1qmz Citations

The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases.

Nat Cell Biol 1 438-43 (1999)
Cited: 371 times
EuropePMC logo PMID: 10559988

Abstract

Progression through the eukaryotic cell cycle is driven by the orderly activation of cyclin-dependent kinases (CDKs). For activity, CDKs require association with a cyclin and phosphorylation by a separate protein kinase at a conserved threonine residue (T160 in CDK2). Here we present the structure of a complex consisting of phosphorylated CDK2 and cyclin A together with an optimal peptide substrate, HHASPRK. This structure provides an explanation for the specificity of CDK2 towards the proline that follows the phosphorylatable serine of the substrate peptide, and the requirement for the basic residue in the P+3 position of the substrate. We also present the structure of phosphorylated CDK2 plus cyclin A3 in complex with residues 658-668 from the CDK2 substrate p107. These residues include the RXL motif required to target p107 to cyclins. This structure explains the specificity of the RXL motif for cyclins.

Reviews - 1qmz mentioned but not cited (11)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem. Rev. 107 5065-5081 (2007)
  2. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Peyressatre M, Prével C, Pellerano M, Morris MC. Cancers (Basel) 7 179-237 (2015)
  3. Design principles underpinning the regulatory diversity of protein kinases. Oruganty K, Kannan N. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2529-2539 (2012)
  4. Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases. Kannan N, Neuwald AF, Taylor SS. Biochim. Biophys. Acta 1784 27-32 (2008)
  5. Exploiting holistic approaches to model specificity in protein phosphorylation. Palmeri A, Ferrè F, Helmer-Citterich M. Front Genet 5 315 (2014)
  6. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Yogesha SD, Mayfield JE, Zhang Y. Molecules 19 1481-1511 (2014)
  7. Cyclin-Dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Susanti NMP, Tjahjono DH. Molecules 26 4462 (2021)
  8. Structural insights into the functional diversity of the CDK-cyclin family. Wood DJ, Endicott JA. Open Biol 8 (2018)
  9. Structure and Physiological Regulation of AMPK. Yan Y, Zhou XE, Xu HE, Melcher K. Int J Mol Sci 19 (2018)
  10. Role of GSK-3β Inhibitors: New Promises and Opportunities for Alzheimer's Disease. Shri SR, Manandhar S, Nayak Y, Pai KSR. Adv Pharm Bull 13 688-700 (2023)
  11. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. Arter C, Trask L, Ward S, Yeoh S, Bayliss R. J Biol Chem 298 102247 (2022)

Articles - 1qmz mentioned but not cited (65)

  1. The importance of intrinsic disorder for protein phosphorylation. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. Nucleic Acids Res. 32 1037-1049 (2004)
  2. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villén J. Nat. Methods 10 676-682 (2013)
  3. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN. EMBO J. 27 1907-1918 (2008)
  4. CASK Functions as a Mg2+-independent neurexin kinase. Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Südhof TC, Wahl MC. Cell 133 328-339 (2008)
  5. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Brinkworth RI, Breinl RA, Kobe B. Proc. Natl. Acad. Sci. U.S.A. 100 74-79 (2003)
  6. Inferring protein domain interactions from databases of interacting proteins. Riley R, Lee C, Sabatti C, Eisenberg D. Genome Biol. 6 R89 (2005)
  7. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Verba KA, Wang RY, Arakawa A, Liu Y, Shirouzu M, Yokoyama S, Agard DA. Science 352 1542-1547 (2016)
  8. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Kannan N, Neuwald AF. Protein Sci. 13 2059-2077 (2004)
  9. The structure of CDK4/cyclin D3 has implications for models of CDK activation. Takaki T, Echalier A, Brown NR, Hunt T, Endicott JA, Noble ME. Proc. Natl. Acad. Sci. U.S.A. 106 4171-4176 (2009)
  10. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop. Bártová I, Otyepka M, Kríz Z, Koca J. Protein Sci. 13 1449-1457 (2004)
  11. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Bao ZQ, Jacobsen DM, Young MA. Structure 19 675-690 (2011)
  12. Between order and disorder in protein structures: analysis of "dual personality" fragments in proteins. Zhang Y, Stec B, Godzik A. Structure 15 1141-1147 (2007)
  13. Regulation of the oxidative stress response through Slt2p-dependent destruction of cyclin C in Saccharomyces cerevisiae. Krasley E, Cooper KF, Mallory MJ, Dunbrack R, Strich R. Genetics 172 1477-1486 (2006)
  14. Insights into the conformational variability and regulation of human Nek2 kinase. Westwood I, Cheary DM, Baxter JE, Richards MW, van Montfort RL, Fry AM, Bayliss R. J. Mol. Biol. 386 476-485 (2009)
  15. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, Walter P. BMC Biol. 9 48 (2011)
  16. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Stamos JL, Chu ML, Enos MD, Shah N, Weis WI. Elife 3 e01998 (2014)
  17. Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Cheng F, Jia P, Wang Q, Zhao Z. Oncotarget 5 3697-3710 (2014)
  18. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. Talevich E, Mirza A, Kannan N. BMC Evol. Biol. 11 321 (2011)
  19. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Brown NR, Korolchuk S, Martin MP, Stanley WA, Moukhametzianov R, Noble MEM, Endicott JA. Nat Commun 6 6769 (2015)
  20. Price to be paid for two-metal catalysis: magnesium ions that accelerate chemistry unavoidably limit product release from a protein kinase. Jacobsen DM, Bao ZQ, O'Brien P, Brooks CL, Young MA. J. Am. Chem. Soc. 134 15357-15370 (2012)
  21. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Malakhova M, Tereshko V, Lee SY, Yao K, Cho YY, Bode A, Dong Z. Nat. Struct. Mol. Biol. 15 112-113 (2008)
  22. The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK. Bártová I, Otyepka M, Kríz Z, Koca J. Protein Sci. 14 445-451 (2005)
  23. How mitogen-activated protein kinases recognize and phosphorylate their targets: A QM/MM study. Turjanski AG, Hummer G, Gutkind JS. J. Am. Chem. Soc. 131 6141-6148 (2009)
  24. Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity. Hole AJ, Baumli S, Shao H, Shi S, Huang S, Pepper C, Fischer PM, Wang S, Endicott JA, Noble ME. J. Med. Chem. 56 660-670 (2013)
  25. Functional flexibility of human cyclin-dependent kinase-2 and its evolutionary conservation. Bártová I, Koca J, Otyepka M. Protein Sci. 17 22-33 (2008)
  26. The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J. Structure 23 1725-1734 (2015)
  27. Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. Baek K, Brown RS, Birrane G, Ladias JA. J. Mol. Biol. 366 563-573 (2007)
  28. Insights into the phosphoryl transfer mechanism of cyclin-dependent protein kinases from ab initio QM/MM free-energy studies. Smith GK, Ke Z, Guo H, Hengge AC. J Phys Chem B 115 13713-13722 (2011)
  29. Phosphorylation of the transcription factor Ets-1 by ERK2: rapid dissociation of ADP and phospho-Ets-1. Callaway K, Waas WF, Rainey MA, Ren P, Dalby KN. Biochemistry 49 3619-3630 (2010)
  30. Use of docking peptides to design modular substrates with high efficiency for mitogen-activated protein kinase extracellular signal-regulated kinase. Fernandes N, Bailey DE, Vanvranken DL, Allbritton NL. ACS Chem. Biol. 2 665-673 (2007)
  31. Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony. Ganter M, Goldberg JM, Dvorin JD, Paulo JA, King JG, Tripathi AK, Paul AS, Yang J, Coppens I, Jiang RH, Elsworth B, Baker DA, Dinglasan RR, Gygi SP, Duraisingh MT. Nat Microbiol 2 17017 (2017)
  32. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach. Lee S, Warthaka M, Yan C, Kaoud TS, Piserchio A, Ghose R, Ren P, Dalby KN. PLoS ONE 6 e18594 (2011)
  33. Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases. Oruganty K, Talathi NS, Wood ZA, Kannan N. Proc. Natl. Acad. Sci. U.S.A. 110 924-929 (2013)
  34. Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Lolli G. Nucleic Acids Res. 37 1260-1268 (2009)
  35. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure-Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. Coxon CR, Anscombe E, Harnor SJ, Martin MP, Carbain B, Golding BT, Hardcastle IR, Harlow LK, Korolchuk S, Matheson CJ, Newell DR, Noble ME, Sivaprakasam M, Tudhope SJ, Turner DM, Wang LZ, Wedge SR, Wong C, Griffin RJ, Endicott JA, Cano C. J. Med. Chem. 60 1746-1767 (2017)
  36. Structural and dynamic determinants of ligand binding and regulation of cyclin-dependent kinase 5 by pathological activator p25 and inhibitory peptide CIP. Cardone A, Hassan SA, Albers RW, Sriram RD, Pant HC. J. Mol. Biol. 401 478-492 (2010)
  37. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Law ME, Corsino PE, Narayan S, Law BK. Mol. Pharmacol. 88 846-852 (2015)
  38. An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. Kobbi L, Demey-Thomas E, Braye F, Proux F, Kolesnikova O, Vinh J, Poterszman A, Bensaude O. Proc. Natl. Acad. Sci. U.S.A. 113 12721-12726 (2016)
  39. An inhibitor's-eye view of the ATP-binding site of CDKs in different regulatory states. Echalier A, Hole AJ, Lolli G, Endicott JA, Noble ME. ACS Chem. Biol. 9 1251-1256 (2014)
  40. The interwinding nature of protein-protein interfaces and its implication for protein complex formation. Yura K, Hayward S. Bioinformatics 25 3108-3113 (2009)
  41. Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells. Kurzawa L, Pellerano M, Coppolani JB, Morris MC. PLoS ONE 6 e26555 (2011)
  42. Protein Dynamics Enables Phosphorylation of Buried Residues in Cdk2/Cyclin-A-Bound p27. Henriques J, Lindorff-Larsen K. Biophys J 119 2010-2018 (2020)
  43. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. Nguyen T, Ruan Z, Oruganty K, Kannan N. PLoS ONE 10 e0119636 (2015)
  44. Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins. Doppelt-Azeroual O, Delfaud F, Moriaud F, de Brevern AG. Protein Sci. 19 847-867 (2010)
  45. A structure-guided approach for protein pocket modeling and affinity prediction. Varela R, Cleves AE, Spitzer R, Jain AN. J. Comput. Aided Mol. Des. 27 917-934 (2013)
  46. Endogenous Cyclin D1 Promotes the Rate of Onset and Magnitude of Mitogenic Signaling via Akt1 Ser473 Phosphorylation. Chen K, Jiao X, Di Rocco A, Shen D, Xu S, Ertel A, Yu Z, Di Sante G, Wang M, Li Z, Pestell TG, Casimiro MC, Skordalakes E, Achilefu S, Pestell RG. Cell Rep 32 108151 (2020)
  47. Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition. Maheshwari S, Miller MS, O'Meally R, Cole RN, Amzel LM, Gabelli SB. J. Biol. Chem. 292 13541-13550 (2017)
  48. New structural insights into phosphorylation-free mechanism for full cyclin-dependent kinase (CDK)-cyclin activity and substrate recognition. Zheng F, Quiocho FA. J. Biol. Chem. 288 30682-30692 (2013)
  49. Structural basis for CDK7 activation by MAT1 and Cyclin H. Peissert S, Schlosser A, Kendel R, Kuper J, Kisker C. Proc Natl Acad Sci U S A 117 26739-26748 (2020)
  50. An atlas of substrate specificities for the human serine/threonine kinome. Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. Nature 613 759-766 (2023)
  51. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription. Ramani MKV, Escobar EE, Irani S, Mayfield JE, Moreno RY, Butalewicz JP, Cotham VC, Wu H, Tadros M, Brodbelt JS, Zhang YJ. ACS Chem Biol 15 2259-2272 (2020)
  52. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. PLoS ONE 10 e0139095 (2015)
  53. Mechanism of p27 Unfolding for CDK2 Reactivation. Rath SL, Senapati S. Sci Rep 6 26450 (2016)
  54. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins. McGrath DA, Fifield BA, Marceau AH, Tripathi S, Porter LA, Rubin SM. EMBO J. 36 2251-2262 (2017)
  55. A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases. Liu Y, Agrawal NJ, Radhakrishnan R. J Mol Model 19 371-382 (2013)
  56. Structural prediction of the interaction of the tumor suppressor p27KIP1 with cyclin A/CDK2 identifies a novel catalytically relevant determinant. Li J, Vervoorts J, Carloni P, Rossetti G, Lüscher B. BMC Bioinformatics 18 15 (2017)
  57. Abemaciclib is a potent inhibitor of DYRK1A and HIP kinases involved in transcriptional regulation. Kaltheuner IH, Anand K, Moecking J, Düster R, Wang J, Gray NS, Geyer M. Nat Commun 12 6607 (2021)
  58. Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, Pelofsky RS, Tripathi S, Virshup DM, Partch CL. Elife 9 (2020)
  59. Crystal structure of the CDK11 kinase domain bound to the small-molecule inhibitor OTS964. Kelso S, O'Brien S, Kurinov I, Angers S, Sicheri F. Structure 30 1615-1625.e4 (2022)
  60. Emerging approaches to CDK inhibitor development, a structural perspective. Hope I, Endicott JA, Watt JE. RSC Chem Biol 4 146-164 (2023)
  61. Evaluating the ability of end-point methods to predict the binding affinity tendency of protein kinase inhibitors. Bello M, Bandala C. RSC Adv 13 25118-25128 (2023)
  62. Mechanistic insights into the phosphoryl transfer reaction in cyclin-dependent kinase 2: A QM/MM study. Recabarren R, Osorio EH, Caballero J, Tuñón I, Alzate-Morales JH. PLoS ONE 14 e0215793 (2019)
  63. Proteome-Wide Characterizations of N6-Methyl-Adenosine Triphosphate- and N6-Furfuryl-Adenosine Triphosphate-Binding Capabilities of Kinases. Dong X, Sun J, Miao W, Chang CA, Wang Y. Anal Chem 93 13251-13259 (2021)
  64. The Dual Interactions of p53 with MDM2 and p300: Implications for the Design of MDM2 Inhibitors. Kannan S, Partridge AW, Lane DP, Verma CS. Int J Mol Sci 20 (2019)
  65. The Interaction between the Drosophila EAG Potassium Channel and the Protein Kinase CaMKII Involves an Extensive Interface at the Active Site of the Kinase. Castro-Rodrigues AF, Zhao Y, Fonseca F, Gabant G, Cadene M, Robertson GA, Morais-Cabral JH. J. Mol. Biol. 430 5029-5049 (2018)


Reviews citing this publication (53)

  1. GSK-3: tricks of the trade for a multi-tasking kinase. Doble BW, Woodgett JR. J. Cell. Sci. 116 1175-1186 (2003)
  2. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat. Rev. Mol. Cell Biol. 8 530-541 (2007)
  3. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol. Cell 15 661-675 (2004)
  4. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Ortega S, Malumbres M, Barbacid M. Biochim. Biophys. Acta 1602 73-87 (2002)
  5. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Lu KP, Zhou XZ. Nat. Rev. Mol. Cell Biol. 8 904-916 (2007)
  6. Prolyl cis-trans isomerization as a molecular timer. Lu KP, Finn G, Lee TH, Nicholson LK. Nat. Chem. Biol. 3 619-629 (2007)
  7. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Bogoyevitch MA, Kobe B. Microbiol. Mol. Biol. Rev. 70 1061-1095 (2006)
  8. Finishing mitosis, one step at a time. Sullivan M, Morgan DO. Nat. Rev. Mol. Cell Biol. 8 894-903 (2007)
  9. Pinning down proline-directed phosphorylation signaling. Lu KP, Liou YC, Zhou XZ. Trends Cell Biol. 12 164-172 (2002)
  10. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biondi RM, Nebreda AR. Biochem. J. 372 1-13 (2003)
  11. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Mazanetz MP, Fischer PM. Nat Rev Drug Discov 6 464-479 (2007)
  12. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu. Rev. Biochem. 81 587-613 (2012)
  13. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Wulf G, Finn G, Suizu F, Lu KP. Nat. Cell Biol. 7 435-441 (2005)
  14. Pinning down cell signaling, cancer and Alzheimer's disease. Lu KP. Trends Biochem. Sci. 29 200-209 (2004)
  15. An unusual member of the Cdk family: Cdk5. Dhariwala FA, Rajadhyaksha MS. Cell. Mol. Neurobiol. 28 351-369 (2008)
  16. Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Adams PD. Biochim. Biophys. Acta 1471 M123-33 (2001)
  17. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. Krupa A, Preethi G, Srinivasan N. J. Mol. Biol. 339 1025-1039 (2004)
  18. Cyclin-dependent kinases: inhibition and substrate recognition. Endicott JA, Noble ME, Tucker JA. Curr. Opin. Struct. Biol. 9 738-744 (1999)
  19. Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. Helgason E, Phung QT, Dueber EC. FEBS Lett. 587 1230-1237 (2013)
  20. Identification of substrates for cyclin dependent kinases. Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T. Adv. Enzyme Regul. 50 375-399 (2010)
  21. Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Fischer PM, Gianella-Borradori A. Expert Opin Investig Drugs 14 457-477 (2005)
  22. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol. Ther. 93 99-111 (2002)
  23. IRAK-4 inhibitors for inflammation. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC. Curr Top Med Chem 9 724-737 (2009)
  24. A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited. Uhlmann F, Bouchoux C, López-Avilés S. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366 3572-3583 (2011)
  25. Dysregulation of CDK8 and Cyclin C in tumorigenesis. Xu W, Ji JY. J Genet Genomics 38 439-452 (2011)
  26. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Zhou XZ, Lu KP. Nat. Rev. Cancer 16 463-478 (2016)
  27. Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Krystof V, Baumli S, Fürst R. Curr. Pharm. Des. 18 2883-2890 (2012)
  28. Pin1 in Alzheimer's disease: multiple substrates, one regulatory mechanism? Balastik M, Lim J, Pastorino L, Lu KP. Biochim. Biophys. Acta 1772 422-429 (2007)
  29. Computational studies of protein regulation by post-translational phosphorylation. Narayanan A, Jacobson MP. Curr. Opin. Struct. Biol. 19 156-163 (2009)
  30. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Rudolph J. Nat. Rev. Cancer 7 202-211 (2007)
  31. Structure-based design of cyclin-dependent kinase inhibitors. Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble ME. Pharmacol. Ther. 93 125-133 (2002)
  32. How signaling proteins integrate multiple inputs: a comparison of N-WASP and Cdk2. Prehoda KE, Lim WA. Curr. Opin. Cell Biol. 14 149-154 (2002)
  33. Targeting carcinogenesis: a role for the prolyl isomerase Pin1? Lu KP, Suizu F, Zhou XZ, Finn G, Lam P, Wulf G. Mol. Carcinog. 45 397-402 (2006)
  34. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Roskoski R. Pharmacol. Res. 107 249-275 (2016)
  35. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. Lippens G, Landrieu I, Smet C. FEBS J. 274 5211-5222 (2007)
  36. The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P, Dunker AK, Daughdrill GW, Uversky VN. Intrinsically Disord Proteins 1 e24360 (2013)
  37. Understanding and exploiting substrate recognition by protein kinases. Turk BE. Curr Opin Chem Biol 12 4-10 (2008)
  38. Cdk5 and the non-catalytic arrest of the neuronal cell cycle. Zhang J, Herrup K. Cell Cycle 7 3487-3490 (2008)
  39. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch. Pharm. (Weinheim) 343 193-206 (2010)
  40. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  41. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Johnson LN, De Moliner E, Brown NR, Song H, Barford D, Endicott JA, Noble ME. Pharmacol. Ther. 93 113-124 (2002)
  42. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Mikolcevic P, Rainer J, Geley S. Cell Cycle 11 3758-3768 (2012)
  43. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv. Enzyme Regul. 41 121-149 (2001)
  44. Structural characterization of the cyclin-dependent protein kinase family. Endicott JA, Noble ME. Biochem. Soc. Trans. 41 1008-1016 (2013)
  45. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders. Bahia MS, Kaur M, Silakari P, Silakari O. Cell. Signal. 27 1039-1055 (2015)
  46. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2. Li Y, Zhang J, Gao W, Zhang L, Pan Y, Zhang S, Wang Y. Int J Mol Sci 16 9314-9340 (2015)
  47. The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference. Yousafzai FK, Al-Kaff N, Moore G. Funct. Integr. Genomics 10 147-156 (2010)
  48. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. van der Laarse SAM, Leney AC, Heck AJR. FEBS J. 285 3152-3167 (2018)
  49. Cell cycle: proteomics gives it a spin. Archambault V. Expert Rev Proteomics 2 615-625 (2005)
  50. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Martin MP, Endicott JA, Noble MEM. Essays Biochem. 61 439-452 (2017)
  51. Mechanisms of Mitotic Kinase Regulation: A Structural Perspective. Welburn JPI, Jeyaprakash AA. Front Cell Dev Biol 6 6 (2018)
  52. Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Tonello F. Int J Mol Sci 24 1579 (2023)
  53. Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Kawagoe S, Ishimori K, Saio T. Int J Mol Sci 23 2485 (2022)

Articles citing this publication (242)

  1. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Cell 134 995-1006 (2008)
  2. PIC: Protein Interactions Calculator. Tina KG, Bhadra R, Srinivasan N. Nucleic Acids Res. 35 W473-6 (2007)
  3. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Loog M, Morgan DO. Nature 434 104-108 (2005)
  4. Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD, Wang J, Qin J, Chow LT, Harper JW. Genes Dev. 14 2298-2313 (2000)
  5. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. Rudner AD, Murray AW. J. Cell Biol. 149 1377-1390 (2000)
  6. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW. Nat. Struct. Mol. Biol. 11 358-364 (2004)
  7. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN. EMBO J. 22 5757-5768 (2003)
  8. Structure and regulation of the CDK5-p25(nck5a) complex. Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A. Mol. Cell 8 657-669 (2001)
  9. Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M. J. Mol. Biol. 333 393-407 (2003)
  10. The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ, Smith DG, Reith AD. Structure 9 1143-1152 (2001)
  11. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA. J. Biol. Chem. 277 42419-42422 (2002)
  12. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP. Cell 149 232-244 (2012)
  13. Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Jeffrey PD, Tong L, Pavletich NP. Genes Dev. 14 3115-3125 (2000)
  14. Interaction of the S-phase cyclin Clb5 with an "RXL" docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Wilmes GM, Archambault V, Austin RJ, Jacobson MD, Bell SP, Cross FR. Genes Dev. 18 981-991 (2004)
  15. Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JR, Ehrenberger T, Ivins F, Sessa F, Hudecz O, Nigg EA, Fry AM, Musacchio A, Stukenberg PT, Mechtler K, Peters JM, Smerdon SJ, Yaffe MB. Sci Signal 4 ra42 (2011)
  16. Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Roehrl MH, Kang S, Aramburu J, Wagner G, Rao A, Hogan PG. Proc. Natl. Acad. Sci. U.S.A. 101 7554-7559 (2004)
  17. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D. Mol. Cell 7 615-626 (2001)
  18. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. Gray CH, Good VM, Tonks NK, Barford D. EMBO J. 22 3524-3535 (2003)
  19. A mechanism for the evolution of phosphorylation sites. Pearlman SM, Serber Z, Ferrell JE. Cell 147 934-946 (2011)
  20. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Bettayeb K, Oumata N, Echalier A, Ferandin Y, Endicott JA, Galons H, Meijer L. Oncogene 27 5797-5807 (2008)
  21. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Czudnochowski N, Bösken CA, Geyer M. Nat Commun 3 842 (2012)
  22. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. van Drogen F, Sangfelt O, Malyukova A, Matskova L, Yeh E, Means AR, Reed SI. Mol. Cell 23 37-48 (2006)
  23. The structural basis of localization and signaling by the focal adhesion targeting domain. Arold ST, Hoellerer MK, Noble ME. Structure 10 319-327 (2002)
  24. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C, Nardini D, Sobol RW, Chow LM, Kornblum HI, Waclaw R, Beullens M, Nakano I. Stem Cells 31 1051-1063 (2013)
  25. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  26. Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. Matsusaka T, Pines J. J. Cell Biol. 166 507-516 (2004)
  27. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression. Hall C, Nelson DM, Ye X, Baker K, DeCaprio JA, Seeholzer S, Lipinski M, Adams PD. Mol. Cell. Biol. 21 1854-1865 (2001)
  28. Cell signaling, post-translational protein modifications and NMR spectroscopy. Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P. J. Biomol. NMR 54 217-236 (2012)
  29. Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME. Structure 9 389-397 (2001)
  30. Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB. EMBO J. 30 317-327 (2011)
  31. Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca(2+)-dependent protein kinase is important for substrate recognition. Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Plant Cell 22 1592-1604 (2010)
  32. How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. Welburn JP, Tucker JA, Johnson T, Lindert L, Morgan M, Willis A, Noble ME, Endicott JA. J Biol Chem 282 3173-3181 (2007)
  33. Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-processive with site preference. Jeffery DA, Springer M, King DS, O'Shea EK. J. Mol. Biol. 306 997-1010 (2001)
  34. Multisite phosphorylation networks as signal processors for Cdk1. Kõivomägi M, Ord M, Iofik A, Valk E, Venta R, Faustova I, Kivi R, Balog ER, Rubin SM, Loog M. Nat. Struct. Mol. Biol. 20 1415-1424 (2013)
  35. Reversal of growth suppression by p107 via direct phosphorylation by cyclin D1/cyclin-dependent kinase 4. Leng X, Noble M, Adams PD, Qin J, Harper JW. Mol. Cell. Biol. 22 2242-2254 (2002)
  36. The crystal structure of human CDK7 and its protein recognition properties. Lolli G, Lowe ED, Brown NR, Johnson LN. Structure 12 2067-2079 (2004)
  37. The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. Cheng KY, Noble ME, Skamnaki V, Brown NR, Lowe ED, Kontogiannis L, Shen K, Cole PA, Siligardi G, Johnson LN. J Biol Chem 281 23167-23179 (2006)
  38. Mutation in mouse hei10, an e3 ubiquitin ligase, disrupts meiotic crossing over. Ward JO, Reinholdt LG, Motley WW, Niswander LM, Deacon DC, Griffin LB, Langlais KK, Backus VL, Schimenti KJ, O'Brien MJ, Eppig JJ, Schimenti JC. PLoS Genet. 3 e139 (2007)
  39. The structure and substrate specificity of human Cdk12/Cyclin K. Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, Anand K, Fisher RP, Eick D, Geyer M. Nat Commun 5 3505 (2014)
  40. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Smet-Nocca C, Broncel M, Wieruszeski JM, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CP. Mol Biosyst 7 1420-1429 (2011)
  41. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. Honda R, Lowe ED, Dubinina E, Skamnaki V, Cook A, Brown NR, Johnson LN. EMBO J. 24 452-463 (2005)
  42. T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Dissmeyer N, Nowack MK, Pusch S, Stals H, Inzé D, Grini PE, Schnittger A. Plant Cell 19 972-985 (2007)
  43. Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Anand K, Schulte A, Vogel-Bachmayr K, Scheffzek K, Geyer M. Nat. Struct. Mol. Biol. 15 1287-1292 (2008)
  44. Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites. Moses AM, Liku ME, Li JJ, Durbin R. Proc. Natl. Acad. Sci. U.S.A. 104 17713-17718 (2007)
  45. Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Baumli S, Endicott JA, Johnson LN. Chem. Biol. 17 931-936 (2010)
  46. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Guiley KZ, Stevenson JW, Lou K, Barkovich KJ, Kumarasamy V, Wijeratne TU, Bunch KL, Tripathi S, Knudsen ES, Witkiewicz AK, Shokat KM, Rubin SM. Science 366 eaaw2106 (2019)
  47. New insights into FAK signaling and localization based on detection of a FAT domain folding intermediate. Dixon RD, Chen Y, Ding F, Khare SD, Prutzman KC, Schaller MD, Campbell SL, Dokholyan NV. Structure 12 2161-2171 (2004)
  48. Novel role of the muskelin-RanBP9 complex as a nucleocytoplasmic mediator of cell morphology regulation. Valiyaveettil M, Bentley AA, Gursahaney P, Hussien R, Chakravarti R, Kureishy N, Prag S, Adams JC. J. Cell Biol. 182 727-739 (2008)
  49. Phosphorylation of threonine 61 by cyclin a/Cdk1 triggers degradation of stem-loop binding protein at the end of S phase. Koseoglu MM, Graves LM, Marzluff WF. Mol. Cell. Biol. 28 4469-4479 (2008)
  50. Mutational analysis of the Cy motif from p21 reveals sequence degeneracy and specificity for different cyclin-dependent kinases. Wohlschlegel JA, Dwyer BT, Takeda DY, Dutta A. Mol. Cell. Biol. 21 4868-4874 (2001)
  51. HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1. Mukherji A, Janbandhu VC, Kumar V. Biochem. J. 401 247-256 (2007)
  52. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J. Structure 11 1329-1337 (2003)
  53. CDK Substrate Phosphorylation and Ordering the Cell Cycle. Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. Cell 167 1750-1761.e16 (2016)
  54. Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. Wang S, Griffiths G, Midgley CA, Barnett AL, Cooper M, Grabarek J, Ingram L, Jackson W, Kontopidis G, McClue SJ, McInnes C, McLachlan J, Meades C, Mezna M, Stuart I, Thomas MP, Zheleva DI, Lane DP, Jackson RC, Glover DM, Blake DG, Fischer PM. Chem. Biol. 17 1111-1121 (2010)
  55. Identification of a major determinant for serine-threonine kinase phosphoacceptor specificity. Chen C, Ha BH, Thévenin AF, Lou HJ, Zhang R, Yip KY, Peterson JR, Gerstein M, Kim PM, Filippakopoulos P, Knapp S, Boggon TJ, Turk BE. Mol. Cell 53 140-147 (2014)
  56. Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Nayak V, Zhao K, Wyce A, Schwartz MF, Lo WS, Berger SL, Marmorstein R. Structure 14 477-485 (2006)
  57. Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and Restriction. Arnold LH, Groom HC, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP, Webb M, Taylor IA, Bishop KN. PLoS Pathog. 11 e1005194 (2015)
  58. Transcriptional activating regions target a cyclin-dependent kinase. Ansari AZ, Koh SS, Zaman Z, Bongards C, Lehming N, Young RA, Ptashne M. Proc. Natl. Acad. Sci. U.S.A. 99 14706-14709 (2002)
  59. Conservation and function of a potential substrate-binding domain in the yeast Clb5 B-type cyclin. Cross FR, Jacobson MD. Mol. Cell. Biol. 20 4782-4790 (2000)
  60. Toward a molecular structure of the eukaryotic kinetochore. Welburn JP, Cheeseman IM. Dev. Cell 15 645-655 (2008)
  61. Dopamine transporter phosphorylation site threonine 53 regulates substrate reuptake and amphetamine-stimulated efflux. Foster JD, Yang JW, Moritz AE, Challasivakanaka S, Smith MA, Holy M, Wilebski K, Sitte HH, Vaughan RA. J. Biol. Chem. 287 29702-29712 (2012)
  62. Evolved to be active: sulfate ions define substrate recognition sites of CK2alpha and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases. Niefind K, Yde CW, Ermakova I, Issinger OG. J. Mol. Biol. 370 427-438 (2007)
  63. Distinct sequence elements of cyclin B1 promote localization to chromatin, centrosomes, and kinetochores during mitosis. Bentley AM, Normand G, Hoyt J, King RW. Mol. Biol. Cell 18 4847-4858 (2007)
  64. Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. Weiwad M, Küllertz G, Schutkowski M, Fischer G. FEBS Lett. 478 39-42 (2000)
  65. Alternative binding modes of an inhibitor to two different kinases. De Moliner E, Brown NR, Johnson LN. Eur. J. Biochem. 270 3174-3181 (2003)
  66. Crystal structure of a gamma-herpesvirus cyclin-cdk complex. Card GL, Knowles P, Laman H, Jones N, McDonald NQ. EMBO J. 19 2877-2888 (2000)
  67. Exceptional disfavor for proline at the P + 1 position among AGC and CAMK kinases establishes reciprocal specificity between them and the proline-directed kinases. Zhu G, Fujii K, Belkina N, Liu Y, James M, Herrero J, Shaw S. J. Biol. Chem. 280 10743-10748 (2005)
  68. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Leulliot N, Vicentini G, Jordens J, Quevillon-Cheruel S, Schiltz M, Barford D, van Tilbeurgh H, Goris J. Mol. Cell 23 413-424 (2006)
  69. Phosphorylation variation during the cell cycle scales with structural propensities of proteins. Tyanova S, Cox J, Olsen J, Mann M, Frishman D. PLoS Comput. Biol. 9 e1002842 (2013)
  70. Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. Amniai L, Barbier P, Sillen A, Wieruszeski JM, Peyrot V, Lippens G, Landrieu I. FASEB J. 23 1146-1152 (2009)
  71. Characterization of a new family of cyclin-dependent kinase activators. Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR. Biochem. J. 386 349-355 (2005)
  72. Molecular motions of human cyclin-dependent kinase 2. Barrett CP, Noble ME. J. Biol. Chem. 280 13993-14005 (2005)
  73. Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. Gondeau C, Gerbal-Chaloin S, Bello P, Aldrian-Herrada G, Morris MC, Divita G. J. Biol. Chem. 280 13793-13800 (2005)
  74. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Sibille N, Huvent I, Fauquant C, Verdegem D, Amniai L, Leroy A, Wieruszeski JM, Lippens G, Landrieu I. Proteins 80 454-462 (2012)
  75. Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Merckx A, Echalier A, Langford K, Sicard A, Langsley G, Joore J, Doerig C, Noble M, Endicott J. Structure 16 228-238 (2008)
  76. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. Joaquin M, Gubern A, González-Nuñez D, Josué Ruiz E, Ferreiro I, de Nadal E, Nebreda AR, Posas F. EMBO J. 31 2952-2964 (2012)
  77. The structural basis of ATP as an allosteric modulator. Lu S, Huang W, Wang Q, Shen Q, Li S, Nussinov R, Zhang J. PLoS Comput. Biol. 10 e1003831 (2014)
  78. Crystal structure of human CDC7 kinase in complex with its activator DBF4. Hughes S, Elustondo F, Di Fonzo A, Leroux FG, Wong AC, Snijders AP, Matthews SJ, Cherepanov P. Nat. Struct. Mol. Biol. 19 1101-1107 (2012)
  79. Increased long noncoding RNA SNHG20 predicts poor prognosis in colorectal cancer. Li C, Zhou L, He J, Fang XQ, Zhu SW, Xiong MM. BMC Cancer 16 655 (2016)
  80. Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway. Huang K, Ferrin-O'Connell I, Zhang W, Leonard GA, O'Shea EK, Quiocho FA. Mol. Cell 28 614-623 (2007)
  81. Expression and prognostic role of Spy1 as a novel cell cycle protein in hepatocellular carcinoma. Ke Q, Ji J, Cheng C, Zhang Y, Lu M, Wang Y, Zhang L, Li P, Cui X, Chen L, He S, Shen A. Exp. Mol. Pathol. 87 167-172 (2009)
  82. Highly potent p21(WAF1)-derived peptide inhibitors of CDK-mediated pRb phosphorylation: delineation and structural insight into their interactions with cyclin A. Zheleva DI, McInnes C, Gavine AL, Zhelev NZ, Fischer PM, Lane DP. J. Pept. Res. 60 257-270 (2002)
  83. Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange. Kontopidis G, Andrews MJ, McInnes C, Cowan A, Powers H, Innes L, Plater A, Griffiths G, Paterson D, Zheleva DI, Lane DP, Green S, Walkinshaw MD, Fischer PM. Structure 11 1537-1546 (2003)
  84. Phosphorylation of amyloid-beta at the serine 26 residue by human cdc2 kinase. Milton NG. Neuroreport 12 3839-3844 (2001)
  85. Ciz1 cooperates with cyclin-A-CDK2 to activate mammalian DNA replication in vitro. Copeland NA, Sercombe HE, Ainscough JF, Coverley D. J. Cell. Sci. 123 1108-1115 (2010)
  86. Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p. Ahn SH, Tobe BT, Fitz Gerald JN, Anderson SL, Acurio A, Kron SJ. Mol. Biol. Cell 12 3589-3600 (2001)
  87. Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-microm plasmid. Hallberg M, Polozkov GV, Hu GZ, Beve J, Gustafsson CM, Ronne H, Björklund S. Proc. Natl. Acad. Sci. U.S.A. 101 3370-3375 (2004)
  88. Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S. Acta Crystallogr. D Biol. Crystallogr. 67 480-487 (2011)
  89. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Li C, Andrake M, Dunbrack R, Enders GH. Mol. Cell. Biol. 30 116-130 (2010)
  90. Coevolution of cyclin Pcl5 and its substrate Gcn4. Gildor T, Shemer R, Atir-Lande A, Kornitzer D. Eukaryotic Cell 4 310-318 (2005)
  91. Sequence-based design of kinase inhibitors applicable for therapeutics and target identification. Niv MY, Rubin H, Cohen J, Tsirulnikov L, Licht T, Peretzman-Shemer A, Cna'an E, Tartakovsky A, Stein I, Albeck S, Weinstein I, Goldenberg-Furmanov M, Tobi D, Cohen E, Laster M, Ben-Sasson SA, Reuveni H. J. Biol. Chem. 279 1242-1255 (2004)
  92. Can we use docking and scoring for hit-to-lead optimization? Enyedy IJ, Egan WJ. J. Comput. Aided Mol. Des. 22 161-168 (2008)
  93. Novel properties of the cyclin encoded by Human Herpesvirus 8 that facilitate exit from quiescence. Child ES, Mann DJ. Oncogene 20 3311-3322 (2001)
  94. Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. Qi H, Prabakaran S, Cantrelle FX, Chambraud B, Gunawardena J, Lippens G, Landrieu I. J. Biol. Chem. 291 7742-7753 (2016)
  95. Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. Anand K, Schulte A, Fujinaga K, Scheffzek K, Geyer M. J. Mol. Biol. 370 826-836 (2007)
  96. Ligand binding affinity determined by temperature-dependent circular dichroism: cyclin-dependent kinase 2 inhibitors. Mayhood TW, Windsor WT. Anal. Biochem. 345 187-197 (2005)
  97. Phosphorylation of human DNMT1: implication of cyclin-dependent kinases. Lavoie G, St-Pierre Y. Biochem. Biophys. Res. Commun. 409 187-192 (2011)
  98. Robust reconstitution of active cell-cycle control complexes from co-expressed proteins in bacteria. Harashima H, Schnittger A. Plant Methods 8 23 (2012)
  99. Identification and functional analysis of a novel cyclin e/cdk2 substrate ankrd17. Deng M, Li F, Ballif BA, Li S, Chen X, Guo L, Ye X. J. Biol. Chem. 284 7875-7888 (2009)
  100. Overexpression of post-translationally modified peptides in Escherichia coli by co-expression with modifying enzymes. Sugase K, Landes MA, Wright PE, Martinez-Yamout M. Protein Expr. Purif. 57 108-115 (2008)
  101. PP2ACdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation. Godfrey M, Touati SA, Kataria M, Jones A, Snijders AP, Uhlmann F. Mol. Cell 65 393-402.e3 (2017)
  102. The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508. Baumli S, Hole AJ, Noble ME, Endicott JA. ACS Chem. Biol. 7 811-816 (2012)
  103. CDK2/cyclinA inhibitors: targeting the cyclinA recruitment site with small molecules derived from peptide leads. Castanedo G, Clark K, Wang S, Tsui V, Wong M, Nicholas J, Wickramasinghe D, Marsters JC, Sutherlin D. Bioorg. Med. Chem. Lett. 16 1716-1720 (2006)
  104. Expression of Spy1 protein in human non-Hodgkin's lymphomas is correlated with phosphorylation of p27 Kip1 on Thr187 and cell proliferation. Hang Q, Fei M, Hou S, Ni Q, Lu C, Zhang G, Gong P, Guan C, Huang X, He S. Med. Oncol. 29 3504-3514 (2012)
  105. Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N. Sci Rep 5 7929 (2015)
  106. NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Minnebo N, Görnemann J, O'Connell N, Van Dessel N, Derua R, Vermunt MW, Page R, Beullens M, Peti W, Van Eynde A, Bollen M. Nucleic Acids Res. 41 842-854 (2013)
  107. Prediction of cyclin-dependent kinase phosphorylation substrates. Chang EJ, Begum R, Chait BT, Gaasterland T. PLoS ONE 2 e656 (2007)
  108. Mechanism of kinase inactivation and nonbinding of FRATide to GSK3β due to K85M mutation: molecular dynamics simulation and normal mode analysis. Lu S, Jiang Y, Lv J, Zou J, Wu T. Biopolymers 95 669-681 (2011)
  109. Phosphorylation by cyclin C/cyclin-dependent kinase 2 following mitogenic stimulation of murine fibroblasts inhibits transcriptional activity of LSF during G1 progression. Saxena UH, Powell CM, Fecko JK, Cacioppo R, Chou HS, Cooper GM, Hansen U. Mol. Cell. Biol. 29 2335-2345 (2009)
  110. Structure of the human Mediator-bound transcription preinitiation complex. Abdella R, Talyzina A, Chen S, Inouye CJ, Tjian R, He Y. Science 372 52-56 (2021)
  111. Detection of a hidden folding intermediate in the focal adhesion target domain: Implications for its function and folding. Zhou Z, Feng H, Bai Y. Proteins 65 259-265 (2006)
  112. A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Gárriz A, Qiu H, Dey M, Seo EJ, Dever TE, Hinnebusch AG. Mol. Cell. Biol. 29 1592-1607 (2009)
  113. Asperlin induces G₂/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells. He L, Nan MH, Oh HC, Kim YH, Jang JH, Erikson RL, Ahn JS, Kim BY. Biochem. Biophys. Res. Commun. 409 489-493 (2011)
  114. Effect of mutation K85R on GSK-3beta: Molecular dynamics simulation. Sun H, Jiang YJ, Yu QS, Luo CC, Zou JW. Biochem. Biophys. Res. Commun. 377 962-965 (2008)
  115. Biochemical characterization of Cdk2-Speedy/Ringo A2. Cheng A, Gerry S, Kaldis P, Solomon MJ. BMC Biochem. 6 19 (2005)
  116. Catalysis of proline-directed protein phosphorylation by peptidyl-prolyl cis/trans isomerases. Weiwad M, Werner A, Rücknagel P, Schierhorn A, Küllertz G, Fischer G. J. Mol. Biol. 339 635-646 (2004)
  117. Discovery of a potent CDK2 inhibitor with a novel binding mode, using virtual screening and initial, structure-guided lead scoping. Richardson CM, Nunns CL, Williamson DS, Parratt MJ, Dokurno P, Howes R, Borgognoni J, Drysdale MJ, Finch H, Hubbard RE, Jackson PS, Kierstan P, Lentzen G, Moore JD, Murray JB, Simmonite H, Surgenor AE, Torrance CJ. Bioorg. Med. Chem. Lett. 17 3880-3885 (2007)
  118. Effect of double mutations K214/A-E215/Q of FRATide on GSK3β: insights from molecular dynamics simulation and normal mode analysis. Lu SY, Jiang YJ, Zou JW, Wu TX. Amino Acids 43 267-277 (2012)
  119. Identification and Characterization of an Irreversible Inhibitor of CDK2. Anscombe E, Meschini E, Mora-Vidal R, Martin MP, Staunton D, Geitmann M, Danielson UH, Stanley WA, Wang LZ, Reuillon T, Golding BT, Cano C, Newell DR, Noble ME, Wedge SR, Endicott JA, Griffin RJ. Chem. Biol. 22 1159-1164 (2015)
  120. The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. Zhao J, Han SX, Ma JL, Ying X, Liu P, Li J, Wang L, Zhang Y, Ma J, Zhang L, Zhu Q. Oncol. Rep. 30 253-259 (2013)
  121. Three-dimensional structure of phosphorylase kinase at 22 A resolution and its complex with glycogen phosphorylase b. Vénien-Bryan C, Lowe EM, Boisset N, Traxler KW, Johnson LN, Carlson GM. Structure 10 33-41 (2002)
  122. CDK versus GSK-3 inhibition: a purple haze no longer? Fischer PM. Chem. Biol. 10 1144-1146 (2003)
  123. Meiotic inactivation of Xenopus Myt1 by CDK/XRINGO, but not CDK/cyclin, via site-specific phosphorylation. Ruiz EJ, Hunt T, Nebreda AR. Mol. Cell 32 210-220 (2008)
  124. N-terminus of the protein kinase CLK1 induces SR protein hyperphosphorylation. Aubol BE, Plocinik RM, Keshwani MM, McGlone ML, Hagopian JC, Ghosh G, Fu XD, Adams JA. Biochem. J. 462 143-152 (2014)
  125. Recognition of Cdk2 by Cdk7. Lolli G, Johnson LN. Proteins 67 1048-1059 (2007)
  126. The peptide microarray "ChloroPhos1.0" identifies new phosphorylation targets of plastid casein kinase II (pCKII) in Arabidopsis thaliana. Schönberg A, Bergner E, Helm S, Agne B, Dünschede B, Schünemann D, Schutkowski M, Baginsky S. PLoS ONE 9 e108344 (2014)
  127. The role of Thr160 phosphorylation of Cdk2 in substrate recognition. Holmes JK, Solomon MJ. Eur. J. Biochem. 268 4647-4652 (2001)
  128. A distal, high-affinity binding site on the cyclin-CDK substrate Pho4 is important for its phosphorylation and regulation. Byrne M, Miller N, Springer M, O'Shea EK. J. Mol. Biol. 335 57-70 (2004)
  129. Computational study of the phosphoryl transfer catalyzed by a cyclin-dependent kinase. De Vivo M, Cavalli A, Carloni P, Recanatini M. Chemistry 13 8437-8444 (2007)
  130. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage. Tong Y, Ying H, Liu R, Li L, Bergholz J, Xiao ZX. Cell Death Dis 6 e1640 (2015)
  131. Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Helander S, Montecchio M, Pilstål R, Su Y, Kuruvilla J, Elvén M, Ziauddin JME, Anandapadamanaban M, Cristobal S, Lundström P, Sears RC, Wallner B, Sunnerhagen M. Structure 23 2267-2279 (2015)
  132. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements. Liu S, Bolger JK, Kirkland LO, Premnath PN, McInnes C. ACS Chem. Biol. 5 1169-1182 (2010)
  133. Study of the inhibition of cyclin-dependent kinases with roscovitine and indirubin-3'-oxime from molecular dynamics simulations. Zhang B, Tan VB, Lim KM, Tay TE, Zhuang S. J Mol Model 13 79-89 (2007)
  134. Temporal and spatial expression of cyclin H in rat spinal cord injury. Wu G, Cao J, Peng C, Yang H, Cui Z, Zhao J, Wu Q, Han J, Li H, Gu X, Zhang F. Neuromolecular Med. 13 187-196 (2011)
  135. Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Aviram S, Simon E, Gildor T, Glaser F, Kornitzer D. Mol. Cell. Biol. 28 6858-6869 (2008)
  136. Potent inhibitors of CDK5 derived from roscovitine: synthesis, biological evaluation and molecular modelling. Demange L, Abdellah FN, Lozach O, Ferandin Y, Gresh N, Meijer L, Galons H. Bioorg. Med. Chem. Lett. 23 125-131 (2013)
  137. Spy1 is frequently overexpressed in malignant gliomas and critically regulates the proliferation of glioma cells. Zhang L, Shen A, Ke Q, Zhao W, Yan M, Cheng C. J. Mol. Neurosci. 47 485-494 (2012)
  138. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Ansari AZ, Ogirala A, Ptashne M. Proc. Natl. Acad. Sci. U.S.A. 102 2346-2349 (2005)
  139. Analysis of substrate specificity and cyclin Y binding of PCTAIRE-1 kinase. Shehata SN, Hunter RW, Ohta E, Peggie MW, Lou HJ, Sicheri F, Zeqiraj E, Turk BE, Sakamoto K. Cell. Signal. 24 2085-2094 (2012)
  140. Crystal Structure and Substrate Specificity of PTPN12. Li H, Yang F, Liu C, Xiao P, Xu Y, Liang Z, Liu C, Wang H, Wang W, Zheng W, Zhang W, Ma X, He D, Song X, Cui F, Xu Z, Yi F, Sun JP, Yu X. Cell Rep 15 1345-1358 (2016)
  141. DNA sequence variations in the prolyl isomerase Pin1 gene and Alzheimer's disease. Poli M, Gatta LB, Dominici R, Lovati C, Mariani C, Albertini A, Finazzi D. Neurosci. Lett. 389 66-70 (2005)
  142. PCTAIRE kinase 3/cyclin-dependent kinase 18 is activated through association with cyclin A and/or phosphorylation by protein kinase A. Matsuda S, Kominato K, Koide-Yoshida S, Miyamoto K, Isshiki K, Tsuji A, Yuasa K. J. Biol. Chem. 289 18387-18400 (2014)
  143. Peptide inhibitors of CDK2-cyclin A that target the cyclin recruitment-site: structural variants of the C-terminal Phe. Atkinson GE, Cowan A, McInnes C, Zheleva DI, Fischer PM, Chan WC. Bioorg. Med. Chem. Lett. 12 2501-2505 (2002)
  144. Role of phosphorylated Thr160 for the activation of the CDK2/Cyclin A complex. De Vivo M, Cavalli A, Bottegoni G, Carloni P, Recanatini M. Proteins 62 89-98 (2006)
  145. Structural and functional studies of the response regulator HupR. Davies KM, Skamnaki V, Johnson LN, Vénien-Bryan C. J. Mol. Biol. 359 276-288 (2006)
  146. The Drosophila mitotic inhibitor Frühstart specifically binds to the hydrophobic patch of cyclins. Gawliński P, Nikolay R, Goursot C, Lawo S, Chaurasia B, Herz HM, Kussler-Schneider Y, Ruppert T, Mayer M, Grosshans J. EMBO Rep. 8 490-496 (2007)
  147. An E. coli over-expression system for multiply-phosphorylated proteins and its use in a study of calcium phosphate sequestration by novel recombinant phosphopeptides. Clegg RA, Holt C. Protein Expr. Purif. 67 23-34 (2009)
  148. Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. Sun L, Huang Y, Wei Q, Tong X, Cai R, Nalepa G, Ye X. J. Biol. Chem. 290 4075-4085 (2015)
  149. Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2. McDowell GS, Hindley CJ, Lippens G, Landrieu I, Philpott A. BMC Biochem. 15 24 (2014)
  150. Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations. Bártová I, Koca J, Otyepka M. J Mol Model 14 761-768 (2008)
  151. Residual Cdk1/2 activity after DNA damage promotes senescence. Müllers E, Silva Cascales H, Burdova K, Macurek L, Lindqvist A. Aging Cell 16 575-584 (2017)
  152. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Gopalakrishnan V, Tan CR, Li S. Cell Cycle 16 1271-1287 (2017)
  153. Candida albicans cyclin Clb4 carries S-phase cyclin activity. Ofir A, Kornitzer D. Eukaryotic Cell 9 1311-1319 (2010)
  154. Comment Cell cycle: cyclin guides the way. Wittenberg C. Nature 434 34-35 (2005)
  155. Identification of substrates for Ser/Thr kinases using residue-based statistical pair potentials. Kumar N, Mohanty D. Bioinformatics 26 189-197 (2010)
  156. Kinetic mechanistic studies of Cdk5/p25-catalyzed H1P phosphorylation: metal effect and solvent kinetic isotope effect. Liu M, Girma E, Glicksman MA, Stein RL. Biochemistry 49 4921-4929 (2010)
  157. Probing the role of the linker in ferrocene-ATP conjugates: monitoring protein kinase catalyzed phosphorylations electrochemically. Martić S, Labib M, Freeman D, Kraatz PH. Chemistry 17 6744-6752 (2011)
  158. Protein kinases display minimal interpositional dependence on substrate sequence: potential implications for the evolution of signalling networks. Joughin BA, Liu C, Lauffenburger DA, Hogue CW, Yaffe MB. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2574-2583 (2012)
  159. Rational design of a cyclin A fluorescent peptide sensor. Pazos E, Pérez M, Gutiérrez-de-Terán H, Orzáez M, Guevara T, Mascareñas JL, Vázquez ME. Org. Biomol. Chem. 9 7629-7632 (2011)
  160. Structural model of the Plasmodium CDK, Pfmrk, a novel target for malaria therapeutics. Peng Y, Keenan SM, Welsh WJ. J. Mol. Graph. Model. 24 72-80 (2005)
  161. Truncation and optimisation of peptide inhibitors of cyclin-dependent kinase 2-cyclin a through structure-guided design. Kontopidis G, Andrews MJ, McInnes C, Plater A, Innes L, Renachowski S, Cowan A, Fischer PM. ChemMedChem 4 1120-1128 (2009)
  162. A computational analysis of substrate binding strength by phosphorylase kinase and protein kinase A. Brinkworth RI, Horne J, Kobe B. J. Mol. Recognit. 15 104-111 (2002)
  163. A matrix based algorithm for Protein-Protein Interaction prediction using Domain-Domain Associations. Binny Priya S, Saha S, Anishetty R, Anishetty S. J. Theor. Biol. 326 36-42 (2013)
  164. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. Dumitru AMG, Rusin SF, Clark AEM, Kettenbach AN, Compton DA. Elife 6 (2017)
  165. Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1. Harashima H, Dissmeyer N, Hammann P, Nomura Y, Kramer K, Nakagami H, Schnittger A. BMC Plant Biol 16 209 (2016)
  166. Structural and molecular basis of interaction of HCV non-structural protein 5A with human casein kinase 1α and PKR. Sudha G, Yamunadevi S, Tyagi N, Das S, Srinivasan N. BMC Struct. Biol. 12 28 (2012)
  167. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Dixon-Clarke SE, Elkins JM, Cheng SW, Morin GB, Bullock AN. Sci Rep 5 17122 (2015)
  168. Capturing cooperative interactions with the PSI-MI format. Van Roey K, Orchard S, Kerrien S, Dumousseau M, Ricard-Blum S, Hermjakob H, Gibson TJ. Database (Oxford) 2013 bat066 (2013)
  169. Degradation of Saccharomyces cerevisiae transcription factor Gcn4 requires a C-terminal nuclear localization signal in the cyclin Pcl5. Streckfuss-Bömeke K, Schulze F, Herzog B, Scholz E, Braus GH. Eukaryotic Cell 8 496-510 (2009)
  170. Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines. Hylsová M, Carbain B, Fanfrlík J, Musilová L, Haldar S, Köprülüoğlu C, Ajani H, Ajani H, Brahmkshatriya PS, Jorda R, Kryštof V, Hobza P, Echalier A, Paruch K, Lepšík M. Eur J Med Chem 126 1118-1128 (2017)
  171. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK. Wang Q, Amato SP, Rubitski DM, Hayward MM, Kormos BL, Verhoest PR, Xu L, Brandon NJ, Ehlers MD. J. Pharmacol. Exp. Ther. 356 410-423 (2016)
  172. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2. Gu J, Bourne PE. BMC Bioinformatics 8 45 (2007)
  173. Mitotic expression of Spo13 alters M-phase progression and nucleolar localization of Cdc14 in budding yeast. Varela E, Schlecht U, Moina A, Fackenthal JD, Washburn BK, Niederhauser-Wiederkehr C, Tsai-Pflugfelder M, Primig M, Gasser SM, Esposito RE. Genetics 185 841-854 (2010)
  174. Poly-L-proline type II peptide mimics as probes of the active site occupancy requirements of cGMP-dependent protein kinase. Zhang R, Nickl CK, Mamai A, Flemer S, Natarajan A, Dostmann WR, Madalengoitia JS. J. Pept. Res. 66 151-159 (2005)
  175. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: hierarchy of structural loss from all-atom Monte Carlo simulations of p27Kip1 unfolding-unbinding and structural determinants of the binding mechanism. Verkhivker GM. Biopolymers 75 420-433 (2004)
  176. Regulation of Hepatitis B Virus Replication by Cyclin Docking Motifs in Core Protein. Liu H, Xi J, Hu J. J Virol 95 e00230-21 (2021)
  177. Molecular mechanisms of activation in CDK2. Bešker N, Amadei A, D'Abramo M. J. Biomol. Struct. Dyn. 32 1929-1935 (2014)
  178. Nuclear protein kinase CLK1 uses a non-traditional docking mechanism to select physiological substrates. Keshwani MM, Hailey KL, Aubol BE, Fattet L, McGlone ML, Jennings PA, Adams JA. Biochem. J. 472 329-338 (2015)
  179. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, Vetter B, Lenac-Rovis T, Jonjic S, Neitzel H, Hagemeier C, Wiebusch L. PLoS Pathog. 10 e1004514 (2014)
  180. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants. Hipp K, Rau P, Schäfer B, Gronenborn B, Jeske H. Virology 462-463 189-198 (2014)
  181. Autophosphorylation Affects Substrate-Binding Affinity of Tobacco Ca2+-Dependent Protein Kinase1. Ito T, Ishida S, Oe S, Fukazawa J, Takahashi Y. Plant Physiol. 174 2457-2468 (2017)
  182. Classifying kinase conformations using a machine learning approach. McSkimming DI, Rasheed K, Kannan N. BMC Bioinformatics 18 86 (2017)
  183. Cyclin B1-Cdk1 facilitates MAD1 release from the nuclear pore to ensure a robust spindle checkpoint. Jackman M, Marcozzi C, Barbiero M, Pardo M, Yu L, Tyson AL, Choudhary JS, Pines J. J Cell Biol 219 (2020)
  184. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening. Subedi A, Shimizu T, Ryo A, Sanada E, Watanabe N, Osada H. Biochem. Biophys. Res. Commun. 474 528-533 (2016)
  185. Identification and validation of three core genes in p53 signaling pathway in hepatitis B virus-related hepatocellular carcinoma. Yu M, Xu W, Jie Y, Pang J, Huang S, Cao J, Gong J, Li X, Chong Y. World J Surg Oncol 19 66 (2021)
  186. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety. Nakagawa H, Seike S, Sugimoto M, Ieda N, Kawaguchi M, Suzuki T, Miyata N. Bioorg. Med. Chem. Lett. 25 5619-5624 (2015)
  187. Phosphorylation of the cyclin CaPcl5 modulates both cyclin stability and specific recognition of the substrate. Simon E, Gildor T, Kornitzer D. J. Mol. Biol. 425 3151-3165 (2013)
  188. Polyphony: superposition independent methods for ensemble-based drug discovery. Pitt WR, Montalvão RW, Blundell TL. BMC Bioinformatics 15 324 (2014)
  189. Proline and lysine residues provide modulatory switches in amyloid formation: Insights from prion protein. Kraus A. Prion 10 57-62 (2016)
  190. Spy1 participates in the proliferation and apoptosis of epithelial ovarian cancer. Lu S, Liu R, Su M, Wei Y, Yang S, He S, Wang X, Qiang F, Chen C, Zhao S, Zhang W, Xu P, Mao G. J. Mol. Histol. 47 47-57 (2016)
  191. Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae. Guo J, Wei X, Li M, Pan X, Chang W, Liu Z. Protein Cell 4 607-619 (2013)
  192. Substrate binding to Src: A new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics. Joshi MK, Burton RA, Wu H, Lipchik AM, Craddock BP, Mo H, Parker LL, Miller WT, Post CB. Protein Sci 29 350-359 (2020)
  193. Among B-type cyclins only CLB5 and CLB6 promote premeiotic S phase in Saccharomyces cerevisiae. DeCesare JM, Stuart DT. Genetics 190 1001-1016 (2012)
  194. Determining the Functions of HIV-1 Tat and a Second Magnesium Ion in the CDK9/Cyclin T1 Complex: A Molecular Dynamics Simulation Study. Jin HX, Go ML, Yin P, Qiu XT, Zhu P, Yan XJ. PLoS ONE 10 e0124673 (2015)
  195. Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. Salamina M, Montefiore BC, Liu M, Wood DJ, Heath R, Ault JR, Wang LZ, Korolchuk S, Baslé A, Pastok MW, Reeks J, Tatum NJ, Sobott F, Arold ST, Pagano M, Noble MEM, Endicott JA. J Mol Biol 433 166795 (2021)
  196. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. Stetz G, Tse A, Verkhivker GM. PLoS ONE 12 e0186089 (2017)
  197. Morphogenesis signaling components influence cell cycle regulation by cyclin dependent kinase. Tobe BT, Kitazono AA, Garcia JS, Gerber RA, Bevis BJ, Choy JS, Chasman D, Kron SJ. Cell Div 4 12 (2009)
  198. Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Cantrelle FX, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C. Front Mol Neurosci 14 661368 (2021)
  199. Pin1 inhibition improves the efficacy of ralaniten compounds that bind to the N-terminal domain of androgen receptor. Leung JK, Imamura Y, Kato M, Wang J, Mawji NR, Sadar MD. Commun Biol 4 381 (2021)
  200. TDM1 Regulation Determines the Number of Meiotic Divisions. Cifuentes M, Jolivet S, Cromer L, Harashima H, Bulankova P, Renne C, Crismani W, Nomura Y, Nakagami H, Sugimoto K, Schnittger A, Riha K, Mercier R. PLoS Genet. 12 e1005856 (2016)
  201. AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters. Katigbak J, Li H, Rooklin D, Zhang Y. J Chem Inf Model 60 1494-1508 (2020)
  202. Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta. Al-Dabbagh B, Elhaty IA, Al Hrout A, Al Sakkaf R, El-Awady R, Ashraf SS, Amin A. BMC Complement Altern Med 18 240 (2018)
  203. Comprehensive analysis of differential expression profiles reveals potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung cancer. Ni Z, Wang X, Zhang T, Li L, Li J. Exp Ther Med 15 3273-3282 (2018)
  204. Evolutionary analysis of p38 stress-activated kinases in unicellular relatives of animals suggests an ancestral function in osmotic stress. Shabardina V, Charria PR, Saborido GB, Diaz-Mora E, Cuenda A, Ruiz-Trillo I, Sanz-Ezquerro JJ. Open Biol 13 220314 (2023)
  205. Fluorescent protein biosensor for probing CDK/cyclin activity in vitro and in living cells. Van TN, Pellerano M, Lykaso S, Morris MC. Chembiochem 15 2298-2305 (2014)
  206. Functional characterization of CDK10 and cyclin M truncated variants causing severe developmental disorders. Robert T, Dock-Bregeon AC, Colas P. Mol Genet Genomic Med 9 e1782 (2021)
  207. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle. Rashkov P, Barrett IP, Beardmore RE, Bendtsen C, Gudelj I. PLoS Comput. Biol. 12 e1005216 (2016)
  208. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Su Y, Pelz C, Huang T, Torkenczy K, Wang X, Cherry A, Daniel CJ, Liang J, Nan X, Dai MS, Adey A, Impey S, Sears RC. Genes Dev. 32 1398-1419 (2018)
  209. Proline-Rich Motifs Control G2-CDK Target Phosphorylation and Priming an Anchoring Protein for Polo Kinase Localization. Örd M, Puss KK, Kivi R, Möll K, Ojala T, Borovko I, Faustova I, Venta R, Valk E, Kõivomägi M, Loog M. Cell Rep 31 107757 (2020)
  210. Structural basis for the ORC1-Cyclin A association. Wang B, Song J. Protein Sci 28 1727-1733 (2019)
  211. Structure of the human ATM kinase and mechanism of Nbs1 binding. Warren C, Pavletich NP. Elife 11 e74218 (2022)
  212. TORC1 kinase and the S-phase cyclin Clb5 collaborate to promote mitotic spindle assembly and DNA replication in S. cerevisiae. Tran LT, Wang'ondu RW, Weng JB, Wanjiku GW, Fong CM, Kile AC, Koepp DM, Hood-DeGrenier JK. Curr. Genet. 56 479-493 (2010)
  213. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins. Mizejewski GJ. Tumour Biol. 37 12697-12711 (2016)
  214. The role of cyclin-dependent kinase 5 in neuropathic pain. Gomez K, Vallecillo TGM, Moutal A, Perez-Miller S, Delgado-Lezama R, Felix R, Khanna R. Pain 161 2674-2689 (2020)
  215. Activation of the oncogenic transcription factor B-Myb via multisite phosphorylation and prolyl cis/trans isomerization. Werwein E, Cibis H, Hess D, Klempnauer KH. Nucleic Acids Res. 47 103-121 (2019)
  216. Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy. Premnath PN, Craig SN, Liu S, McInnes C. Bioorg. Med. Chem. Lett. 26 3754-3760 (2016)
  217. Bipartite binding of the N terminus of Skp2 to cyclin A. Kelso S, Orlicky S, Beenstock J, Ceccarelli DF, Kurinov I, Gish G, Sicheri F. Structure 29 975-988.e5 (2021)
  218. Clarity through structures. Editorial overview. Stubbe J, Johnson LN. Curr. Opin. Struct. Biol. 10 709-710 (2000)
  219. Colorectal cancer-associated mutations impair EphB1 kinase function. Kim Y, Ahmed S, Miller WT. J Biol Chem 299 105115 (2023)
  220. Cryo-EM structure of SKP1-SKP2-CKS1 in complex with CDK2-cyclin A-p27KIP1. Rowland RJ, Heath R, Maskell D, Thompson RF, Ranson NA, Blaza JN, Endicott JA, Noble MEM, Salamina M. Sci Rep 13 10718 (2023)
  221. Cyclin A2 degradation during the spindle assembly checkpoint requires multiple binding modes to the APC/C. Zhang S, Tischer T, Barford D. Nat Commun 10 3863 (2019)
  222. Cyclin-cyclin-dependent kinase regulatory response is linked to substrate recognition. Cuomo ME, Platt GM, Pearl LH, Mittnacht S. J. Biol. Chem. 286 9713-9725 (2011)
  223. Cyclin-dependent kinase 5-mediated phosphorylation of chloride intracellular channel 4 promotes oxidative stress-induced neuronal death. Guo D, Xie W, Xiong P, Li H, Wang S, Chen G, Gao Y, Zhou J, Zhang Y, Bu G, Xue M, Zhang J. Cell Death Dis 9 951 (2018)
  224. Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition. Wood DJ, Korolchuk S, Tatum NJ, Wang LZ, Endicott JA, Noble MEM, Martin MP. Cell Chem Biol 26 121-130.e5 (2019)
  225. Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos. Ma X, Øvrebø JI, Thompson EM. Front Cell Dev Biol 9 770939 (2021)
  226. Identification of a Growth-Associated Single Nucleotide Polymorphism (SNP) in Cyclin C of the Giant Tiger Shrimp Penaeus monodon. Janpoom S, Prasertlux S, Rongmung P, Menasveta P, Lamkom T, Sae-Lim P, Khamnamtong B, Klinbunga S. Biochem Genet 59 114-133 (2021)
  227. In Silico Screening to Identify Inhibitors of Growth Factor Receptor 2-Focal Adhesion Kinase Interaction for Therapeutic Treatment of Pathological Cardiac Hypertrophy. Mohanty P, Bhatnagar S. Assay Drug Dev Technol 17 58-67 (2019)
  228. Inhibition of aqueous extracts of Solanum nigrum (AESN) on oral cancer through regulation of mitochondrial fission. Uen WC, Lee BH, Shi YC, Wu SC, Tai CJ, Tai CJ. J Tradit Complement Med 8 220-225 (2018)
  229. Louise N. Johnson 1940-2012. Barford D, Stuart DI. Nat. Struct. Mol. Biol. 19 1216-1217 (2012)
  230. Negative feedback by conserved kinases patterns the degradation of Caenorhabditis elegans Raf in vulval fate patterning. de la Cova CC, Townley R, Greenwald I. Development 147 (2020)
  231. Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms. Verkhivker GM. Mol Biosyst 13 2235-2253 (2017)
  232. Phospholipid binding to the FAK catalytic domain impacts function. Hall JE, Schaller MD. PLoS ONE 12 e0172136 (2017)
  233. Phosphorylation of mixed lineage kinase MLK3 by cyclin-dependent kinases CDK1 and CDK2 controls ovarian cancer cell division. Cedeno-Rosario L, Honda D, Sunderland AM, Lewandowski MD, Taylor WR, Chadee DN. J Biol Chem 298 102263 (2022)
  234. Post-translational Regulation of DNA Polymerase η, a Connection to Damage-Induced Cohesion in Saccharomyces cerevisiae. Wu PS, Enervald E, Joelsson A, Palmberg C, Rutishauser D, Hällberg BM, Ström L. Genetics 216 1009-1022 (2020)
  235. Recurring EPHB1 mutations in human cancers alter receptor signalling and compartmentalisation of colorectal cancer cells. Kundu S, Nunes L, Adler J, Mathot L, Stoimenov I, Sjöblom T. Cell Commun Signal 21 354 (2023)
  236. Regulation and New Treatment Strategies in Breast Cancer. Ferraiuolo RM, Wagner KU. J Life Sci (Westlake Village) 1 23-38 (2019)
  237. Small molecules targeting Pin1 as potent anticancer drugs. Zhang J, Zhou W, Chen Y, Wang Y, Guo Z, Hu W, Li Y, Han X, Si S. Front Pharmacol 14 1073037 (2023)
  238. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Front Mol Biosci 9 831693 (2022)
  239. Structural basis of focal adhesion targeting domain-mediated signaling in cardiac hypertrophy. Mohanty P, Bhatnagar S. J. Recept. Signal Transduct. Res. 37 38-50 (2017)
  240. Structure-based prediction of HDAC6 substrates validated by enzymatic assay reveals determinants of promiscuity and detects new potential substrates. Varga JK, Diffley K, Welker Leng KR, Fierke CA, Schueler-Furman O. Sci Rep 12 1788 (2022)
  241. Tumor Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Human Breast Cancer Are Mediated by PD-L1-S283 and Chemokine Axes. Erlichman N, Baram T, Meshel T, Morein D, Da'adoosh B, Ben-Baruch A. Cancers (Basel) 14 1042 (2022)
  242. Xenopus phospho-CDK7/cyclin H expressed in baculoviral-infected insect cells. Lawrie AM, Tito P, Hernandez H, Brown NR, Robinson CV, Endicott JA, Noble ME, Johnson LN. Protein Expr. Purif. 23 252-260 (2001)