1qmf Citations

The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance.

J Mol Biol 299 477-85 (2000)
Related entries: 1pmd, 1qme

Cited: 122 times
EuropePMC logo PMID: 10860753

Abstract

Penicillin-binding proteins (PBPs), the primary targets for beta-lactam antibiotics, are periplasmic membrane-attached proteins responsible for the construction and maintenance of the bacterial cell wall. Bacteria have developed several mechanisms of resistance, one of which is the mutation of the target enzymes to reduce their affinity for beta-lactam antibiotics. Here, we describe the structure of PBP2x from Streptococcus pneumoniae determined to 2.4 A. In addition, we also describe the PBP2x structure in complex with cefuroxime, a therapeutically relevant antibiotic, at 2.8 A. Surprisingly, two antibiotic molecules are observed: one as a covalent complex with the active-site serine residue, and a second one between the C-terminal and the transpeptidase domains. The structure of PBP2x reveals an active site similar to those of the class A beta-lactamases, albeit with an absence of unambiguous deacylation machinery. The structure highlights a few amino acid residues, namely Thr338, Thr550 and Gln552, which are directly related to the resistance phenomenon.

Reviews - 1qmf mentioned but not cited (1)

  1. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Ruggiero A, De Simone P, Smaldone G, Squeglia F, Berisio R. Curr. Protein Pept. Sci. 13 756-766 (2012)

Articles - 1qmf mentioned but not cited (10)

  1. Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. Maestro B, Novaková L, Hesek D, Lee M, Leyva E, Mobashery S, Sanz JM, Branny P. FEBS Lett. 585 357-363 (2011)
  2. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain. Hu P, Yang M, Zhang A, Wu J, Chen B, Hua Y, Yu J, Chen H, Xiao J, Jin M. PLoS ONE 6 e24988 (2011)
  3. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. Guo Z, Li B, Cheng LT, Zhou S, McCammon JA, Che J. J Chem Theory Comput 11 753-765 (2015)
  4. Insight into the Diversity of Penicillin-Binding Protein 2x Alleles and Mutations in Viridans Streptococci. van der Linden M, Otten J, Bergmann C, Latorre C, Liñares J, Hakenbeck R. Antimicrob. Agents Chemother. 61 (2017)
  5. Molecular dynamics simulation of the complex PBP-2x with drug cefuroxime to explore the drug resistance mechanism of Streptococcus suis R61. Ge Y, Wu J, Xia Y, Yang M, Xiao J, Yu J. PLoS ONE 7 e35941 (2012)
  6. Alanine 501 Mutations in Penicillin-Binding Protein 2 from Neisseria gonorrhoeae: Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Tomberg J, Fedarovich A, Vincent LR, Jerse AE, Unemo M, Davies C, Nicholas RA. Biochemistry 56 1140-1150 (2017)
  7. Diversity of Mosaic pbp2x Families in Penicillin-Resistant Streptococcus pneumoniae from Iran and Romania. Mousavi SF, Pana M, Feizabadi M, Jalali P, Ghita M, Denapaite D, Hakenbeck R. Antimicrob. Agents Chemother. 61 (2017)
  8. Anti-Helicobacter pylori Activity of Isocoumarin Paepalantine: Morphological and Molecular Docking Analysis. Damasceno JPL, Rodrigues RP, Gonçalves RCR, Kitagawa RR. Molecules 22 (2017)
  9. SuperDCA for genome-wide epistasis analysis. Puranen S, Pesonen M, Pensar J, Xu YY, Lees JA, Bentley SD, Croucher NJ, Corander J. Microb Genom 4 (2018)
  10. Synthesis, Photophysical Characterization and Evaluation of Biological Properties of C7, a Novel Symmetric Tetra-Imidazolium-Bis-Heterocycle. Kunstek H, Wang M, Hussein H, Dhouib I, Khemakhem B, Risler A, Philippot S, Frochot C, Arnoux P, Fournier B, Varbanov M, Dumarçay-Charbonnier F. Microorganisms 11 495 (2023)


Reviews citing this publication (16)

  1. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. FEMS Microbiol. Rev. 32 234-258 (2008)
  2. Penicillin-binding proteins and beta-lactam resistance. Zapun A, Contreras-Martel C, Vernet T. FEMS Microbiol. Rev. 32 361-385 (2008)
  3. The PASTA domain: a beta-lactam-binding domain. Yeats C, Finn RD, Bateman A. Trends Biochem. Sci. 27 438 (2002)
  4. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Goffin C, Ghuysen JM. Microbiol. Mol. Biol. Rev. 66 702-38, table of contents (2002)
  5. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Hakenbeck R, Brückner R, Denapaite D, Maurer P. Future Microbiol 7 395-410 (2012)
  6. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Rohrer S, Berger-Bächi B. Antimicrob. Agents Chemother. 47 837-846 (2003)
  7. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Kim L, McGee L, Tomczyk S, Beall B. Clin. Microbiol. Rev. 29 525-552 (2016)
  8. Messenger functions of the bacterial cell wall-derived muropeptides. Boudreau MA, Fisher JF, Mobashery S. Biochemistry 51 2974-2990 (2012)
  9. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. FEMS Microbiol. Rev. 40 41-56 (2016)
  10. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Fisher JF, Mobashery S. Cold Spring Harb Perspect Med 6 (2016)
  11. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria. Ogawara H. J. Antibiot. 69 660-685 (2016)
  12. Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Pensinger DA, Schaenzer AJ, Sauer JD. Trends Microbiol. 26 56-69 (2018)
  13. How Streptococcus suis escapes antibiotic treatments. Uruén C, García C, Fraile L, Tommassen J, Arenas J. Vet Res 53 91 (2022)
  14. Penicillin-resistant pneumococci-implications for management of community-acquired pneumonia and meningitis. Ziglam HM, Finch RG. Int. J. Infect. Dis. 6 Suppl 1 S14-20 (2002)
  15. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics. Ogawara H. Molecules 21 (2016)
  16. The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus. Acebrón I, Chang M, Mobashery S, Hermoso JA. Curr. Med. Chem. 22 1678-1686 (2015)

Articles citing this publication (95)

  1. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN. Genes Dev. 19 1692-1704 (2005)
  2. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Ilangovan U, Ton-That H, Iwahara J, Schneewind O, Clubb RT. Proc. Natl. Acad. Sci. U.S.A. 98 6056-6061 (2001)
  3. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Young TA, Delagoutte B, Endrizzi JA, Falick AM, Alber T. Nat. Struct. Biol. 10 168-174 (2003)
  4. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. Proc. Natl. Acad. Sci. U.S.A. 110 16808-16813 (2013)
  5. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. Jones G, Dyson P. J. Bacteriol. 188 7470-7476 (2006)
  6. Structural milestones in the reaction pathway of an amide hydrolase: substrate, acyl, and product complexes of cephalothin with AmpC beta-lactamase. Beadle BM, Trehan I, Focia PJ, Shoichet BK. Structure 10 413-424 (2002)
  7. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Tomberg J, Unemo M, Davies C, Nicholas RA. Biochemistry 49 8062-8070 (2010)
  8. Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Cravello L, Lascoux D, Forest E. Rapid Commun. Mass Spectrom. 17 2387-2393 (2003)
  9. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Rice LB, Bellais S, Carias LL, Hutton-Thomas R, Bonomo RA, Caspers P, Page MG, Gutmann L. Antimicrob. Agents Chemother. 48 3028-3032 (2004)
  10. Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Potluri L, Karczmarek A, Verheul J, Piette A, Wilkin JM, Werth N, Banzhaf M, Vollmer W, Young KD, Nguyen-Distèche M, den Blaauwen T. Mol. Microbiol. 77 300-323 (2010)
  11. The structure of PknB extracellular PASTA domain from mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Barthe P, Mukamolova GV, Roumestand C, Cohen-Gonsaud M. Structure 18 606-615 (2010)
  12. Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. Contreras-Martel C, Job V, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. J. Mol. Biol. 355 684-696 (2006)
  13. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Metcalf BJ, Gertz RE, Gladstone RA, Walker H, Sherwood LK, Jackson D, Li Z, Law C, Hawkins PA, Chochua S, Sheth M, Rayamajhi N, Bentley SD, Kim L, Whitney CG, McGee L, Beall B, Active Bacterial Core surveillance team. Clin. Microbiol. Infect. 22 60.e9-60.e29 (2016)
  14. Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Brown G, Singer A, Proudfoot M, Skarina T, Kim Y, Chang C, Dementieva I, Kuznetsova E, Gonzalez CF, Joachimiak A, Savchenko A, Yakunin AF. Biochemistry 47 5724-5735 (2008)
  15. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. J. Biol. Chem. 284 1202-1212 (2009)
  16. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. Nováková L, Bezousková S, Pompach P, Spidlová P, Sasková L, Weiser J, Branny P. J. Bacteriol. 192 3629-3638 (2010)
  17. Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. Sainsbury S, Bird L, Rao V, Shepherd SM, Stuart DI, Hunter WN, Owens RJ, Ren J. J. Mol. Biol. 405 173-184 (2011)
  18. Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. McDonough MA, Anderson JW, Silvaggi NR, Pratt RF, Knox JR, Kelly JA. J. Mol. Biol. 322 111-122 (2002)
  19. Interaction of Penicillin-Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Morlot C, Bayle L, Jacq M, Fleurie A, Tourcier G, Galisson F, Vernet T, Grangeasse C, Di Guilmi AM. Mol. Microbiol. 90 88-102 (2013)
  20. The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. Chesnel L, Pernot L, Lemaire D, Champelovier D, Croizé J, Dideberg O, Vernet T, Zapun A. J Biol Chem 278 44448-44456 (2003)
  21. Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance. Peters K, Schweizer I, Beilharz K, Stahlmann C, Veening JW, Hakenbeck R, Denapaite D. Mol. Microbiol. 92 733-755 (2014)
  22. X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus. Ruggiero A, Squeglia F, Marasco D, Marchetti R, Molinaro A, Berisio R. Biochem. J. 435 33-41 (2011)
  23. Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. Di Guilmi AM, Dessen A, Dideberg O, Vernet T. J. Bacteriol. 185 1650-1658 (2003)
  24. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE, Walker H, Hawkins PA, Tran T, Whitney CG, McGee L, Beall BW. MBio 7 (2016)
  25. Amino acid mutations essential to production of an altered PBP 2X conferring high-level beta-lactam resistance in a clinical isolate of Streptococcus pneumoniae. Smith AM, Klugman KP. Antimicrob. Agents Chemother. 49 4622-4627 (2005)
  26. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Tomberg J, Unemo M, Ohnishi M, Davies C, Nicholas RA. Antimicrob. Agents Chemother. 57 3029-3036 (2013)
  27. The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. Di Guilmi AM, Dessen A, Dideberg O, Vernet T. J. Bacteriol. 185 4418-4423 (2003)
  28. A role for the class A penicillin-binding protein PonA2 in the survival of Mycobacterium smegmatis under conditions of nonreplication. Patru MM, Pavelka MS. J. Bacteriol. 192 3043-3054 (2010)
  29. Function of penicillin-binding protein 2 in viability and morphology of Pseudomonas aeruginosa. Legaree BA, Daniels K, Weadge JT, Cockburn D, Clarke AJ. J. Antimicrob. Chemother. 59 411-424 (2007)
  30. Mutations in Streptococcus pneumoniae penicillin-binding protein 2x: importance of the C-terminal penicillin-binding protein and serine/threonine kinase-associated domains for beta-lactam binding. Maurer P, Todorova K, Sauerbier J, Hakenbeck R. Microb. Drug Resist. 18 314-321 (2012)
  31. Biochemical characterization of Streptococcus pneumoniae penicillin-binding protein 2b and its implication in beta-lactam resistance. Pagliero E, Chesnel L, Hopkins J, Croizé J, Dideberg O, Vernet T, Di Guilmi AM. Antimicrob. Agents Chemother. 48 1848-1855 (2004)
  32. Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. Sauvage E, Duez C, Herman R, Kerff F, Petrella S, Anderson JW, Adediran SA, Pratt RF, Frère JM, Charlier P. J. Mol. Biol. 371 528-539 (2007)
  33. Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae. Yamada M, Watanabe T, Baba N, Takeuchi Y, Ohsawa F, Gomi S. Antimicrob. Agents Chemother. 52 2053-2060 (2008)
  34. Penicillin-binding protein 2x of Streptococcus pneumoniae: three new mutational pathways for remodelling an essential enzyme into a resistance determinant. Maurer P, Koch B, Zerfass I, Krauss J, van der Linden M, Frère JM, Contreras-Martel C, Hakenbeck R. J. Mol. Biol. 376 1403-1416 (2008)
  35. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. Shi Q, Meroueh SO, Fisher JF, Mobashery S. J Am Chem Soc 130 9293-9303 (2008)
  36. Profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39. Kocaoglu O, Tsui HC, Winkler ME, Carlson EE. Antimicrob. Agents Chemother. 59 3548-3555 (2015)
  37. Crystal structure of cefditoren complexed with Streptococcus pneumoniae penicillin-binding protein 2X: structural basis for its high antimicrobial activity. Yamada M, Watanabe T, Miyara T, Baba N, Saito J, Takeuchi Y, Ohsawa F. Antimicrob. Agents Chemother. 51 3902-3907 (2007)
  38. Modulation of effector affinity by hinge region mutations also modulates switching activity in an engineered allosteric TEM1 beta-lactamase switch. Kim JR, Ostermeier M. Arch. Biochem. Biophys. 446 44-51 (2006)
  39. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T, Grein F. Int. J. Med. Microbiol. 307 1-10 (2017)
  40. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis. Fedarovich A, Nicholas RA, Davies C. J. Mol. Biol. 398 54-65 (2010)
  41. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C. Biochemistry 49 8094-8104 (2010)
  42. Crystal structures of penicillin-binding proteins 4 and 5 from Haemophilus influenzae. Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. J. Mol. Biol. 396 634-645 (2010)
  43. Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4. Stefanova ME, Tomberg J, Davies C, Nicholas RA, Gutheil WG. Eur. J. Biochem. 271 23-32 (2004)
  44. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. Rakette S, Donat S, Ohlsen K, Stehle T. PLoS ONE 7 e39136 (2012)
  45. The highly conserved serine threonine kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility independently from genes encoding penicillin-binding proteins. Dias R, Félix D, Caniça M, Trombe MC. BMC Microbiol. 9 121 (2009)
  46. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Oliva M, Dideberg O, Field MJ. Proteins 53 88-100 (2003)
  47. Interaction of beta-lactam antibiotics with the mitochondrial carnitine/acylcarnitine transporter. Pochini L, Galluccio M, Scumaci D, Giangregorio N, Tonazzi A, Palmieri F, Indiveri C. Chem. Biol. Interact. 173 187-194 (2008)
  48. Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein from Mycobacterium tuberculosis. Calvanese L, Falcigno L, Maglione C, Marasco D, Ruggiero A, Squeglia F, Berisio R, D'Auria G. Biopolymers 101 712-719 (2014)
  49. Genetic analyses of penicillin binding protein determinants in multidrug-resistant Streptococcus pneumoniae serogroup 19 CC320/271 clone with high-level resistance to third-generation cephalosporins. Ip M, Ang I, Liyanapathirana V, Ma H, Lai R. Antimicrob. Agents Chemother. 59 4040-4045 (2015)
  50. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase. Falk SP, Weisblum B. FEMS Microbiol. Lett. 340 19-23 (2013)
  51. Positive selection in penicillin-binding proteins 1a, 2b, and 2x from Streptococcus pneumoniae and its correlation with amoxicillin resistance development. Stanhope MJ, Lefébure T, Walsh SL, Becker JA, Lang P, Pavinski Bitar PD, Miller LA, Italia MJ, Amrine-Madsen H. Infect. Genet. Evol. 8 331-339 (2008)
  52. Mutations in penicillin-binding protein (PBP) genes and in non-PBP genes during selection of penicillin-resistant Streptococcus gordonii. Haenni M, Moreillon P. Antimicrob. Agents Chemother. 50 4053-4061 (2006)
  53. Genomic analysis and reconstruction of cefotaxime resistance in Streptococcus pneumoniae. Fani F, Brotherton MC, Leprohon P, Ouellette M. J. Antimicrob. Chemother. 68 1718-1727 (2013)
  54. Increase of the deacylation rate of PBP2x from Streptococcus pneumoniae by single point mutations mimicking the class A beta-lactamases. Chesnel L, Zapun A, Mouz N, Dideberg O, Vernet T. Eur. J. Biochem. 269 1678-1683 (2002)
  55. Mutational analysis of class A and class B penicillin-binding proteins in Streptococcus gordonii. Haenni M, Majcherczyk PA, Barblan JL, Moreillon P. Antimicrob. Agents Chemother. 50 4062-4069 (2006)
  56. Evolutionary engineering of a beta-Lactamase activity on a D-Ala D-Ala transpeptidase fold. Peimbert M, Segovia L. Protein Eng. 16 27-35 (2003)
  57. Penicillin-binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores. Liu Y, Carlsson Möller M, Petersen L, Söderberg CA, Hederstedt L. Mol. Microbiol. 75 46-60 (2010)
  58. The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. Fedarovich A, Nicholas RA, Davies C. J. Mol. Biol. 418 316-330 (2012)
  59. Crystal structures of bifunctional penicillin-binding protein 4 from Listeria monocytogenes. Jeong JH, Kim YS, Rojviriya C, Ha SC, Kang BS, Kim YG. Antimicrob. Agents Chemother. 57 3507-3512 (2013)
  60. On the substrate specificity of bacterial DD-peptidases: evidence from two series of peptidoglycan-mimetic peptides. Anderson JW, Adediran SA, Charlier P, Nguyen-Distèche M, Frère JM, Nicholas RA, Pratt RF. Biochem. J. 373 949-955 (2003)
  61. Reduced In Vitro Susceptibility of Streptococcus pyogenes to β-Lactam Antibiotics Associated with Mutations in the pbp2x Gene Is Geographically Widespread. Musser JM, Beres SB, Zhu L, Olsen RJ, Vuopio J, Hyyryläinen HL, Gröndahl-Yli-Hannuksela K, Kristinsson KG, Darenberg J, Henriques-Normark B, Hoffmann S, Caugant DA, Smith AJ, Lindsay DSJ, Boragine DM, Palzkill T. J Clin Microbiol 58 (2020)
  62. Staphylococcus aureus DivIB is a peptidoglycan-binding protein that is required for a morphological checkpoint in cell division. Bottomley AL, Kabli AF, Hurd AF, Turner RD, Garcia-Lara J, Foster SJ. Mol. Microbiol. (2014)
  63. Streptococcus pyogenes pbp2x Mutation Confers Reduced Susceptibility to β-Lactam Antibiotics. Vannice KS, Ricaldi J, Nanduri S, Fang FC, Lynch JB, Bryson-Cahn C, Wright T, Duchin J, Kay M, Chochua S, Van Beneden CA, Beall B. Clin Infect Dis 71 201-204 (2020)
  64. PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae. Zucchini L, Mercy C, Garcia PS, Cluzel C, Gueguen-Chaignon V, Galisson F, Freton C, Guiral S, Brochier-Armanet C, Gouet P, Grangeasse C. Nat Microbiol 3 197-209 (2018)
  65. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. Biochemistry 51 2775-2784 (2012)
  66. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli. Nicola G, Fedarovich A, Nicholas RA, Davies C. Biochem. J. 392 55-63 (2005)
  67. The ybxI gene of Bacillus subtilis 168 encodes a class D beta-lactamase of low activity. Colombo ML, Hanique S, Baurin SL, Bauvois C, De Vriendt K, Van Beeumen JJ, Frère JM, Joris B. Antimicrob. Agents Chemother. 48 484-490 (2004)
  68. A Serine-Threonine Kinase (StkP) Regulates Expression of the Pneumococcal Pilus and Modulates Bacterial Adherence to Human Epithelial and Endothelial Cells In Vitro. Herbert JA, Mitchell AM, Mitchell TJ. PLoS ONE 10 e0127212 (2015)
  69. Penicillin-binding protein 2x of Streptococcus pneumoniae: the mutation Ala707Asp within the C-terminal PASTA2 domain leads to destabilization. Schweizer I, Peters K, Stahlmann C, Hakenbeck R, Denapaite D. Microb. Drug Resist. 20 250-257 (2014)
  70. A Single Amino Acid Replacement in Penicillin-Binding Protein 2X in Streptococcus pyogenes Significantly Increases Fitness on Subtherapeutic Benzylpenicillin Treatment in a Mouse Model of Necrotizing Myositis. Olsen RJ, Zhu L, Musser JM. Am J Pathol 190 1625-1631 (2020)
  71. In Silico Analysis of Glutaminase from Different Species of Escherichia and Bacillus. Irajie C, Mohkam M, Nezafat N, Hosseinzadeh S, Aminlari M, Ghasemi Y. Iran J Med Sci 41 406-414 (2016)
  72. Modifications of the C6-substituent of penicillin sulfones with the goal of improving inhibitor recognition and efficacy. Nottingham M, Bethel CR, Pagadala SR, Harry E, Pinto A, Lemons ZA, Drawz SM, Akker Fv, Carey PR, Bonomo RA, Buynak JD. Bioorg. Med. Chem. Lett. 21 387-393 (2011)
  73. Proteochemometric model for predicting the inhibition of penicillin-binding proteins. Nabu S, Nantasenamat C, Owasirikul W, Lawung R, Isarankura-Na-Ayudhya C, Lapins M, Wikberg JE, Prachayasittikul V. J. Comput. Aided Mol. Des. 29 127-141 (2015)
  74. Comparison of activities of beta-lactam antibiotics against Streptococcus pneumoniae with recombinant penicillin-binding protein genes from a penicillin-resistant strain. Maeda K, Ida T, Sanbongi Y, Suzuki T, Fukushima T, Kurazono M, Yonezawa M, Ubukata K, Inoue M. J. Infect. Chemother. 11 107-111 (2005)
  75. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics. Ramalingam J, Vennila J, Subbiah P. Chem Biol Drug Des 82 275-289 (2013)
  76. Trapping of an acyl-enzyme intermediate in a penicillin-binding protein (PBP)-catalyzed reaction. Macheboeuf P, Lemaire D, Teller N, Martins Ados S, Luxen A, Dideberg O, Jamin M, Dessen A. J. Mol. Biol. 376 405-413 (2008)
  77. Molecular graphics approach to bacterial AcrB protein-beta-lactam antibiotic molecular recognition in drug efflux mechanism. Kiralj R, Ferreira MM. J. Mol. Graph. Model. 25 126-145 (2006)
  78. Preparation and evaluation of cefuroxime axetil gastro-retentive floating drug delivery system via hot melt extrusion technology. Lalge R, Thipsay P, Shankar VK, Maurya A, Pimparade M, Bandari S, Zhang F, Murthy SN, Repka MA. Int J Pharm 566 520-531 (2019)
  79. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. Singh A, Tomberg J, Nicholas RA, Davies C. J Biol Chem 294 14020-14032 (2019)
  80. A Comprehensive Study of the Interaction between Peptidoglycan Fragments and the Extracellular Domain of Mycobacterium tuberculosis Ser/Thr Kinase PknB. Wang Q, Marchetti R, Prisic S, Ishii K, Arai Y, Ohta I, Inuki S, Uchiyama S, Silipo A, Molinaro A, Husson RN, Fukase K, Fujimoto Y. Chembiochem 18 2094-2098 (2017)
  81. Enterobactin- and salmochelin-β-lactam conjugates induce cell morphologies consistent with inhibition of penicillin-binding proteins in uropathogenic Escherichia coli CFT073. Sargun A, Johnstone TC, Zhi H, Raffatellu M, Nolan EM. Chem Sci 12 4041-4056 (2021)
  82. Novel Electrophilic Scaffold for Imaging of Essential Penicillin-Binding Proteins in Streptococcus pneumoniae. Sharifzadeh S, Boersma MJ, Kocaoglu O, Shokri A, Brown CL, Shirley JD, Winkler ME, Carlson EE. ACS Chem. Biol. 12 2849-2857 (2017)
  83. Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. Calvez P, Breukink E, Roper DI, Dib M, Contreras-Martel C, Zapun A. J. Biol. Chem. 292 2854-2865 (2017)
  84. Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases. Lopez Quezada L, Smith R, Lupoli TJ, Edoo Z, Li X, Gold B, Roberts J, Ling Y, Park SW, Nguyen Q, Schoenen FJ, Li K, Hugonnet JE, Arthur M, Sacchettini JC, Nathan C, Aubé J. Front Microbiol 11 1248 (2020)
  85. Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases. Diessner EM, Takahashi GR, Martin RW, Butts CT. Biomolecules 13 328 (2023)
  86. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains. Fiuza TS, Lima JPMS, de Souza GA. Front Immunol 11 816 (2020)
  87. Exploring metabolic adaptation of Streptococcus pneumoniae to antibiotics. Leonard A, Möhlis K, Schlüter R, Taylor E, Lalk M, Methling K. J Antibiot (Tokyo) 73 441-454 (2020)
  88. Integrative structural biology of the penicillin-binding protein-1 from Staphylococcus aureus, an essential component of the divisome machinery. Martínez-Caballero S, Mahasenan KV, Kim C, Molina R, Feltzer R, Lee M, Bouley R, Hesek D, Fisher JF, Muñoz IG, Chang M, Mobashery S, Hermoso JA. Comput Struct Biotechnol J 19 5392-5405 (2021)
  89. Invasive Group A Streptococcal Penicillin Binding Protein 2× Variants Associated with Reduced Susceptibility to β-Lactam Antibiotics in the United States, 2015-2021. Chochua S, Metcalf B, Li Z, Mathis S, Tran T, Rivers J, Fleming-Dutra KE, Li Y, McGee L, Beall B. Antimicrob Agents Chemother 66 e0080222 (2022)
  90. MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. Liu X, Biboy J, Consoli E, Vollmer W, den Blaauwen T. PLoS Genet 16 e1009276 (2020)
  91. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. Singh A, Turner JM, Tomberg J, Fedarovich A, Unemo M, Nicholas RA, Davies C. J Biol Chem 295 7529-7543 (2020)
  92. PASTA sequence composition is a predictive tool for protein class identification. Calvanese L, Falcigno L, Squeglia F, Berisio R, D'Auria G. Amino Acids 50 1441-1450 (2018)
  93. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. Pucelik B, Dąbrowski JM. Adv Inorg Chem 79 65-103 (2022)
  94. Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 Ω-Like Loop Introduces a Moderate Cephalosporinase Activity. Kar D, Pandey SD, Mallick S, Dutta M, Ghosh AS. Protein J. 37 122-131 (2018)
  95. Withdrawn Infect Disord Drug Targets (2012)


Related citations provided by authors (2)

  1. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme.. Pares S, Mouz N, Pétillot Y, Hakenbeck R, Dideberg O Nat Struct Biol 3 284-9 (1996)
  2. Crystallization of a genetically engineered water-soluble primary penicillin target enzyme. The high molecular mass PBP2x of Streptococcus pneumoniae.. Charlier P, Buisson G, Dideberg O, Wierenga J, Keck W, Laible G, Hakenbeck R J Mol Biol 232 1007-9 (1993)