1r0o Citations

Structure of the heterodimeric ecdysone receptor DNA-binding complex.

EMBO J 22 5827-40 (2003)
Cited: 53 times
EuropePMC logo PMID: 14592980

Abstract

Ecdysteroids initiate molting and metamorphosis in insects via a heterodimeric receptor consisting of the ecdysone receptor (EcR) and ultraspiracle (USP). The EcR-USP heterodimer preferentially mediates transcription through highly degenerate pseudo-palindromic response elements, resembling inverted repeats of 5'-AGGTCA-3' separated by 1 bp (IR-1). The requirement for a heterodimeric arrangement of EcR-USP subunits to bind to a symmetric DNA is unusual within the nuclear receptor superfamily. We describe the 2.24 A structure of the EcR-USP DNA-binding domain (DBD) heterodimer bound to an idealized IR-1 element. EcR and USP use similar surfaces, and rely on the deformed minor groove of the DNA to establish protein-protein contacts. As retinoid X receptor (RXR) is the mammalian homolog of USP, we also solved the 2.60 A crystal structure of the EcR-RXR DBD heterodimer on IR-1 and found the dimerization and DNA-binding interfaces to be the same as in the EcR-USP complex. Sequence alignments indicate that the EcR-RXR heterodimer is an important model for understanding how the FXR-RXR heterodimer binds to IR-1 sites.

Reviews - 1r0o mentioned but not cited (2)

  1. The retinoid X receptors and their ligands. Dawson MI, Xia Z. Biochim Biophys Acta 1821 21-56 (2012)
  2. Farnesoid X receptor (FXR): Structures and ligands. Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Comput Struct Biotechnol J 19 2148-2159 (2021)

Articles - 1r0o mentioned but not cited (6)

  1. Protein-DNA binding specificity predictions with structural models. Morozov AV, Havranek JJ, Baker D, Siggia ED. Nucleic Acids Res 33 5781-5798 (2005)
  2. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Xu B, Yang Y, Liang H, Zhou Y. Proteins 76 718-730 (2009)
  3. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain. Jakób M, Kołodziejczyk R, Orłowski M, Krzywda S, Kowalska A, Dutko-Gwóźdź J, Gwóźdź T, Kochman M, Jaskólski M, Ozyhar A. Nucleic Acids Res 35 2705-2718 (2007)
  4. Predicting target DNA sequences of DNA-binding proteins based on unbound structures. Chen CY, Chien TY, Lin CK, Lin CW, Weng YZ, Chang DT. PLoS One 7 e30446 (2012)
  5. PiDNA: Predicting protein-DNA interactions with structural models. Lin CK, Chen CY. Nucleic Acids Res 41 W523-30 (2013)
  6. Exploring DNA structure with Cn3D. Porter SG, Day J, McCarty RE, Shearn A, Shingles R, Fletcher L, Murphy S, Pearlman R. CBE Life Sci Educ 6 65-73 (2007)


Reviews citing this publication (9)

  1. Arthropod nuclear receptors and their role in molting. Nakagawa Y, Henrich VC. FEBS J 276 6128-6157 (2009)
  2. Gene therapy progress and prospects: transcription regulatory systems. Toniatti C, Bujard H, Cortese R, Ciliberto G. Gene Ther 11 649-657 (2004)
  3. Understanding nuclear receptor form and function using structural biology. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. J Mol Endocrinol 51 T1-T21 (2013)
  4. Retinoic acid actions through mammalian nuclear receptors. Huang P, Chandra V, Rastinejad F. Chem Rev 114 233-254 (2014)
  5. Ecdysone receptors: from the Ashburner model to structural biology. Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC. Annu Rev Entomol 58 251-271 (2013)
  6. Ecdysteroid hormone action. Spindler KD, Hönl C, Tremmel Ch, Braun S, Ruff H, Spindler-Barth M. Cell Mol Life Sci 66 3837-3850 (2009)
  7. Drosophila nutrigenomics can provide clues to human gene-nutrient interactions. Ruden DM, De Luca M, Garfinkel MD, Bynum KL, Lu X. Annu Rev Nutr 25 499-522 (2005)
  8. Structural analysis of nuclear receptors: from isolated domains to integral proteins. Brélivet Y, Rochel N, Moras D. Mol Cell Endocrinol 348 466-473 (2012)
  9. Post-Translational Modifications of FXR; Implications for Cholestasis and Obesity-Related Disorders. Appelman MD, van der Veen SW, van Mil SWC. Front Endocrinol (Lausanne) 12 729828 (2021)

Articles citing this publication (36)

  1. Structural basis of androgen receptor binding to selective androgen response elements. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT. Proc Natl Acad Sci U S A 101 4758-4763 (2004)
  2. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG, Mattsson LA, Whittaker J, Parker MG, White R, Williamson C. Gastroenterology 133 507-516 (2007)
  3. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Gomez-Ospina N, Potter CJ, Xiao R, Manickam K, Kim MS, Kim KH, Shneider BL, Picarsic JL, Jacobson TA, Zhang J, He W, Liu P, Knisely AS, Finegold MJ, Muzny DM, Boerwinkle E, Lupski JR, Plon SE, Gibbs RA, Eng CM, Yang Y, Washington GC, Porteus MH, Berquist WE, Kambham N, Singh RJ, Xia F, Enns GM, Moore DD. Nat Commun 7 10713 (2016)
  4. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Sprecher SG, Desplan C. Nature 454 533-537 (2008)
  5. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. Moutier E, Ye T, Choukrallah MA, Urban S, Osz J, Chatagnon A, Delacroix L, Langer D, Rochel N, Moras D, Benoit G, Davidson I. J Biol Chem 287 26328-26341 (2012)
  6. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Kim HW, Lee SG, Mykles DL. Mol Cell Endocrinol 242 80-95 (2005)
  7. Phospholipase Cγ1 connects the cell membrane pathway to the nuclear receptor pathway in insect steroid hormone signaling. Liu W, Cai MJ, Zheng CC, Wang JX, Zhao XF. J Biol Chem 289 13026-13041 (2014)
  8. Predicting specificity-determining residues in two large eukaryotic transcription factor families. Donald JE, Shakhnovich EI. Nucleic Acids Res 33 4455-4465 (2005)
  9. The rapid divergence of the ecdysone receptor is a synapomorphy for Mecopterida that clarifies the Strepsiptera problem. Bonneton F, Brunet FG, Kathirithamby J, Laudet V. Insect Mol Biol 15 351-362 (2006)
  10. Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction. Nagaraju GP, Rajitha B, Borst DW. J Endocrinol 210 379-390 (2011)
  11. Structural basis of natural promoter recognition by a unique nuclear receptor, HNF4alpha. Diabetes gene product. Lu P, Rha GB, Melikishvili M, Wu G, Adkins BC, Fried MG, Chi YI. J Biol Chem 283 33685-33697 (2008)
  12. The steroid hormone-regulated gene Broad Complex is required for dendritic growth of motoneurons during metamorphosis of Drosophila. Consoulas C, Levine RB, Restifo LL. J Comp Neurol 485 321-337 (2005)
  13. The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Maletta M, Orlov I, Roblin P, Beck Y, Moras D, Billas IM, Klaholz BP. Nat Commun 5 4139 (2014)
  14. Heterodimerization of ecdysone receptor and ultraspiracle on symmetric and asymmetric response elements. Perera SC, Zheng S, Feng QL, Krell PJ, Retnakaran A, Palli SR. Arch Insect Biochem Physiol 60 55-70 (2005)
  15. Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito Aedes aegypti. Ling L, Raikhel AS. Proc Natl Acad Sci U S A 118 e2023470118 (2021)
  16. Analysis of transcriptional activity mediated by Drosophila melanogaster ecdysone receptor isoforms in a heterologous cell culture system. Beatty J, Fauth T, Callender JL, Spindler-Barth M, Henrich VC. Insect Mol Biol 15 785-795 (2006)
  17. Ecdysone response elements in the distal promoter of the Bombyx Broad-Complex gene, BmBR-C. Nishita Y. Insect Mol Biol 23 341-356 (2014)
  18. Impact of heterodimerization on intracellular localization of the ecdysteroid receptor (EcR). Nieva C, Spindler-Barth M, Spindler KD. Arch Insect Biochem Physiol 68 40-48 (2008)
  19. Retinoic acid regulates the human methionine sulfoxide reductase A (MSRA) gene via two distinct promoters. Pascual I, Larrayoz IM, Rodriguez IR. Genomics 93 62-71 (2009)
  20. Identification of target genes for RNAi-mediated control of the Twospotted Spider Mite. Yoon JS, Sahoo DK, Maiti IB, Palli SR. Sci Rep 8 14687 (2018)
  21. Influence of hormone on intracellular localization of the Drosophila melanogaster ecdysteroid receptor (EcR). Nieva C, Spindler-Barth M, Azoitei A, Spindler KD. Cell Signal 19 2582-2587 (2007)
  22. Characterization of a novel RXR receptor in the salmon louse (Lepeophtheirus salmonis, Copepoda) regulating growth and female reproduction. Eichner C, Dalvin S, Skern-Mauritzen R, Malde K, Kongshaug H, Nilsen F. BMC Genomics 16 81 (2015)
  23. Two adjacent cis-regulatory elements are required for ecdysone response of ecdysone receptor (EcR) B1 transcription. Shirai H, Kamimura M, Yamaguchi J, Imanishi S, Kojima T, Fujiwara H. PLoS One 7 e49348 (2012)
  24. Alternative splicing in the fiddler crab cognate ecdysteroid receptor: variation in receptor isoform expression and DNA binding properties in response to hormone. Durica DS, Das S, Najar F, Roe B, Phillips B, Kappalli S, Anilkumar G. Gen Comp Endocrinol 206 80-95 (2014)
  25. Functional and comparative analysis of two distinct ecdysteroid-responsive gene expression constructs in Drosophila S2 cells. Poels J, Martinez A, Suner MM, De Loof A, Dunbar SJ, Vanden Broeck J. Insect Biochem Mol Biol 34 451-458 (2004)
  26. A steroid hormone affects sodium channel expression in Manduca central neurons. Börner J, Puschmann T, Duch C. Cell Tissue Res 325 175-187 (2006)
  27. Mode of Action of Farnesol, the "Noble Unknown" in Particular in Ca2+ Homeostasis, and Its Juvenile Hormone-Esters in Evolutionary Retrospect. De Loof A, Schoofs L. Front Neurosci 13 141 (2019)
  28. Equilibrium analysis of the DNA binding domain of the ultraspiracle protein interaction with the response element from the hsp27 gene promoter--the application of molecular beacon technology. Krusiński T, Wietrzych M, Grad I, Ozyhar A, Dobryszycki P. J Fluoresc 18 1-10 (2008)
  29. Influence of hormone response elements (HREs) on ecdysteroid receptor concentration. Schauer S, Azoitei A, Braun S, Spindler-Barth M. Insect Mol Biol 20 701-711 (2011)
  30. Ligand binding is without effect on complex formation of the ligand binding domain of the ecdysone receptor (EcR). Greb-Markiewicz B, Fauth T, Spindler-Barth M. Arch Insect Biochem Physiol 59 1-11 (2005)
  31. Rapid Assessment of Insect Steroid Hormone Entry Into Cultured Cells. Masterson M, Bittar R, Chu H, Yamanaka N, Haga-Yamanaka S. Front Physiol 12 816058 (2021)
  32. Molecular interplay between ecdysone receptor and retinoid X receptor in regulating the molting of the Chinese mitten crab, Eriocheir sinensis. Chen X, Hou X, Yang H, Liu H, Wang J, Wang C. Front Endocrinol (Lausanne) 14 1251723 (2023)
  33. Stage-specific activation of the E74B promoter by low ecdysone concentrations in the wing disc of Bombyx mori. Wang HB, Iwanaga M, Kawasaki H. Gene 537 322-327 (2014)
  34. Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA. Jiang L, Liu X, Liang X, Dai S, Wei H, Guo M, Chen Z, Xiao D, Chen Y. Comput Struct Biotechnol J 21 3149-3157 (2023)
  35. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Nucleic Acids Res 51 1443-1457 (2023)
  36. The molecular basis of conformational instability of the ecdysone receptor DNA binding domain studied by in silico and in vitro experiments. Szamborska-Gbur A, Rymarczyk G, Orłowski M, Kuzynowski T, Jakób M, Dziedzic-Letka A, Górecki A, Dobryszycki P, Ożyhar A. PLoS One 9 e86052 (2014)