1qno Citations

The three-dimensional structure of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 5.

Acta Crystallogr D Biol Crystallogr 56 3-13 (2000)
Related entries: 1qnp, 1qnq, 1qnr, 1qns

Cited: 56 times
EuropePMC logo PMID: 10666621

Abstract

The crystal structure of the catalytic core domain of beta-mannanase from the fungus Trichoderma reesei has been determined at a resolution of 1.5 A. The structure was solved using the anomalous scattering from a single non-isomorphous platinum complex with two heavy-metal sites in space group P2(1). The map computed with the experimental phases was enhanced by the application of an automated model building and refinement procedure using the amplitudes and experimental phases as observations. This approach is expected to be of more general application. The structure of the native enzyme and complexes with Tris-HCl and mannobiose are also reported: the mannobiose binds in subsites +1 and +2. The structure is briefly compared with that of the homologous beta-mannanase from the bacterium Thermomonospora fusca.

Articles - 1qno mentioned but not cited (13)

  1. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. Couturier M, Roussel A, Rosengren A, Leone P, Stålbrand H, Berrin JG. J. Biol. Chem. 288 14624-14635 (2013)
  2. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Callahan BP, Topilina NI, Stanger MJ, Van Roey P, Belfort M. Nat. Struct. Mol. Biol. 18 630-633 (2011)
  3. Three-dimensional structure of (1,4)-beta-D-mannan mannanohydrolase from tomato fruit. Bourgault R, Oakley AJ, Bewley JD, Wilce MC. Protein Sci. 14 1233-1241 (2005)
  4. Redesigning protein pKa values. Tynan-Connolly BM, Nielsen JE. Protein Sci. 16 239-249 (2007)
  5. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y, Gao F, Peng H, Wang X, Gao GF, Ma Y. PLoS ONE 6 e14608 (2011)
  6. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H. Mol. Microbiol. 94 418-433 (2014)
  7. A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris. Liao H, Li S, Zheng H, Wei Z, Liu D, Raza W, Shen Q, Xu Y. BMC Biotechnol. 14 90 (2014)
  8. Certain heptapeptide and large sequences representing an entire helix, strand or coil conformation in proteins are associated as chameleon sequences. Krishna N, Guruprasad K. Int J Biol Macromol 49 218-222 (2011)
  9. Metagenomics of Atacama Lithobiontic Extremophile Life Unveils Highlights on Fungal Communities, Biogeochemical Cycles and Carbohydrate-Active Enzymes. Gómez-Silva B, Vilo-Muñoz C, Galetović A, Dong Q, Castelán-Sánchez HG, Pérez-Llano Y, Sánchez-Carbente MDR, Dávila-Ramos S, Cortés-López NG, Martínez-Ávila L, Dobson ADW, Batista-García RA. Microorganisms 7 E619 (2019)
  10. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase. Sheydina A, Eberhardt RY, Rigden DJ, Chang Y, Li Z, Zmasek CC, Axelrod HL, Godzik A. BMC Bioinformatics 15 112 (2014)
  11. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of the catalytic domain of a hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1. Santos CR, Squina FM, Navarro AM, Ruller R, Ruller R, Prade R, Murakami MT. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 1078-1081 (2010)
  12. Purification, Cloning, Functional Expression, Structure, and Characterization of a Thermostable β-Mannanase from Talaromyces trachyspermus B168 and Its Efficiency in Production of Mannooligosaccharides from Coffee Wastes. Suzuki K, Michikawa M, Sato H, Yuki M, Kamino K, Ogasawara W, Fushinobu S, Kaneko S. J Appl Glycosci (1999) 65 13-21 (2018)
  13. Cloning and bioinformatic analysis of an acidophilic beta-mannanase gene, Anman5A, from Aspergillus niger LW-1. Zhao SG, Wu MC, Tang CD, Gao SJ, Zhang HM, Li JF. Prikl Biokhim Mikrobiol 48 522-530 (2012)


Reviews citing this publication (3)

  1. Microbial mannanases: an overview of production and applications. Dhawan S, Kaur J. Crit. Rev. Biotechnol. 27 197-216 (2007)
  2. Mannan biotechnology: from biofuels to health. Yamabhai M, Sak-Ubol S, Srila W, Haltrich D. Crit. Rev. Biotechnol. 36 32-42 (2016)
  3. Genomics review of holocellulose deconstruction by aspergilli. Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Microbiol. Mol. Biol. Rev. 78 588-613 (2014)

Articles citing this publication (40)

  1. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, Shiomi K, Omura S, van Aalten DM. Chem. Biol. 12 65-76 (2005)
  2. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Do BC, Dang TT, Berrin JG, Haltrich D, To KA, Sigoillot JC, Yamabhai M. Microb. Cell Fact. 8 59 (2009)
  3. A cellulose-binding module of the Trichoderma reesei beta-mannanase Man5A increases the mannan-hydrolysis of complex substrates. Hägglund P, Eriksson T, Collén A, Nerinckx W, Claeyssens M, Stålbrand H. J. Biotechnol. 101 37-48 (2003)
  4. Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. Larsson AM, Anderson L, Xu B, Muñoz IG, Usón I, Janson JC, Stålbrand H, Ståhlberg J. J. Mol. Biol. 357 1500-1510 (2006)
  5. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A. Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ, Gilbert HJ. J Biol Chem 282 11291-11299 (2007)
  6. The 1.62 A structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. Lo Leggio L, Larsen S. FEBS Lett. 523 103-108 (2002)
  7. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-->6)-galactanase gene. Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y. Biochem. J. 377 749-755 (2004)
  8. Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. Luo H, Wang K, Huang H, Shi P, Yang P, Yao B. J. Ind. Microbiol. Biotechnol. 39 547-555 (2012)
  9. Functional analysis of the degradation of cellulosic substrates by a Chaetomium globosum endophytic isolate. Longoni P, Rodolfi M, Pantaleoni L, Doria E, Concia L, Picco AM, Cella R. Appl. Environ. Microbiol. 78 3693-3705 (2012)
  10. Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. Chen Z, Friedland GD, Pereira JH, Reveco SA, Chan R, Park JI, Thelen MP, Adams PD, Arkin AP, Keasling JD, Blanch HW, Simmons BA, Sale KL, Chivian D, Chhabra SR. J. Biol. Chem. 287 25335-25343 (2012)
  11. A novel combination of two classic catalytic schemes. Shaw A, Bott R, Vonrhein C, Bricogne G, Power S, Day AG. J. Mol. Biol. 320 303-309 (2002)
  12. Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. Pluvinage B, Hehemann JH, Boraston AB. J. Biol. Chem. 288 28078-28088 (2013)
  13. The structure of endo-beta-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products. Ryttersgaard C, Le Nours J, Lo Leggio L, Jørgensen CT, Christensen LL, Bjørnvad M, Larsen S. J. Mol. Biol. 341 107-117 (2004)
  14. An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Rosengren A, Reddy SK, Sjöberg JS, Aurelius O, Logan DT, Kolenová K, Stålbrand H. Appl. Microbiol. Biotechnol. 98 10091-10104 (2014)
  15. Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Kulcinskaja E, Rosengren A, Ibrahim R, Kolenová K, Stålbrand H. Appl. Environ. Microbiol. 79 133-140 (2013)
  16. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Wang C, Luo H, Niu C, Shi P, Huang H, Meng K, Bai Y, Wang K, Hua H, Yao B. Appl. Microbiol. Biotechnol. 99 1217-1228 (2015)
  17. A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. Li Y, Hu F, Wang X, Cao H, Liu D, Yao D. J. Biotechnol. 163 401-407 (2013)
  18. Atomic resolution structure of the major endoglucanase from Thermoascus aurantiacus. Van Petegem F, Vandenberghe I, Bhat MK, Van Beeumen J. Biochem. Biophys. Res. Commun. 296 161-166 (2002)
  19. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Huang JW, Chen CC, Huang CH, Huang TY, Wu TH, Cheng YS, Ko TP, Lin CY, Liu JR, Guo RT. Biochim. Biophys. Acta 1844 663-669 (2014)
  20. Three-dimensional structure of the catalytic domain of the yeast beta-(1,3)-glucan transferase Gas1: a molecular modeling investigation. Papaleo E, Fantucci P, Vai M, De Gioia L. J Mol Model 12 237-248 (2006)
  21. Fungal proteins with mannanase activity identified directly from a Congo Red stained zymogram by mass spectrometry. Peterson R, Grinyer J, Joss J, Khan A, Nevalainen H. J. Microbiol. Methods 79 374-377 (2009)
  22. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Kim MK, An YJ, Song JM, Jeong CS, Kang MH, Kwon KK, Lee YH, Cha SS. Proteins 82 3217-3223 (2014)
  23. A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. Bengtsson O, Arntzen MØ, Mathiesen G, Skaugen M, Eijsink VGH. J Proteomics 131 104-112 (2016)
  24. Biochemical properties and atomic resolution structure of a proteolytically processed β-mannanase from cellulolytic Streptomyces sp. SirexAA-E. Takasuka TE, Acheson JF, Bianchetti CM, Prom BM, Bergeman LF, Book AJ, Currie CR, Fox BG. PLoS ONE 9 e94166 (2014)
  25. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases. Oyama T, Schmitz GE, Dodd D, Han Y, Burnett A, Nagasawa N, Mackie RI, Nakamura H, Morikawa K, Cann I. PLoS ONE 8 e80448 (2013)
  26. Crystallization and preliminary crystallographic analysis of β-mannanase from Bacillus licheniformis. Songsiriritthigul C, Lapboonrueng S, Roytrakul S, Haltrich D, Yamabhai M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 217-220 (2011)
  27. NMR analysis of the binding mode of two fungal endo-β-1,4-mannanases from GH5 and GH26 families. Marchetti R, Berrin JG, Couturier M, Ul Qader SA, Molinaro A, Silipo A. Org. Biomol. Chem. 14 314-322 (2016)
  28. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. Lo YC, Su WC, Ko TP, Wang NC, Wang AH. J Biomol Struct Dyn 29 267-282 (2011)
  29. Biochemical characterization of the novel endo-β-mannanase AtMan5-2 from Arabidopsis thaliana. Wang Y, Azhar S, Gandini R, Divne C, Ezcurra I, Aspeborg H. Plant Sci. 241 151-163 (2015)
  30. Digestion of single crystals of mannan I by an endo-mannanase from Trichoderma reesei. Sabini E, Wilson KS, Siika-aho M, Boisset C, Chanzy H. Eur. J. Biochem. 267 2340-2344 (2000)
  31. Enzymatic Conversion of Different Qualities of Refined Softwood Hemicellulose Recovered from Spent Sulfite Liquor. Bhattacharya A, Butler S, Al-Rudainy B, Wallberg O, Stålbrand H. Molecules 27 3207 (2022)
  32. Preliminary X-ray diffraction analysis of thermostable β-1,4-mannanase from Aspergillus niger BK01. Luo W, Huang JW, Huang CH, Huang TY, Chan HC, Liu JR, Guo RT, Chen CC. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 1100-1102 (2013)
  33. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Hu W, Liu X, Li Y, Liu D, Kuang Z, Qian C, Yao D. Enzyme Microb. Technol. 97 82-89 (2017)
  34. Trp residue at subsite - 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut. Hsu Y, Koizumi H, Otagiri M, Moriya S, Arioka M. Appl. Microbiol. Biotechnol. 102 1737-1747 (2018)
  35. β-Mannanase-catalyzed synthesis of alkyl mannooligosides. Morrill J, Månberger A, Rosengren A, Naidjonoka P, von Freiesleben P, Krogh KBRM, Bergquist KE, Nylander T, Karlsson EN, Adlercreutz P, Stålbrand H. Appl. Microbiol. Biotechnol. 102 5149-5163 (2018)
  36. Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Front Microbiol 14 1191553 (2023)
  37. Effect of β-mannanase domain from Trichoderma reesei on its biochemical characters and synergistic hydrolysis of sugarcane bagasse. Ma L, Ma Q, Cai R, Zong Z, Du L, Guo G, Zhang Y, Xiao D. J. Sci. Food Agric. 98 2540-2547 (2018)
  38. Molecular insight into Aspergillus oryzae β-mannanase interacting with mannotriose revealed by molecular dynamic simulation study. Jana UK, Singh G, Soni H, Pletschke B, Kango N. PLoS One 17 e0268333 (2022)
  39. The Increase of Incomplete Degradation Products of Galactomannan Production by Synergetic Hydrolysis of β-Mannanase and α-Galactosidase. Yang L, Shi G, Tao Y, Lai C, Li X, Zhou M, Yong Q. Appl Biochem Biotechnol 193 405-416 (2021)
  40. Transcriptional Basis for Haustorium Formation and Host Establishment in Hemiparasitic Psittacanthus schiedeanus Mistletoes. Ibarra-Laclette E, Venancio-Rodríguez CA, Vásquez-Aguilar AA, Alonso-Sánchez AG, Pérez-Torres CA, Villafán E, Ramírez-Barahona S, Galicia S, Sosa V, Rebollar EA, Lara C, González-Rodríguez A, Díaz-Fleisher F, Ornelas JF. Front Genet 13 929490 (2022)