autoimmunity within the gastrointestinal tract. Principato M, Qian BF. Toxins (Basel) 6 1471-1489 (2014)
  80. Superantigen engineering. Abrahmsén L. Curr. Opin. Struct. Biol. 5 464-470 (1995)
  81. Superantigens: mechanisms by which they may induce, exacerbate and control autoimmune diseases. Macphail S. Int. Rev. Immunol. 18 141-180 (1999)
  82. Human leukocyte antigen class II haplotypes that protect against or predispose to streptococcal toxic shock. Llewelyn M. Clin. Infect. Dis. 41 Suppl 7 S445-8 (2005)
  83. Staphylococcal enterotoxins A, D, and E. Structure and function, including mechanism of T-cell superantigenicity. Svensson LA, Schad EM, Sundström M, Antonsson P, Kalland T, Dohlsten M. Prep. Biochem. Biotechnol. 27 111-141 (1997)
  84. Antibody-targeted superantigens in cancer immunotherapy. Søgaard M, Hansson J, Litton MJ, Ohlsson L, Rosendahl A, Lando PA, Antonsson P, Kalland T, Dohlsten M. Immunotechnology 2 151-162 (1996)
  85. Evidence for a superantigen in the pathogenesis of tuberculosis. Ohmen JD, Modlin RL. Springer Semin. Immunopathol. 17 375-384 (1996)
  86. Immune mechanisms that regulate susceptibility to autoimmune type I diabetes. Singh B, Delovitch TL. Clin Rev Allergy Immunol 19 247-264 (2000)
  87. Allergy-A New Role for T Cell Superantigens of Staphylococcus aureus? Abdurrahman G, Schmiedeke F, Bachert C, Bröker BM, Holtfreter S. Toxins (Basel) 12 (2020)
  88. Modulation of CD4 T cell function by soluble MHC II-peptide chimeras. Casares S, Bona CA, Brumeanu TD. Int. Rev. Immunol. 20 547-573 (2001)
  89. Superantigens in demyelinating disease. Brocke S, Piercy C, Steinman L. Springer Semin. Immunopathol. 18 51-56 (1996)
  90. Superantigens. Gazing into the crystal ball. Hsu PN, Huber BT. Curr. Biol. 5 235-237 (1995)
  91. The potential role of superantigens in inflammatory bowel disease. Kay RA. Clin. Exp. Immunol. 100 4-6 (1995)
  92. The systemic and pulmonary immune response to staphylococcal enterotoxins. Kumar S, Ménoret A, Ngoi SM, Vella AT. Toxins (Basel) 2 1898-1912 (2010)
  93. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Kane TL, Carothers KE, Lee SW. Curr Drug Targets 19 111-127 (2018)
  94. An accessory peptide binding site with allosteric effect on the formation of peptide-MHC-II complexes? Gerlier D, Trescol-Biémont MC, Ettouati L, Paris J, Rabourdin-Combe C. C. R. Acad. Sci. III, Sci. Vie 321 19-24 (1998)
  95. Antigen presentation: lysoyme, autoimmune diabetes, and Listeria--what do they have in common? Unanue E, Byersdorfer C, Carrero J, Levisetti M, Lovitch S, Pu Z, Suri A. Immunol. Res. 32 267-292 (2005)
  96. FDA-approved immunosuppressants targeting staphylococcal superantigens: mechanisms and insights. Krakauer T. Immunotargets Ther 6 17-29 (2017)
  97. Genetically engineered superantigens in experimental tumor therapy. Antonsson P, Hansson J, Kalland T, Lando PA, Ohlsson L, Schad E, Svensson A, Dohlsten M. Springer Semin. Immunopathol. 17 397-410 (1996)
  98. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Benkerroum N. Crit Rev Food Sci Nutr 58 1943-1970 (2018)
  99. Superantigens, a Paradox of the Immune Response. Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Toxins (Basel) 14 800 (2022)
  100. The pockets guide to HLA class I molecules. Nguyen AT, Szeto C, Gras S. Biochem Soc Trans 49 2319-2331 (2021)
  101. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Molecules 22 (2017)
  102. Novel insights into the immune response to bacterial T cell superantigens. Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Nat Rev Immunol (2024)
  103. Superantigenic characteristics of mouse mammary tumor viruses play a critical role in susceptibility to infection in mice. Pucillo CE, Palmer LD, Hodes RJ. Immunol. Res. 14 58-68 (1995)

Articles citing this publication (251)

  1. The atomic structure of protein-protein recognition sites. Lo Conte L, Chothia C, Janin J. J. Mol. Biol. 285 2177-2198 (1999)
  2. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP. Nature 376 313-320 (1995)
  3. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Ghosh P, Amaya M, Mellins E, Wiley DC. Nature 378 457-462 (1995)
  4. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG. Cell 88 235-242 (1997)
  5. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Dessen A, Lawrence CM, Cupo S, Zaller DM, Wiley DC. Immunity 7 473-481 (1997)
  6. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ. Nature 372 336-343 (1994)
  7. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Fields BA, Malchiodi EL, Li H, Ysern X, Stauffacher CV, Schlievert PM, Karjalainen K, Mariuzza RA. Nature 384 188-192 (1996)
  8. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. Gut 45 395-401 (1999)
  9. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT. Nat. Med. 8 687-693 (2002)
  10. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 93 734-738 (1996)
  11. Crystal structure of the superantigen staphylococcal enterotoxin type A. Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M, Kalland T, Schlievert PM, Ohlendorf DH, Svensson LA. EMBO J. 14 3292-3301 (1995)
  12. Biochemical and biological properties of Staphylococcal enterotoxin K. Orwin PM, Leung DY, Donahue HL, Novick RP, Schlievert PM. Infect. Immun. 69 360-366 (2001)
  13. Staphylococcus aureus synthesizes adenosine to escape host immune responses. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. J. Exp. Med. 206 2417-2427 (2009)
  14. Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen staphylococcal enterotoxin B. Li H, Llera A, Tsuchiya D, Leder L, Ysern X, Schlievert PM, Karjalainen K, Mariuzza RA. Immunity 9 807-816 (1998)
  15. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. Abrahmsén L, Dohlsten M, Segrén S, Björk P, Jonsson E, Kalland T. EMBO J. 14 2978-2986 (1995)
  16. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Arad G, Levy R, Hillman D, Kaempfer R. Nat. Med. 6 414-421 (2000)
  17. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. Hudson KR, Tiedemann RE, Urban RG, Lowe SC, Strominger JL, Fraser JD. J. Exp. Med. 182 711-720 (1995)
  18. Crystal structure of a diabody, a bivalent antibody fragment. Perisic O, Webb PA, Holliger P, Winter G, Williams RL. Structure 2 1217-1226 (1994)
  19. The structure of HLA-DM, the peptide exchange catalyst that loads antigen onto class II MHC molecules during antigen presentation. Mosyak L, Zaller DM, Wiley DC. Immunity 9 377-383 (1998)
  20. Stereospecific interactions of proline residues in protein structures and complexes. Bhattacharyya R, Chakrabarti P. J. Mol. Biol. 331 925-940 (2003)
  21. The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Murthy VL, Stern LJ. Structure 5 1385-1396 (1997)
  22. Transcytosis of staphylococcal superantigen toxins. Hamad AR, Marrack P, Kappler JW. J. Exp. Med. 185 1447-1454 (1997)
  23. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. Leder L, Llera A, Lavoie PM, Lebedeva MI, Li H, Sékaly RP, Bohach GA, Gahr PJ, Schlievert PM, Karjalainen K, Mariuzza RA. J. Exp. Med. 187 823-833 (1998)
  24. Multiple binding sites for bacterial superantigens on soluble class II MHC molecules. Kozono H, Parker D, White J, Marrack P, Kappler J. Immunity 3 187-196 (1995)
  25. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mullen MM, Haan KM, Longnecker R, Jardetzky TS. Mol. Cell 9 375-385 (2002)
  26. Cross-linking of major histocompatibility complex class II molecules by staphylococcal enterotoxin A superantigen is a requirement for inflammatory cytokine gene expression. Mehindate K, Thibodeau J, Dohlsten M, Kalland T, Sékaly RP, Mourad W. J. Exp. Med. 182 1573-1577 (1995)
  27. Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Papageorgiou AC, Acharya KR, Shapiro R, Passalacqua EF, Brehm RD, Tranter HS. Structure 3 769-779 (1995)
  28. Determination of the HLA-DM interaction site on HLA-DR molecules. Doebele RC, Busch R, Scott HM, Pashine A, Mellins ED. Immunity 13 517-527 (2000)
  29. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT. Mol. Cell 53 484-497 (2014)
  30. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Li Y, Li H, Dimasi N, McCormick JK, Martin R, Schuck P, Schlievert PM, Mariuzza RA. Immunity 14 93-104 (2001)
  31. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. Papageorgiou AC, Tranter HS, Acharya KR. J. Mol. Biol. 277 61-79 (1998)
  32. The binding site of NK receptors on HLA-C molecules. Mandelboim O, Reyburn HT, Sheu EG, Vales-Gomez M, Davis DM, Pazmany L, Strominger JL. Immunity 6 341-350 (1997)
  33. Correlation between the number of T cell receptors required for T cell activation and TCR-ligand affinity. Schodin BA, Tsomides TJ, Kranz DM. Immunity 5 137-146 (1996)
  34. Crystal structure of MHC class II I-Ab in complex with a human CLIP peptide: prediction of an I-Ab peptide-binding motif. Zhu Y, Rudensky AY, Corper AL, Teyton L, Wilson IA. J. Mol. Biol. 326 1157-1174 (2003)
  35. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. Sundström M, Abrahmsén L, Antonsson P, Mehindate K, Mourad W, Dohlsten M. EMBO J. 15 6832-6840 (1996)
  36. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. Petersson K, Håkansson M, Nilsson H, Forsberg G, Svensson LA, Liljas A, Walse B. EMBO J. 20 3306-3312 (2001)
  37. Tumor necrosis factor-induced hepatic DNA fragmentation as an early marker of T cell-dependent liver injury in mice. Gantner F, Leist M, Jilg S, Germann PG, Freudenberg MA, Tiegs G. Gastroenterology 109 166-176 (1995)
  38. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Desbarats J, Duke RC, Newell MK. Nat. Med. 4 1377-1382 (1998)
  39. Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Roussel A, Anderson BF, Baker HM, Fraser JD, Baker EN. Nat. Struct. Biol. 4 635-643 (1997)
  40. Predictions of T-cell receptor- and major histocompatibility complex-binding sites on staphylococcal enterotoxin C1. Hoffmann ML, Jablonski LM, Crum KK, Hackett SP, Chi YI, Stauffacher CV, Stevens DL, Bohach GA. Infect. Immun. 62 3396-3407 (1994)
  41. Inhibition of bacterial superantigens by peptides and antibodies. Visvanathan K, Charles A, Bannan J, Pugach P, Kashfi K, Zabriskie JB. Infect. Immun. 69 875-884 (2001)
  42. Intranasal exposure to staphylococcal enterotoxin B elicits an acute systemic inflammatory response. Rajagopalan G, Sen MM, Singh M, Murali NS, Nath KA, Iijima K, Kita H, Leontovich AA, Gopinathan U, Patel R, David CS. Shock 25 647-656 (2006)
  43. Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity. Boles JW, Pitt ML, LeClaire RD, Gibbs PH, Torres E, Dyas B, Ulrich RG, Bavari S. Clin. Immunol. 108 51-59 (2003)
  44. Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Spaulding AR, Lin YC, Merriman JA, Brosnahan AJ, Peterson ML, Schlievert PM. Vaccine 30 5099-5109 (2012)
  45. Activation of bovine lymphocyte subpopulations by staphylococcal enterotoxin C. Ferens WA, Davis WC, Hamilton MJ, Park YH, Deobald CF, Fox L, Bohach G. Infect. Immun. 66 573-580 (1998)
  46. Analysis of the superantigenic activity of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Kline JB, Collins CM. Infect. Immun. 64 861-869 (1996)
  47. Design, engineering and production of functional single-chain T cell receptor ligands. Burrows GG, Chang JW, Bächinger HP, Bourdette DN, Offner H, Vandenbark AA. Protein Eng. 12 771-778 (1999)
  48. Different superantigens interact with distinct sites in the Vbeta domain of a single T cell receptor. Hong SC, Waterbury G, Janeway CA. J. Exp. Med. 183 1437-1446 (1996)
  49. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. Sutkowski N, Chen G, Calderon G, Huber BT. J. Virol. 78 7852-7860 (2004)
  50. Major histocompatibility complex class II-associated peptides control the presentation of bacterial superantigens to T cells. Wen R, Cole GA, Surman S, Blackman MA, Woodland DL. J. Exp. Med. 183 1083-1092 (1996)
  51. Structural basis for the recognition of superantigen streptococcal pyrogenic exotoxin A (SpeA1) by MHC class II molecules and T-cell receptors. Papageorgiou AC, Collins CM, Gutman DM, Kline JB, O'Brien SM, Tranter HS, Acharya KR. EMBO J. 18 9-21 (1999)
  52. Evidence for dimers of MHC class II molecules in B lymphocytes and their role in low affinity T cell responses. Schafer PH, Pierce SK. Immunity 1 699-707 (1994)
  53. The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action. Li PL, Tiedemann RE, Moffat SL, Fraser JD. J. Exp. Med. 186 375-383 (1997)
  54. Binding of a soluble alpha beta T-cell receptor to superantigen/major histocompatibility complex ligands. Kappler J, White J, Kozono H, Clements J, Marrack P. Proc. Natl. Acad. Sci. U.S.A. 91 8462-8466 (1994)
  55. Intranasal exposure to bacterial superantigens induces airway inflammation in HLA class II transgenic mice. Rajagopalan G, Iijima K, Singh M, Kita H, Patel R, David CS. Infect. Immun. 74 1284-1296 (2006)
  56. Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. Li H, Natarajan K, Malchiodi EL, Margulies DH, Mariuzza RA. J. Mol. Biol. 283 179-191 (1998)
  57. Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Cobb BA, Kasper DL. Glycobiology 18 707-718 (2008)
  58. Clinical role for a superantigen in Yersinia pseudotuberculosis infection. Abe J, Onimaru M, Matsumoto S, Noma S, Baba K, Ito Y, Kohsaka T, Takeda T. J. Clin. Invest. 99 1823-1830 (1997)
  59. Role of the T cell receptor alpha chain in stabilizing TCR-superantigen-MHC class II complexes. Andersen PS, Lavoie PM, Sékaly RP, Churchill H, Kranz DM, Schlievert PM, Karjalainen K, Mariuzza RA. Immunity 10 473-483 (1999)
  60. Expression of MHC class II molecules contributes to lipopolysaccharide responsiveness. Piani A, Hossle JP, Birchler T, Siegrist CA, Heumann D, Davies G, Loeliger S, Seger R, Lauener RP. Eur. J. Immunol. 30 3140-3146 (2000)
  61. T cell receptor-major histocompatibility complex class II interaction is required for the T cell response to bacterial superantigens. Labrecque N, Thibodeau J, Mourad W, Sékaly RP. J. Exp. Med. 180 1921-1929 (1994)
  62. The sequence of the Mycoplasma arthritidis superantigen, MAM: identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. Cole BC, Knudtson KL, Oliphant A, Sawitzke AD, Pole A, Manohar M, Benson LS, Ahmed E, Atkin CL. J. Exp. Med. 183 1105-1110 (1996)
  63. Invariant chain made in Escherichia coli has an exposed N-terminal segment that blocks antigen binding to HLA-DR1 and a trimeric C-terminal segment that binds empty HLA-DR1. Park SJ, Sadegh-Nasseri S, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 92 11289-11293 (1995)
  64. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes. Arcus VL, Proft T, Sigrell JA, Baker HM, Fraser JD, Baker EN. J. Mol. Biol. 299 157-168 (2000)
  65. Identification of class II major histocompatibility complex and T cell receptor binding sites in the superantigen toxic shock syndrome toxin 1. Hurley JM, Shimonkevitz R, Hanagan A, Enney K, Boen E, Malmstrom S, Kotzin BL, Matsumura M. J. Exp. Med. 181 2229-2235 (1995)
  66. Idiopathic dilated cardiomyopathy: a superantigen-driven autoimmune disease. Luppi P, Rudert WA, Zanone MM, Stassi G, Trucco G, Finegold D, Boyle GJ, Del Nido P, McGowan FX, Trucco M. Circulation 98 777-785 (1998)
  67. Isolation of HLA-DR1.(staphylococcal enterotoxin A)2 trimers in solution. Tiedemann RE, Urban RJ, Strominger JL, Fraser JD. Proc. Natl. Acad. Sci. U.S.A. 92 12156-12159 (1995)
  68. Structural basis of T-cell specificity and activation by the bacterial superantigen TSST-1. Moza B, Varma AK, Buonpane RA, Zhu P, Herfst CA, Nicholson MJ, Wilbuer AK, Seth NP, Wucherpfennig KW, McCormick JK, Kranz DM, Sundberg EJ. EMBO J. 26 1187-1197 (2007)
  69. A DNA Spiegelmer to staphylococcal enterotoxin B. Purschke WG, Radtke F, Kleinjung F, Klussmann S. Nucleic Acids Res. 31 3027-3032 (2003)
  70. Evidence for a functional interaction between the beta chain of major histocompatibility complex class II and the T cell receptor alpha chain during recognition of a bacterial superantigen. Deckhut AM, Chien Y, Blackman MA, Woodland DL. J. Exp. Med. 180 1931-1935 (1994)
  71. Genetically engineered superantigens as tolerable antitumor agents. Hansson J, Ohlsson L, Persson R, Andersson G, Ilbäck NG, Litton MJ, Kalland T, Dohlsten M. Proc. Natl. Acad. Sci. U.S.A. 94 2489-2494 (1997)
  72. Residues defining V beta specificity in staphylococcal enterotoxins. Swaminathan S, Furey W, Pletcher J, Sax M. Nat. Struct. Biol. 2 680-686 (1995)
  73. Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Ulrich RG, Bavari S, Olson MA. Nat. Struct. Biol. 2 554-560 (1995)
  74. Conformational isomers of a class II MHC-peptide complex in solution. Schmitt L, Boniface JJ, Davis MM, McConnell HM. J. Mol. Biol. 286 207-218 (1999)
  75. Predicted complementarity determining regions of the T cell antigen receptor determine antigen specificity. Katayama CD, Eidelman FJ, Duncan A, Hooshmand F, Hedrick SM. EMBO J. 14 927-938 (1995)
  76. Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA. Ding W, Huang X, Yang X, Dunn JJ, Luft BJ, Koide S, Lawson CL. J. Mol. Biol. 302 1153-1164 (2000)
  77. Characterization of the canine type C enterotoxin produced by Staphylococcus intermedius pyoderma isolates. Edwards VM, Deringer JR, Callantine SD, Deobald CF, Berger PH, Kapur V, Stauffacher CV, Bohach GA. Infect. Immun. 65 2346-2352 (1997)
  78. Staphylococcal enterotoxin B mutants (N23K and F44S): biological effects and vaccine potential in a mouse model. Woody MA, Krakauer T, Stiles BG. Vaccine 15 133-139 (1997)
  79. Structural features of the invariant chain fragment CLIP controlling rapid release from HLA-DR molecules and inhibition of peptide binding. Kropshofer H, Vogt AB, Hämmerling GJ. Proc. Natl. Acad. Sci. U.S.A. 92 8313-8317 (1995)
  80. Structural relationships and cellular tropism of staphylococcal superantigen-like proteins. Al-Shangiti AM, Naylor CE, Nair SP, Briggs DC, Henderson B, Chain BM. Infect. Immun. 72 4261-4270 (2004)
  81. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Petersson K, Thunnissen M, Forsberg G, Walse B. Structure 10 1619-1626 (2002)
  82. Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Deringer JR, Ely RJ, Monday SR, Stauffacher CV, Bohach GA. Infect. Immun. 65 4048-4054 (1997)
  83. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Harris TO, Betley MJ. Infect. Immun. 63 2133-2140 (1995)
  84. Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Saul FA, Rovira P, Boulot G, Damme EJ, Peumans WJ, Truffa-Bachi P, Bentley GA. Structure 8 593-603 (2000)
  85. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. Fernández MM, Guan R, Swaminathan CP, Malchiodi EL, Mariuzza RA. J. Biol. Chem. 281 25356-25364 (2006)
  86. Inhibition of staphylococcal enterotoxin B-induced lymphocyte proliferation and tumor necrosis factor alpha secretion by MAb5, an anti-toxic shock syndrome toxin 1 monoclonal antibody. Pang LT, Kum WW, Chow AW. Infect. Immun. 68 3261-3268 (2000)
  87. Major histocompatibility complex class II-associated peptides determine the binding of the superantigen toxic shock syndrome toxin-1. von Bonin A, Ehrlich S, Malcherek G, Fleischer B. Eur. J. Immunol. 25 2894-2898 (1995)
  88. Selective binding of bacterial toxins to major histocompatibility complex class II-expressing cells is controlled by invariant chain and HLA-DM. Lavoie PM, Thibodeau J, Cloutier I, Busch R, Sékaly RP. Proc. Natl. Acad. Sci. U.S.A. 94 6892-6897 (1997)
  89. T-cell epitope analysis using subtracted expression libraries (TEASEL): application to a 38-kDA autoantigen recognized by T cells from an insulin-dependent diabetic patient. Neophytou PI, Roep BO, Arden SD, Muir EM, Duinkerken G, Kallan A, de Vries RR, Hutton JC. Proc. Natl. Acad. Sci. U.S.A. 93 2014-2018 (1996)
  90. The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules. Hâkansson M, Petersson K, Nilsson H, Forsberg G, Björk P, Antonsson P, Svensson LA. J. Mol. Biol. 302 527-537 (2000)
  91. A structural and functional comparison of staphylococcal enterotoxins A and C2 reveals remarkable similarity and dissimilarity. Schad EM, Papageorgiou AC, Svensson LA, Acharya KR. J. Mol. Biol. 269 270-280 (1997)
  92. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Arad G, Hillman D, Levy R, Kaempfer R. Immunol. Lett. 91 141-145 (2004)
  93. A novel loop domain in superantigens extends their T cell receptor recognition site. Günther S, Varma AK, Moza B, Kasper KJ, Wyatt AW, Zhu P, Rahman AK, Li Y, Mariuzza RA, McCormick JK, Sundberg EJ. J. Mol. Biol. 371 210-221 (2007)
  94. Binding of soluble natural ligands to a soluble human T-cell receptor fragment produced in Escherichia coli. Hilyard KL, Reyburn H, Chung S, Bell JI, Strominger JL. Proc. Natl. Acad. Sci. U.S.A. 91 9057-9061 (1994)
  95. Peptide length significantly influences in vitro affinity for MHC class II molecules. O'Brien C, Flower DR, Feighery C. Immunome Res 4 6 (2008)
  96. Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. Oka S, Furukawa H, Kawasaki A, Shimada K, Sugii S, Hashimoto A, Komiya A, Fukui N, Ito S, Nakamura T, Saisho K, Katayama M, Tsunoda S, Sano H, Migita K, Suda A, Nagaoka S, Tsuchiya N, Tohma S. PLoS ONE 9 e99453 (2014)
  97. Allelic polymorphisms at the H-2A and HLA-DQ loci influence the response of murine lymphocytes to the Mycoplasma arthritidis superantigen MAM. Cole BC, Sawitzke AD, Ahmed EA, Atkin CL, David CS. Infect. Immun. 65 4190-4198 (1997)
  98. Design of chimeric receptor mimics with different TcRVbeta isoforms. Type-specific inhibition of superantigen pathogenesis. Hong-Geller E, Möllhoff M, Shiflett PR, Gupta G. J Biol Chem 279 5676-5684 (2004)
  99. Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization. Schafroth HD, Floudas CA. Proteins 54 534-556 (2004)
  100. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts. Rödström KE, Elbing K, Lindkvist-Petersson K. J Immunol 193 1998-2004 (2014)
  101. Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus aureus survival in vivo. Xu SX, Gilmore KJ, Szabo PA, Zeppa JJ, Baroja ML, Haeryfar SM, McCormick JK. Infect. Immun. 82 3588-3598 (2014)
  102. Binding of natural variants of staphylococcal superantigens SEG and SEI to TCR and MHC class II molecule. Fernández MM, De Marzi MC, Berguer P, Burzyn D, Langley RJ, Piazzon I, Mariuzza RA, Malchiodi EL. Mol. Immunol. 43 927-938 (2006)
  103. Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. Brouillard JN, Günther S, Varma AK, Gryski I, Herfst CA, Rahman AK, Leung DY, Schlievert PM, Madrenas J, Sundberg EJ, McCormick JK. J. Mol. Biol. 367 925-934 (2007)
  104. Rapid clearance of the bacterial superantigen staphylococcal enterotoxin B in vivo. Vabulas R, Bittlingmaier R, Heeg K, Wagner H, Miethke T. Infect. Immun. 64 4567-4573 (1996)
  105. Biochemical and mutational analysis of the histidine residues of staphylococcal enterotoxin A. Hoffman M, Tremaine M, Mansfield J, Betley M. Infect. Immun. 64 885-890 (1996)
  106. Human leukocyte antigens and systemic lupus erythematosus: a protective role for the HLA-DR6 alleles DRB1*13:02 and *14:03. Furukawa H, Kawasaki A, Oka S, Ito I, Shimada K, Sugii S, Hashimoto A, Komiya A, Fukui N, Kondo Y, Ito S, Hayashi T, Matsumoto I, Kusaoi M, Amano H, Nagai T, Hirohata S, Setoguchi K, Kono H, Okamoto A, Chiba N, Suematsu E, Katayama M, Migita K, Suda A, Ohno S, Hashimoto H, Takasaki Y, Sumida T, Nagaoka S, Tsuchiya N, Tohma S. PLoS ONE 9 e87792 (2014)
  107. Identification of residues in the V domain of CD80 (B7-1) implicated in functional interactions with CD28 and CTLA4. Fargeas CA, Truneh A, Reddy M, Hurle M, Sweet R, Sékaly RP. J. Exp. Med. 182 667-675 (1995)
  108. Staphylococcal enterotoxin A and toxic shock syndrome toxin compete with CD4 for human major histocompatibility complex class II binding. Bavari S, Ulrich RG. Infect. Immun. 63 423-429 (1995)
  109. An insulin peptide that binds an alternative site in class II major histocompatibility complex. Tompkins SM, Moore JC, Jensen PE. J. Exp. Med. 183 857-866 (1996)
  110. Functional piglet model for the clinical syndrome and postmortem findings induced by staphylococcal enterotoxin B. van Gessel YA, Mani S, Bi S, Hammamieh R, Shupp JW, Das R, Coleman GD, Jett M. Exp. Biol. Med. (Maywood) 229 1061-1071 (2004)
  111. Rhodamine 123: a useful probe for monitoring T cell activation. Ferlini C, Biselli R, Nisini R, Fattorossi A. Cytometry 21 284-293 (1995)
  112. Association of increased frequencies of HLA-DPB1*05:01 with the presence of anti-Ro/SS-A and anti-La/SS-B antibodies in Japanese rheumatoid arthritis and systemic lupus erythematosus patients. Furukawa H, Oka S, Shimada K, Sugii S, Hashimoto A, Komiya A, Fukui N, Nagai T, Hirohata S, Setoguchi K, Okamoto A, Chiba N, Suematsu E, Miyashita T, Migita K, Suda A, Nagaoka S, Tsuchiya N, Tohma S. PLoS ONE 8 e53910 (2013)
  113. Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Zhao Y, Li Z, Drozd SJ, Guo Y, Mourad W, Li H. Structure 12 277-288 (2004)
  114. Cutting edge: Evidence of direct TCR alpha-chain interaction with superantigen. Pumphrey N, Vuidepot A, Jakobsen B, Forsberg G, Walse B, Lindkvist-Petersson K. J Immunol 179 2700-2704 (2007)
  115. Engineering protein for X-ray crystallography: the murine Major Histocompatibility Complex class II molecule I-Ad. Scott CA, Garcia KC, Stura EA, Peterson PA, Wilson IA, Teyton L. Protein Sci 7 413-418 (1998)
  116. The J beta segment of the T cell receptor contributes to the V beta-specific T cell expansion caused by staphylococcal enterotoxin B and Urtica dioica superantigens. Musette P, Galelli A, Truffa-Bachi P, Peumans W, Kourilsky P, Gachelin G. Eur. J. Immunol. 26 618-622 (1996)
  117. Crystallographic structure of a rheumatoid arthritis MHC susceptibility allele, HLA-DR1 (DRB1*0101), complexed with the immunodominant determinant of human type II collagen. Rosloniec EF, Ivey RA, Whittington KB, Kang AH, Park HW. J Immunol 177 3884-3892 (2006)
  118. Mutational analysis of critical residues determining antigen presentation and activation of HLA-DQ0602 restricted T-cell clones. Reichstetter S, Papadopoulos GK, Moustakas AK, Swanson E, Liu AW, Beheray S, Ettinger RA, Nepom GT, Kwok WW. Hum. Immunol. 63 185-193 (2002)
  119. Purified bovine WC1+ gamma delta T lymphocytes are activated by staphylococcal enterotoxins and toxic shock syndrome toxin-1 superantigens: proliferation response, TCR V gamma profile and cytokines expression. Fikri Y, Denis O, Pastoret P, Nyabenda J. Immunol. Lett. 77 87-95 (2001)
  120. Specific T cell recognition of kinetic isomers in the binding of peptide to class II major histocompatibility complex. Rabinowitz JD, Tate K, Lee C, Beeson C, McConnell HM. Proc. Natl. Acad. Sci. U.S.A. 94 8702-8707 (1997)
  121. Streptococcus dysgalactiae-derived mitogen (SDM), a novel bacterial superantigen: characterization of its biological activity and predicted tertiary structure. Miyoshi-Akiyama T, Zhao J, Kato H, Kikuchi K, Totsuka K, Kataoka Y, Katsumi M, Uchiyama T. Mol. Microbiol. 47 1589-1599 (2003)
  122. Structural features of a zinc binding site in the superantigen strepococcal pyrogenic exotoxin A (SpeA1): implications for MHC class II recognition. Baker M, Gutman DM, Papageorgiou AC, Collins CM, Acharya KR. Protein Sci. 10 1268-1273 (2001)
  123. Structural, energetic, and functional analysis of a protein-protein interface at distinct stages of affinity maturation. Sundberg EJ, Andersen PS, Schlievert PM, Karjalainen K, Mariuzza RA. Structure 11 1151-1161 (2003)
  124. Superantigen activation and kinetics of cytokines in the Long-Evans rat. Huang W, Koller LD. Immunology 95 331-338 (1998)
  125. Synergistic effect between CD40 and class II signals overcome the requirement for class II dimerization in superantigen-induced cytokine gene expression. Mehindate K, al-Daccak R, Damdoumi F, Mourad W. Eur. J. Immunol. 26 2075-2080 (1996)
  126. A toxic shock syndrome toxin 1 mutant that defines a functional site critical for T-cell activation. Cullen CM, Blanco LR, Bonventre PF, Choi E. Infect. Immun. 63 2141-2146 (1995)
  127. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules. Bouvier M, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 93 4583-4588 (1996)
  128. Functional analysis of Mycoplasma arthritidis-derived mitogen interactions with class II molecules. Bernatchez C, Al-Daccak R, Mayer PE, Mehindate K, Rink L, Mecheri S, Mourad W. Infect. Immun. 65 2000-2005 (1997)
  129. A T cell receptor V alpha domain expressed in bacteria: does it dimerize in solution? Plaksin D, Chacko S, McPhie P, Bax A, Padlan EA, Margulies DH. J. Exp. Med. 184 1251-1258 (1996)
  130. A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent monoclonal antibodies recognize HLA-B27-peptide complexes with low stringency for peptide sequences. Huang F, Hermann E, Wang J, Cheng XK, Tsai WC, Wen J, Kuipers JG, Kellner H, Ackermann B, Roth G, Williams KM, Yu DK, Raybourne RB. Infect. Immun. 64 120-127 (1996)
  131. Clarifying the mechanism of superantigen toxicity. Fraser JD. PLoS Biol. 9 e1001145 (2011)
  132. Crystal and solution structures of a superantigen from Yersinia pseudotuberculosis reveal a jelly-roll fold. Donadini R, Liew CW, Kwan AH, Mackay JP, Fields BA. Structure 12 145-156 (2004)
  133. Evaluating the role of HLA-DQ polymorphisms on immune response to bacterial superantigens using transgenic mice. Rajagopalan G, Polich G, Sen MM, Singh M, Epstein BE, Lytle AK, Rouse MS, Patel R, David CS. Tissue Antigens 71 135-145 (2008)
  134. In vitro and in vivo T cell oligoclonality following chronic stimulation with staphylococcal superantigens. Kim KS, Jacob N, Stohl W. Clin. Immunol. 108 182-189 (2003)
  135. Major histocompatibility complex class I molecule serves as a ligand for presentation of the superantigen staphylococcal enterotoxin B to T cells. Häffner AC, Zepter K, Elmets CA. Proc. Natl. Acad. Sci. U.S.A. 93 3037-3042 (1996)
  136. Mitogenic activities of amino acid substitution mutants of staphylococcal enterotoxin B in human and mouse lymphocyte cultures. Neill RJ, Jett M, Crane R, Wootres J, Welch C, Hoover D, Gemski P. Infect. Immun. 64 3007-3015 (1996)
  137. Regulation of receptor internalization by the major histocompatibility complex class I molecule. Olsson L, Goldstein A, Stagsted J. Proc. Natl. Acad. Sci. U.S.A. 91 9086-9090 (1994)
  138. Highly biased CDR3 usage in restricted sets of beta chain variable regions during viral superantigen 9 response. Ciurli C, Posnett DN, Sékaly RP, Denis F. J. Exp. Med. 187 253-258 (1998)
  139. Localization of binding sites of staphylococcal enterotoxin B (SEB), a superantigen, for HLA-DR by inhibition with synthetic peptides of SEB. Komisar JL, Small-Harris S, Tseng J. Infect. Immun. 62 4775-4780 (1994)
  140. Production of tumor necrosis factor alpha in human T lymphocytes by staphylococcal enterotoxin B correlates with toxin-induced proliferation and is regulated through protein kinase C. Yan Z, Yang DC, Neill R, Jett M. Infect. Immun. 67 6611-6618 (1999)
  141. Staphylococcal enterotoxins bind H-2Db molecules on macrophages. Beharka AA, Iandolo JJ, Chapes SK. Proc. Natl. Acad. Sci. U.S.A. 92 6294-6298 (1995)
  142. Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. Wen R, Broussard DR, Surman S, Hogg TL, Blackman MA, Woodland DL. Eur. J. Immunol. 27 772-781 (1997)
  143. Correlation of body temperature with protection against staphylococcal enterotoxin B exposure and use in determining vaccine dose-schedule. Boles JW, Pitt ML, LeClaire RD, Gibbs PH, Ulrich RG, Bavari S. Vaccine 21 2791-2796 (2003)
  144. The T cell receptor beta-chain second complementarity determining region loop (CDR2beta governs T cell activation and Vbeta specificity by bacterial superantigens. Nur-ur Rahman AK, Bonsor DA, Herfst CA, Pollard F, Peirce M, Wyatt AW, Kasper KJ, Madrenas J, Sundberg EJ, McCormick JK. J. Biol. Chem. 286 4871-4881 (2011)
  145. A natural mutation of the amino acid residue at position 60 destroys staphylococcal enterotoxin A murine T-cell mitogenicity. Mahana W, al-Daccak R, Lévéillé C, Valet JP, Hébert J, Ouellette M, Mourad W. Infect. Immun. 63 2826-2832 (1995)
  146. Crystal structure of a dimeric form of streptococcal pyrogenic exotoxin A (SpeA1). Baker MD, Gendlina I, Collins CM, Acharya KR. Protein Sci. 13 2285-2290 (2004)
  147. Definition of sites on HLA-DR1 involved in the T cell response to staphylococcal enterotoxins E and C2. Hargreaves RE, Brehm RD, Tranter H, Warrens AN, Lombardi G, Lechler RI. Eur. J. Immunol. 25 3437-3444 (1995)
  148. Direct binding of the Mtv7 superantigen (Mls-1) to soluble MHC class II molecules. Mottershead DG, Hsu PN, Urban RG, Strominger JL, Huber BT. Immunity 2 149-154 (1995)
  149. In vitro expansion of T-cell-receptor Valpha2.3(+) CD4(+) T lymphocytes in HLA-DR17(3), DQ2(+) individuals upon stimulation with Mycobacterium tuberculosis. Esin S, Batoni G, Saruhan-Direskeneli G, Harris RA, Grunewald J, Pardini M, Svenson SB, Campa M, Wigzell H. Infect. Immun. 67 3800-3809 (1999)
  150. Inhibition of T-cell activation with HLA-DR1/DR4 restricted Non-T-cell stimulating peptides. Zhou Q, Cheng Y, Lü H, Zhou W, Li Z. Hum. Immunol. 64 857-865 (2003)
  151. Man-made superantigens: Tumor-selective agents for T-cell-based therapy. Dohlsten M, Kalland T, Gunnarsson P, Antonsson P, Molander A, Olsson J, d'Argy R, Ohlsson L, Soegaard M, Persson R, Brodin TN. Adv. Drug Deliv. Rev. 31 131-142 (1998)
  152. Molecular characterization of the putative T-cell receptor cavity of the superantigen staphylococcal enterotoxin B. Garcia C, Briggs C, Zhang L, Guan L, Gabriel JL, Rogers TJ. Immunology 94 160-166 (1998)
  153. Peptide antagonists of superantigen toxins. Kaempfer R. Mol. Divers. 8 113-120 (2004)
  154. Staphylococcus aureus isolates encode variant staphylococcal enterotoxin B proteins that are diverse in superantigenicity and lethality. Kohler PL, Greenwood SD, Nookala S, Kotb M, Kranz DM, Schlievert PM. PLoS ONE 7 e41157 (2012)
  155. Superantigen natural affinity maturation revealed by the crystal structure of staphylococcal enterotoxin G and its binding to T-cell receptor Vbeta8.2. Fernández MM, Bhattacharya S, De Marzi MC, Brown PH, Kerzic M, Schuck P, Mariuzza RA, Malchiodi EL. Proteins 68 389-402 (2007)
  156. TCR binding differs for a bacterial superantigen (SEE) and a viral superantigen (Mtv-9). Liao L, Marinescu A, Molano A, Ciurli C, Sekaly RP, Fraser JD, Popowicz A, Posnett DN. J. Exp. Med. 184 1471-1482 (1996)
  157. Zinc induces dimerization of the class II major histocompatibility complex molecule that leads to cooperative binding to a superantigen. Li H, Zhao Y, Guo Y, Li Z, Eisele L, Mourad W. J. Biol. Chem. 282 5991-6000 (2007)
  158. A mutation of F47 to A in staphylococcus enterotoxin A activates the T-cell receptor Vbeta repertoire in vivo. Rosendahl A, Hansson J, Antonsson P, Sékaly RP, Kalland T, Dohlsten M. Infect. Immun. 65 5118-5124 (1997)
  159. Human Leukocyte Antigen and Systemic Sclerosis in Japanese: The Sign of the Four Independent Protective Alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. Furukawa H, Oka S, Kawasaki A, Shimada K, Sugii S, Matsushita T, Hashimoto A, Komiya A, Fukui N, Kobayashi K, Osada A, Ihata A, Kondo Y, Nagai T, Setoguchi K, Okamoto A, Okamoto A, Chiba N, Suematsu E, Kono H, Katayama M, Hirohata S, Sumida T, Migita K, Hasegawa M, Fujimoto M, Sato S, Nagaoka S, Takehara K, Tohma S, Tsuchiya N. PLoS ONE 11 e0154255 (2016)
  160. Identification of MHC class II-associated peptides that promote the presentation of toxic shock syndrome toxin-1 to T cells. Hogan RJ, VanBeek J, Broussard DR, Surman SL, Woodland DL. J Immunol 166 6514-6522 (2001)
  161. Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators. Pless DD, Ruthel G, Reinke EK, Ulrich RG, Bavari S. Infect. Immun. 73 5358-5366 (2005)
  162. Towards the MHC-peptide combinatorics. Kangueane P, Sakharkar MK, Kolatkar PR, Ren EC. Hum. Immunol. 62 539-556 (2001)
  163. A recombinant single-chain human class II MHC molecule (HLA-DR1) as a covalently linked heterotrimer of alpha chain, beta chain, and antigenic peptide, with immunogenicity in vitro and reduced affinity for bacterial superantigens. Zhu X, Bavari S, Ulrich R, Sadegh-Nasseri S, Ferrone S, McHugh L, Mage M. Eur. J. Immunol. 27 1933-1941 (1997)
  164. Analysis of functional regions of YPM, a superantigen derived from gram-negative bacteria. Ito Y, Seprényi G, Abe J, Kohsaka T. Eur. J. Biochem. 263 326-337 (1999)
  165. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion. Wright AD, Chapes SK. Cell. Immunol. 197 129-135 (1999)
  166. Differential geometric analysis of alterations in MH α-helices. Hischenhuber B, Havlicek H, Todoric J, Höllrigl-Binder S, Schreiner W, Knapp B. J Comput Chem 34 1862-1879 (2013)
  167. Macrophage cell lines derived from major histocompatibility complex II-negative mice. Beharka AA, Armstrong JW, Chapes SK. In Vitro Cell. Dev. Biol. Anim. 34 499-507 (1998)
  168. Major histocompatibility class I molecules present Urtica dioica agglutinin, a superantigen of vegetal origin, to T lymphocytes. Rovira P, Buckle M, Abastado JP, Peumans WJ, Truffa-Bachi P. Eur. J. Immunol. 29 1571-1580 (1999)
  169. Molecular docking of superantigens with class II major histocompatibility complex proteins. Olson MA, Cuff L. J. Mol. Recognit. 10 277-289 (1997)
  170. Molecular modeling of a T-cell receptor bound to a major histocompatibility complex molecule: implications for T-cell recognition. Almagro JC, Vargas-Madrazo E, Lara-Ochoa F, Horjales E. Protein Sci. 4 1708-1717 (1995)
  171. Overview of clinical trials employing antibody-targeted superantigens. Persson B, Persson R, Weiner LM, Alpaugh RK. Adv. Drug Deliv. Rev. 31 143-152 (1998)
  172. Structural and functional role of threonine 112 in a superantigen Staphylococcus aureus enterotoxin B. Baker MD, Papageorgiou AC, Titball RW, Miller J, White S, Lingard B, Lee JJ, Cavanagh D, Kehoe MA, Robinson JH, Acharya KR. J. Biol. Chem. 277 2756-2762 (2002)
  173. T cell receptor beta chain genotyping in Australian relapsing-remitting multiple sclerosis patients. Buhler MM, Bennetts BH, Heard RN, Stewart GJ. Mult. Scler. 6 140-147 (2000)
  174. The cellular and molecular immune response of the weanling piglet to staphylococcal enterotoxin B. Bi S, Das R, Zelazowska E, Mani S, Neill R, Coleman GD, Yang DC, Hammamieh R, Shupp JW, Jett M. Exp. Biol. Med. (Maywood) 234 1305-1315 (2009)
  175. The immune function of MHC class II molecules mutated in the putative superdimer interface. Hayball JD, Lake RA. Mol. Cell. Biochem. 273 1-9 (2005)
  176. A dominant V beta bias in the CTL response after HSV-1 infection is determined by peptide residues predicted to also interact with the TCR beta-chain CDR3. Turner SJ, Carbone FR. Mol. Immunol. 35 307-316 (1998)
  177. Functional activity of staphylococcal enterotoxin A requires interactions with both the alpha and beta chains of HLA-DR. Dowd JE, Karr RW, Karp DR. Mol. Immunol. 33 1267-1274 (1996)
  178. HLA-DR alpha 2 mediates negative signalling via binding to Tirc7 leading to anti-inflammatory and apoptotic effects in lymphocytes in vitro and in vivo. Bulwin GC, Wälter S, Schlawinsky M, Heinemann T, Schulze A, Höhne W, Krause G, Kalka-Moll W, Fraser P, Volk HD, Löhler J, Milford EL, Utku N. PLoS ONE 3 e1576 (2008)
  179. Identification of staphylococcal enterotoxin B domains involved in binding to cultured human kidney proximal tubular cells: imparting proliferation and death. Chatterjee S, Neill R, Shupp JW, Hammamieh R, Ionin B, Jett M. Exp. Biol. Med. (Maywood) 232 1142-1151 (2007)
  180. Mutations affecting the superantigen activity of staphylococcal enterotoxin B. Briggs C, Garcia C, Zhang L, Guan L, Gabriel JL, Rogers TJ. Immunology 90 169-175 (1997)
  181. Comment Pictures of MHC restriction. Parham P. Nature 384 109-110 (1996)
  182. V alpha domain modulates the multiple topologies of mouse T cell receptor V beta20/staphylococcal enterotoxins A and E complexes. Bravo de Alba Y, Marche PN, Cazenave PA, Cloutier I, Sekaly RP, Thibodeau J. Eur. J. Immunol. 27 92-99 (1997)
  183. Comment Will therapeutic peptides be kryptonite for superantigens? Schlievert PM. Nat. Med. 6 378-379 (2000)
  184. Crystal structure of staphylococcal enterotoxin G (SEG) in complex with a mouse T-cell receptor {beta} chain. Fernández MM, Cho S, De Marzi MC, Kerzic MC, Robinson H, Mariuzza RA, Malchiodi EL. J. Biol. Chem. 286 1189-1195 (2011)
  185. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin. Orlik C, Deibel D, Küblbeck J, Balta E, Ganskih S, Habicht J, Niesler B, Schröder-Braunstein J, Schäkel K, Wabnitz G, Samstag Y. Cell Mol Immunol 17 380-394 (2020)
  186. Major histocompatibility complex class II binding site for streptococcal pyrogenic (erythrogenic) toxin A. Hartwig UF, Gerlach D, Fleischer B. Med. Microbiol. Immunol. 183 257-264 (1994)
  187. Prediction of the multimeric assembly of staphylococcal enterotoxin A with cell-surface protein receptors. Cuff L, Ulrich RG, Olson MA. J. Mol. Graph. Model. 21 473-486 (2003)
  188. Staphylococcal enterotoxin H contrasts closely related enterotoxins in species reactivity. Pettersson H, Forsberg G. Immunology 106 71-79 (2002)
  189. Structural basis for the neutralization and specificity of Staphylococcal enterotoxin B against its MHC Class II binding site. Xia T, Liang S, Wang H, Hu S, Sun Y, Yu X, Han J, Li J, Guo S, Dai J, Lou Z, Guo Y. MAbs 6 119-129 (2014)
  190. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition. Rödström KE, Regenthal P, Lindkvist-Petersson K. PLoS ONE 10 e0131988 (2015)
  191. The tortuous journey of a biochemist to immunoland and what he found there. Strominger JL. Annu. Rev. Immunol. 24 1-31 (2006)
  192. Analysis of peptide affinity to major histocompatibility complex proteins for the two-step binding mechanism. Berezhkovskiy LM, Astafieva IV, Cardoso C. Anal. Biochem. 308 239-246 (2002)
  193. Assessment of the functional regions of the superantigen staphylococcal enterotoxin B. Zhang L, Rogers TJ. Toxins (Basel) 5 1859-1871 (2013)
  194. Bacterial superantigen specificities of mouse T cell receptor V beta 20. Bravo de Alba Y, Cazenave PA, Marche PN. Eur. J. Immunol. 25 3425-3430 (1995)
  195. Binding analysis of 95 HIV gp120 peptides to HLA-DR1101 and -DR0401 evidenced many HLA-class II binding regions on gp120 and suggested several promiscuous regions. Gaudebout P, Zeliszewski D, Golvano JJ, Pignal C, Le Gac S, Borras-Cuesta F, Sterkers G. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 14 91-101 (1997)
  196. Crystal structures of T cell receptor (beta) chains related to rheumatoid arthritis. Li H, Van Vranken S, Zhao Y, Li Z, Guo Y, Eisele L, Li Y. Protein Sci. 14 3025-3038 (2005)
  197. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses. Dow SW, Potter TA. J. Clin. Invest. 99 2616-2624 (1997)
  198. HLA-DO increases bacterial superantigen binding to human MHC molecules by inhibiting dissociation of class II-associated invariant chain peptides. Pezeshki AM, Azar GA, Mourad W, Routy JP, Boulassel MR, Denzin LK, Thibodeau J. Hum. Immunol. 74 1280-1287 (2013)
  199. Mutational analysis of superantigen activity responsible for the induction of skin erythema by streptococcal pyrogenic exotoxin C. Yamaoka J, Nakamura E, Takeda Y, Imamura S, Minato N. Infect. Immun. 66 5020-5026 (1998)
  200. Partial T cell activation with an altered superantigenic ligand. Hayball JD, Lake RA. Immunol. Cell Biol. 78 13-19 (2000)
  201. Soybean seeds: a practical host for the production of functional subunit vaccines. Hudson LC, Garg R, Bost KL, Piller KJ. Biomed Res Int 2014 340804 (2014)
  202. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. Langley RJ, Ting YT, Clow F, Young PG, Radcliff FJ, Choi JM, Sequeira RP, Holtfreter S, Baker H, Fraser JD. PLoS Pathog. 13 e1006549 (2017)
  203. The solution structure of a class II major histocompatibility complex superantigen binding domain. Jablonsky MJ, Subramaniam PS, Johnson HM, Russell JK, Krishna NR. Biochem. Biophys. Res. Commun. 234 660-665 (1997)
  204. The superantigen Staphylococcus enterotoxin B induces a strong and accelerated secondary T-cell response rather than anergy. Schultz H, Geiselhart A, Sappler G, Niethammer D, Hoffmann MK, Dannecker GE. Immunology 87 49-54 (1996)
  205. Uptake and intracellular trafficking of superantigens in dendritic cells. Ganem MB, De Marzi MC, Fernández-Lynch MJ, Jancic C, Vermeulen M, Geffner J, Mariuzza RA, Fernández MM, Malchiodi EL. PLoS ONE 8 e66244 (2013)
  206. Cytokine induction by Mycoplasma arthritidis-derived superantigen (MAS), but not by TSST-1 or SEC-3, is correlated to certain HLA-DR types. Alvarez-Ossorio L, Johannsen M, Alvarez-Ossorio R, Nicklas W, Kirchner H, Rink L. Scand. J. Immunol. 47 43-47 (1998)
  207. Enhanced prevalence of T cell receptor V beta 7 gene family expression in human intestine-associated T lymphocytes. Esin S, Hodara V, Jeddi-Tehrani M, Grunewald J, Svenberg T, Andersson R, Wigzell H. Immunol. Lett. 51 149-155 (1996)
  208. Identification of a new HLA-DRB1 allele in three members of an Italian family. Garino E, Berrino M, Mazzola G, Boccadoro M, Bruno B, Bertinetto F, Bertola L, Caropreso P, Frisaldi E, Marin F, Panniello ML, Tondat F, Dall'Omo AM. Tissue Antigens 64 210-212 (2004)
  209. Identification of antigenic sites on staphylococcal enterotoxin B and toxoid. Wood AC, Chadwick JS, Brehm RS, Todd I, Arbuthnott JP, Tranter HS. FEMS Immunol. Med. Microbiol. 17 1-10 (1997)
  210. Identification of domains involved in superantigenicity of streptococcal pyrogenic exotoxin F (SpeF). Eriksson A, Holm SE, Norgren M. Microb. Pathog. 25 279-290 (1998)
  211. Identification of the novel allele HLA-DRB1*1137 which probably originated from DRB1*11011: implications for mismatch with its ancestor allele at bone marrow transplantation. Elsner HA, Kotsch K, Blasczyk R. Tissue Antigens 58 47-49 (2001)
  212. Interferon-gamma administration after abdominal surgery rescues antigen-specific helper T cell immune reactivity. Rentenaar RJ, de Metz J, Bunders M, Wertheim-van Dillen PM, Gouma DJ, Romijn JA, Sauerwein HP, ten Berge IJ, van Lier RA. Clin. Exp. Immunol. 125 401-408 (2001)
  213. Multiple-Allele MHC Class II Epitope Engineering by a Molecular Dynamics-Based Evolution Protocol. Ochoa R, Lunardelli VAS, Rosa DS, Laio A, Cossio P. Front Immunol 13 862851 (2022)
  214. The domain structure and functional relationships in the bacterial superantigen, SEB. Hayball JD, O'Hehir RE, Lamb JR, Lake RA. Biol. Chem. Hoppe-Seyler 376 303-309 (1995)
  215. The interchain disulfide linkage of T-cell antigen receptor-alpha and -beta chains is a prerequisite for T-cell activation. Li Z, Wu W, Kemp O, Stephen M, Manolios N. Cell. Immunol. 190 101-111 (1998)
  216. Antitumour response of a double mutant of staphylococcal enterotoxin C2 with the decreased affinity for MHC class II molecule. Cheng X, Cao P, Ji X, Lu W, Cai X, Hu C, Wang Z, Zhang S. Scand. J. Immunol. 71 169-175 (2010)
  217. Effects of HLA-DRB1 alleles on susceptibility and clinical manifestations in Japanese patients with adult onset Still's disease. Asano T, Furukawa H, Sato S, Yashiro M, Kobayashi H, Watanabe H, Suzuki E, Ito T, Ubara Y, Kobayashi D, Iwanaga N, Izumi Y, Fujikawa K, Yamasaki S, Nakamura T, Koga T, Shimizu T, Umeda M, Nonaka F, Yasunami M, Ueki Y, Eguchi K, Tsuchiya N, Tohma S, Yoshiura KI, Ohira H, Kawakami A, Migita K. Arthritis Res. Ther. 19 199 (2017)
  218. Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus. Parks T, Elliott K, Lamagni T, Auckland K, Mentzer AJ, Guy R, Cartledge D, Strakova L, Connor DO, Pollard AJ, Neville MJ, Mahajan A, Ashrafian H, Chapman SJ, Hill AVS, Sriskandan S, Knight JC. Genes Immun 21 63-70 (2020)
  219. Fully human antibody exhibits pan-human leukocyte antigen-DR recognition and high in vitro/vivo efficacy against human leukocyte antigen-DR-positive lymphomas. Tawara T, Hasegawa K, Sugiura Y, Tahara T, Ishida I, Kataoka S. Cancer Sci. 98 921-928 (2007)
  220. Modeling of receptor mimics that inhibit superantigen pathogenesis. Möllhoff M, Zanden HB, Shiflett PR, Gupta G. J. Mol. Recognit. 18 73-83 (2005)
  221. Molecular T cell biology -- basic and translational challenges in the twenty-first century. Reinherz EL, Acuto O. Front Immunol 2 3 (2011)
  222. Not second class: the first class II MHC crystal structure. Bjorkman PJ. J Immunol 194 3-4 (2015)
  223. Pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 superantigen. Aude-Garcia C, Attinger A, Housset D, MacDonald HR, Acha-Orbea H, Marche PN, Jouvin-Marche E. Mol. Immunol. 37 1005-1012 (2000)
  224. Regulation of the immune response--lessons from transgenic models. Fazekas de St Groth B. Aust N Z J Med 25 761-767 (1995)
  225. SEC is an antiangiogenic virulence factor that promotes Staphylococcus aureus endocarditis independent of superantigen activity. Kinney KJ, Tang SS, Wu XJ, Tran PM, Bharadwaj NS, Gibson-Corley KN, Forsythe AN, Kulhankova K, Gumperz JE, Salgado-Pabón W. Sci Adv 8 eabo1072 (2022)
  226. Two common structural motifs for TCR recognition by staphylococcal enterotoxins. Rödström KEJ, Regenthal P, Bahl C, Ford A, Baker D, Lindkvist-Petersson K. Sci Rep 6 25796 (2016)
  227. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. Tomar N, De RK. PLoS ONE 8 e80918 (2013)
  228. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, Popugailo A, Kaempfer R, Tuosto L. Front Immunol 12 723689 (2021)
  229. Characterization of the interaction of a TCR alpha chain variable domain with MHC II I-A molecules. Qadri A, Thatte J, Radu CG, Ober B, Ward ES. Int. Immunol. 11 967-977 (1999)
  230. Crystal structure of Streptococcus dysgalactiae-derived mitogen reveals a zinc-binding site and alterations in TcR binding. Saarinen S, Kato H, Uchiyama T, Miyoshi-Akiyama T, Papageorgiou AC. J. Mol. Biol. 373 1089-1097 (2007)
  231. Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: Implications for prophylactic vaccination, heterosubtypic immunity and superinfections. Meilleur CE, Memarnejadian A, Shivji AN, Benoit JM, Tuffs SW, Mele TS, Singh B, Dikeakos JD, Topham DJ, Mu HH, Bennink JR, McCormick JK, Haeryfar SMM. PLoS Pathog 16 e1008393 (2020)
  232. Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Xiong X, Tian S, Yang P, Lebreton F, Bao H, Sheng K, Yin L, Chen P, Zhang J, Qi W, Ruan J, Wu H, Chen H, Breault DT, Wu H, Earl AM, Gilmore MS, Abraham J, Dong M. Cell 185 1157-1171.e22 (2022)
  233. HLA-DRB1 may be antagonistically regulated by the coordinately evolved promoter and 3'-UTR under stabilizing selection. Liu B, Fu Y, Wang Z, Zhou S, Sun Y, Wu Y, Xu A. PLoS ONE 6 e25794 (2011)
  234. Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1. Rukkawattanakul T, Sookrung N, Seesuay W, Onlamoon N, Diraphat P, Chaicumpa W, Indrawattana N. Toxins (Basel) 9 (2017)
  235. On recognizing 'shades-of-gray' (self-nonself discrimination) or 'colour' (Integrity model) by the immune system. Dembic Z. Scand. J. Immunol. 78 325-338 (2013)
  236. Roles of I-E molecule and CD28 costimulation in induction of suppression by staphylococcal enterotoxin B in vivo. Hsu LJ, Lin YS. Cell. Immunol. 212 35-43 (2001)
  237. A short HLA-DRA isoform binds the HLA-DR2 heterodimer on the outer domain of the peptide-binding site. Shams H, Hollenbach JA, Matsunaga A, Mofrad MRK, Oksenberg JR, Didonna A. Arch Biochem Biophys 719 109156 (2022)
  238. Computational Construction of a Single-Chain Bi-Paratopic Antibody Allosterically Inhibiting TCR-Staphylococcal Enterotoxin B Binding. Bai G, Ge Y, Su Y, Chen S, Zeng X, Lu H, Ma B. Front Immunol 12 732938 (2021)
  239. Conformation study of HA(306-318) antigenic peptide of the haemagglutinin influenza virus protein. Bertrand A, Brito RM, Alix AJ, Lancelin JM, Carvalho RA, Geraldes CF, Lakhdar-Ghazal F. Spectrochim Acta A Mol Biomol Spectrosc 65 711-718 (2006)
  240. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen. Patterson KG, Dixon Pittaro JL, Bastedo PS, Hess DA, Haeryfar SM, McCormick JK. PLoS ONE 9 e95200 (2014)
  241. Ectromelia-encoded virulence factor C15 specifically inhibits antigen presentation to CD4+ T cells post peptide loading. Forsyth KS, Roy NH, Peauroi E, DeHaven BC, Wold ED, Hersperger AR, Burkhardt JK, Eisenlohr LC. PLoS Pathog 16 e1008685 (2020)
  242. Genetic Diversity and Differentiation at Structurally Varying MHC Haplotypes and Microsatellites in Bottlenecked Populations of Endangered Crested Ibis. Lan H, Zhou T, Wan QH, Fang SG. Cells 8 (2019)
  243. High resolution HLA-DRB1 analysis and shared molecular amino acid signature of DRβ1 molecules in Occult hepatitis B infection. Wang T, Shen C, Li H, Chen L, Liu S, Qi J. BMC Immunol 23 22 (2022)
  244. Introductory Journal Article How Superantigens Bind MHC. Van Kaer L. J. Immunol. 201 1817-1818 (2018)
  245. Mapping of staphylococcal enterotoxin A functional binding sites and presentation by monoclonal antibodies and fusion proteins. Mahana W. Infect. Immun. 67 1894-1900 (1999)
  246. Mouse xenoantigens contribute to rat T-cell Vbeta repertoire generation in mixed xenogeneic bone marrow chimeras. Huang Y, Ildstad ST, Neipp M, Shirwan H. Immunology 100 317-325 (2000)
  247. Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies that Block Binding to the T-Cell Receptor. Chen G, Karauzum H, Long H, Carranza D, Holtsberg FW, Howell KA, Abaandou L, Zhang B, Jarvik N, Ye W, Liao GC, Gross ML, Leung DW, Amarasinghe GK, Aman MJ, Sidhu SS. J. Mol. Biol. (2019)
  248. SARS-CoV-2 Spike Does Not Possess Intrinsic Superantigen-like Inflammatory Activity. Amormino C, Tedeschi V, Paldino G, Arcieri S, Fiorillo MT, Paiardini A, Tuosto L, Kunkl M. Cells 11 2526 (2022)
  249. Serafino Zappacosta: An Enlightened Mentor and Educator. Carbone E, De Felice M, Di Rosa F, D'Oro U, Fontana S, La Cava A, Maio M, Matarese G, Racioppi L, Ruggiero G, Terrazzano G. Front Immunol 11 217 (2020)
  250. Streptococcal Pyrogenic Exotoxin A-Stimulated Monocytes Mediate Regulatory T-Cell Accumulation through PD-L1 and Kynurenine. Giesbrecht K, Förmer S, Sähr A, Heeg K, Hildebrand D. Int J Mol Sci 20 (2019)
  251. Superantigens and SARS-CoV-2. Hamdy A, Leonardi A. Pathogens 11 390 (2022)


Related citations provided by authors (1)

  1. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides.. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC Proc Natl Acad Sci U S A 93 734-8 (1996)