1qi9 Citations

X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution.

J Mol Biol 293 595-611 (1999)
Cited: 87 times
EuropePMC logo PMID: 10543953

Abstract

The homo-dimeric structure of a vanadium-dependent haloperoxidase (V-BPO) from the brown alga Ascophyllum nodosum (EC 1.1.11.X) has been solved by single isomorphous replacement anomalous scattering (SIRAS) X-ray crystallography at 2.0 A resolution (PDB accession code 1QI9), using two heavy-atom datasets of a tungstate derivative measured at two different wavelengths. The protein sequence (SwissProt entry code P81701) of V-BPO was established by combining results from protein and DNA sequencing, and electron density interpretation. The enzyme has nearly an all-helical structure, with two four-helix bundles and only three small beta-sheets. The holoenzyme contains trigonal-bipyramidal coordinated vanadium atoms at its two active centres. Structural similarity to the only other structurally characterized vanadium-dependent chloroperoxidase (V-CPO) from Curvularia inaequalis exists in the vicinity of the active site and to a lesser extent in the central four-helix bundle. Despite the low sequence and structural similarity between V-BPO and V-CPO, the vanadium binding centres are highly conserved on the N-terminal side of an alpha-helix and include the proposed catalytic histidine residue (His418(V-BPO)/His404(V-CPO)). The V-BPO structure contains, in addition, a second histidine near the active site (His411(V-BPO)), which can alter the redox potential of the catalytically active VO2-O2 species by protonation/deprotonation reactions. Specific binding sites for the organic substrates, like indoles and monochlordimedone, or for halide ions are not visible in the V-BPO structure. A reaction mechanism for the enzymatic oxidation of halides is discussed, based on the present structural, spectroscopic and biochemical knowledge of vanadium-dependent haloperoxidases, explaining the observed enzymatic differences between both enzymes.

Reviews - 1qi9 mentioned but not cited (3)

  1. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Chem Rev 117 5619-5674 (2017)
  2. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Chem Soc Rev 50 9443-9481 (2021)
  3. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Molecules 27 3157 (2022)

Articles - 1qi9 mentioned but not cited (2)

  1. X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution. Weyand M, Hecht H, Kiess M, Liaud M, Vilter H, Schomburg D. J Mol Biol 293 595-611 (1999)
  2. The Vanadium Iodoperoxidase from the marine flavobacteriaceae species Zobellia galactanivorans reveals novel molecular and evolutionary features of halide specificity in the vanadium haloperoxidase enzyme family. Fournier JB, Rebuffet E, Delage L, Grijol R, Meslet-Cladière L, Rzonca J, Potin P, Michel G, Czjzek M, Leblanc C. Appl Environ Microbiol 80 7561-7573 (2014)


Reviews citing this publication (16)

  1. Halogenation strategies in natural product biosynthesis. Neumann CS, Fujimori DG, Walsh CT. Chem Biol 15 99-109 (2008)
  2. Mechanistic considerations of halogenating enzymes. Butler A, Sandy M. Nature 460 848-854 (2009)
  3. The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. Davies DR, Hol WG. FEBS Lett 577 315-321 (2004)
  4. Exploring the chemistry and biology of vanadium-dependent haloperoxidases. Winter JM, Moore BS. J Biol Chem 284 18577-18581 (2009)
  5. Biotic interactions of marine algae. Potin P, Bouarab K, Salaün JP, Pohnert G, Kloareg B. Curr Opin Plant Biol 5 308-317 (2002)
  6. Structural perspective on enzymatic halogenation. Blasiak LC, Drennan CL. Acc Chem Res 42 147-155 (2009)
  7. The role of vanadium in biology. Rehder D. Metallomics 7 730-742 (2015)
  8. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. Bernroitner M, Zamocky M, Furtmüller PG, Peschek GA, Obinger C. J Exp Bot 60 423-440 (2009)
  9. Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P. Biochimie 88 1773-1785 (2006)
  10. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Rudolf JD, Chang CY. Nat Prod Rep 37 425-463 (2020)
  11. Biosynthesis of marine natural products: macroorganisms (Part B). Moore BS. Nat Prod Rep 23 615-629 (2006)
  12. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. Littlechild J, Garcia-Rodriguez E, Dalby A, Isupov M. J Mol Recognit 15 291-296 (2002)
  13. Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated? Rehder D. Org Biomol Chem 6 957-964 (2008)
  14. Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. Herget K, Frerichs H, Pfitzner F, Tahir MN, Tremel W. Adv Mater e1707073 (2018)
  15. The trigonal-bipyramidal NO4 ligand set in biologically relevant vanadium compounds and their inorganic models. Rehder D. J Inorg Biochem 102 1152-1158 (2008)
  16. Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae. Punitha T, Phang SM, Juan JC, Beardall J. Mar Biotechnol (NY) 20 282-303 (2018)

Articles citing this publication (66)

  1. Insights into substrate binding and catalytic mechanism of human tyrosyl-DNA phosphodiesterase (Tdp1) from vanadate and tungstate-inhibited structures. Davies DR, Interthal H, Champoux JJ, Hol WG. J Mol Biol 324 917-932 (2002)
  2. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Naumann C, Hartmann T, Ober D. Proc Natl Acad Sci U S A 99 6085-6090 (2002)
  3. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN, Littlechild JA. J Mol Biol 299 1035-1049 (2000)
  4. Enhancing heterogeneous catalysis through cooperative hybrid organic-inorganic interfaces. Notestein JM, Katz A. Chemistry 12 3954-3965 (2006)
  5. The future of/for vanadium. Rehder D. Dalton Trans 42 11749-11761 (2013)
  6. A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. Bernhardt P, Okino T, Winter JM, Miyanaga A, Moore BS. J Am Chem Soc 133 4268-4270 (2011)
  7. Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex. Bond CS, White MF, Hunter WN. J Mol Biol 316 1071-1081 (2002)
  8. Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. Colin C, Leblanc C, Michel G, Wagner E, Leize-Wagner E, Van Dorsselaer A, Potin P. J Biol Inorg Chem 10 156-166 (2005)
  9. Vanadium haloperoxidases from brown algae of the Laminariaceae family. Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JA, Fraústo da Silva JJ, Wever R. Phytochemistry 57 633-642 (2001)
  10. Interactions of oxovanadium(IV) and the quinolone family member--ciprofloxacin. Turel I, Golobic A, Klavzar A, Pihlar B, Buglyó P, Tolis E, Rehder D, Sepcić K. J Inorg Biochem 95 199-207 (2003)
  11. Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms. Renirie R, Hemrika W, Wever R. J Biol Chem 275 11650-11657 (2000)
  12. Vanadium complexes having [V(IV)O](2+) and [V(V)O(2)](+) cores with binucleating dibasic tetradentate ligands: Synthesis, characterization, catalytic and antiamoebic activities. Maurya MR, Khan AA, Azam A, Ranjan S, Mondal N, Kumar A, Avecilla F, Pessoa JC. Dalton Trans 39 1345-1360 (2010)
  13. Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis. Carter JN, Beatty KE, Simpson MT, Butler A. J Inorg Biochem 91 59-69 (2002)
  14. Catalysis of oxo transfer to prochiral sulfides by oxovanadium(v) compounds that model the active center of haloperoxidases. Santoni G, Licini G, Rehder D. Chemistry 9 4700-4708 (2003)
  15. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. Tong S, Lin Y, Lu S, Wang M, Bogdanov M, Zheng L. J Biol Chem 291 18342-18352 (2016)
  16. Synthesis, characterisation and catalytic potential of hydrazonato-vanadium(V) model complexes with [VO]3+ and [VO2]+ cores. Maurya MR, Agarwal S, Bader C, Ebel M, Rehder D. Dalton Trans 537-544 (2005)
  17. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. Pang AH, Garneau-Tsodikova S, Tsodikov OV. J Struct Biol 192 349-357 (2015)
  18. Molecular and supramolecular features of oxo-peroxovanadium complexes containing O3N, O2N2 and ON3 donor sets. Casny M, Rehder D. Dalton Trans 839-846 (2004)
  19. A (17)O NMR study of peroxide binding to the active centre of bromoperoxidase from Ascophyllum nodosum. Casný M, Rehder D, Schmidt H, Vilter H, Conte V. J Inorg Biochem 80 157-160 (2000)
  20. Modification of halogen specificity of a vanadium-dependent bromoperoxidase. Ohshiro T, Littlechild J, Garcia-Rodriguez E, Isupov MN, Iida Y, Kobayashi T, Izumi Y. Protein Sci 13 1566-1571 (2004)
  21. Structures of the phosphorylated and VO(3)-bound 2H-phosphatase domain of Sts-2. Chen Y, Jakoncic J, Parker KA, Carpino N, Nassar N. Biochemistry 48 8129-8135 (2009)
  22. Synthesis, characterization, reactivity and catalytic activity of oxidovanadium(IV), oxidovanadium(V) and dioxidovanadium(V) complexes of benzimidazole modified ligands. Maurya MR, Bisht M, Kumar A, Kuznetsov ML, Avecilla F, Pessoa JC. Dalton Trans 40 6968-6983 (2011)
  23. Bridging the gap between polyoxometalates and classic coordination compounds: a novel type of hexavanadate complex. Piepenbrink M, Triller MU, Gorman NH, Krebs B. Angew Chem Int Ed Engl 41 2523-2525 (2002)
  24. Controlling helical chirality in atrane structures: solvent-dependent chirality sense in hemicryptophane-oxidovanadium(V) complexes. Martinez A, Robert V, Gornitzka H, Dutasta JP. Chemistry 16 520-527 (2010)
  25. Critical view on the monochlorodimedone assay utilized to detect haloperoxidase activity. Wagner C, Molitor IM, König GM. Phytochemistry 69 323-332 (2008)
  26. Synthesis, characterisation, reactivity and in vitro antiamoebic activity of hydrazone based oxovanadium(IV), oxovanadium(V) and mu-bis(oxo)bis{oxovanadium(V)} complexes. Maurya MR, Agarwal S, Abid M, Azam A, Bader C, Ebel M, Rehder D. Dalton Trans 937-947 (2006)
  27. Vanadium containing bromoperoxidase--insights into the enzymatic mechanism using X-ray crystallography. Littlechild J, Garcia Rodriguez E, Isupov M. J Inorg Biochem 103 617-621 (2009)
  28. Vanadium speciation by XANES spectroscopy: a three-dimensional approach. Levina A, McLeod AI, Lay PA. Chemistry 20 12056-12060 (2014)
  29. Water and bromide in the active center of vanadate-dependent haloperoxidases. Rehder D, Schulzke C, Dau H, Meinke C, Hanss J, Epple M. J Inorg Biochem 80 115-121 (2000)
  30. Application of DFT methods to the study of the coordination environment of the VO2+ ion in V proteins. Sanna D, Pecoraro VL, Micera G, Garribba E. J Biol Inorg Chem 17 773-790 (2012)
  31. Vanadate-dependent bromoperoxidases from Ascophyllum nodosum in the synthesis of brominated phenols and pyrroles. Wischang D, Radlow M, Hartung J. Dalton Trans 42 11926-11940 (2013)
  32. Characterization of a Cyanobacterial Haloperoxidase and Evaluation of its Biocatalytic Halogenation Potential. Frank A, Seel CJ, Groll M, Gulder T. Chembiochem 17 2028-2032 (2016)
  33. Enhancing effect of calcium and vanadium ions on thermal stability of bromoperoxidase from Corallina pilulifera. Garcia-Rodriguez E, Ohshiro T, Aibara T, Izumi Y, Littlechild J. J Biol Inorg Chem 10 275-282 (2005)
  34. (51)V solid-state NMR investigations and DFT studies of model compounds for vanadium haloperoxidases. Schweitzer A, Gutmann T, Wächtler M, Breitzke H, Buchholz A, Plass W, Buntkowsky G. Solid State Nucl Magn Reson 34 52-67 (2008)
  35. Asymmetric Alkene and Arene Halofunctionalization Reactions in Meroterpenoid Biosynthesis. Moore BS. Synlett 29 401-409 (2018)
  36. Independent Evolution of Six Families of Halogenating Enzymes. Xu G, Wang BG. PLoS One 11 e0154619 (2016)
  37. Polymer supported vanadium and molybdenum complexes as potential catalysts for the oxidation and oxidative bromination of organic substrates. Maurya MR, Kumar U, Manikandan P. Dalton Trans 3561-3575 (2006)
  38. Purification and characterisation of vanadium haloperoxidases from the brown alga Pelvetia canaliculata. Almeida MG, Humanes M, Melo R, Silva JA, da Silva JJ, Wever R. Phytochemistry 54 5-11 (2000)
  39. Structural models for the reduced form of vanadate-dependent peroxidases: vanadyl complexes with bidentate chiral Schiff base ligands. Santoni G, Rehder D. J Inorg Biochem 98 758-764 (2004)
  40. Systematic studies on pH-dependent transformations of dinuclear vanadium(V)-citrate complexes in aqueous solutions. A perspective relevance to aqueous vanadium(V)-citrate speciation. Kaliva M, Raptopoulou CP, Terzis A, Salifoglou A. J Inorg Biochem 93 161-173 (2003)
  41. A new oxo-vanadium complex employing an imidazole-rich tripodal ligand: a bioinspired bromide and hydrocarbon oxidation catalyst. Fernández TL, Souza ET, Visentin LC, Santos JV, Mangrich AS, Faria RB, Antunes OA, Scarpellini M. J Inorg Biochem 103 474-479 (2009)
  42. Efficient analysis of (51)V solid-state MAS NMR spectra using genetic algorithms. Wächtler M, Schweitzer A, Gutmann T, Breitzke H, Buntkowsky G. Solid State Nucl Magn Reson 35 37-48 (2009)
  43. Presence of a vanadium-dependent haloperoxidase in Botrytis cinerea. Bar-Nun N, Shcolnick S, Mayer AM. FEMS Microbiol Lett 217 121-124 (2002)
  44. Vanadate substituted phytase: immobilization, structural characterization and performance for sulfoxidations. Correia I, Aksu S, Adão P, Pessoa JC, Sheldon RA, Arends IW. J Inorg Biochem 102 318-329 (2008)
  45. Biphenyl derived Schiff-base vanadium(V) complexes with pendant OH-groups--structure, characterization and hydrogen peroxide mediated sulfide oxygenation. Plitt P, Pritzkow H, Kramer R. Dalton Trans 2314-2320 (2004)
  46. Haloperoxidase activity of oxovanadium(V) thiobisphenolates. Werncke CG, Limberg C, Knispel C, Metzinger R, Braun B. Chemistry 17 2931-2938 (2011)
  47. Molecular, supramolecular and solution structures of peroxovanadium complexes with ON and O3N donor set ligands: two new types of cationic-anionic peroxovanadium(V) peroxovanadates(V). Mad'arová M, Sivák M, Kuchta L, Marek J, Benko J. Dalton Trans 3313-3320 (2004)
  48. Polystyrene bound oxidovanadium(IV) and dioxidovanadium(V) complexes of histamine derived ligand for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin. Maurya MR, Arya A, Kumar A, Pessoa JC. Dalton Trans 2185-2195 (2009)
  49. Suppressive subtractive hybridisation transcriptomics provides a novel insight into the functional role of the hypobranchial gland in a marine mollusc. Laffy PW, Benkendorff K, Abbott CA. Comp Biochem Physiol Part D Genomics Proteomics 8 111-122 (2013)
  50. The first supramolecular orthovanadate receptor -- structural mimics of vanadium haloperoxidase. Zhang XA, Meuwly M, Woggon WD. J Inorg Biochem 98 1967-1970 (2004)
  51. Correlations between (51)V solid-state NMR parameters and chemical structure of vanadium (V) complexes as models for related metalloproteins and catalysts. Fenn A, Wächtler M, Gutmann T, Breitzke H, Buchholz A, Lippold I, Plass W, Buntkowsky G. Solid State Nucl Magn Reson 36 192-201 (2009)
  52. QM/MM investigation of structure and spectroscopic properties of a vanadium-containing peroxidase. Zhang Y, Gascón JA. J Inorg Biochem 102 1684-1690 (2008)
  53. cDNA cloning and characterization of vanadium-dependent bromoperoxidases from the red alga Laurencia nipponica. Kaneko K, Washio K, Umezawa T, Matsuda F, Morikawa M, Okino T. Biosci Biotechnol Biochem 78 1310-1319 (2014)
  54. 1H and 51V NMR investigations of the molecular nature of implant-derived vanadium ions in osteoarthritic knee-joint synovial fluid. Silwood CJ, Grootveld M. Clin Chim Acta 380 89-99 (2007)
  55. Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum. Hartung J, Brücher O, Hach D, Schulz H, Vilter H, Ruick G. Phytochemistry 69 2826-2830 (2008)
  56. Inhibition of vanadium chloroperoxidase from the fungus Curvularia inaequalis by hydroxylamine, hydrazine and azide and inactivation by phosphate. Tanaka N, Wever R. J Inorg Biochem 98 625-631 (2004)
  57. M(C6H16N3)2(VO3)4 as heterogeneous catalysts. Study of three new hybrid vanadates of cobalt(II), nickel(II) and copper(II) with 1-(2-aminoethyl)piperazonium. Larrea ES, Mesa JL, Pizarro JL, Iglesias M, Rojo T, Arriortua MI. Dalton Trans 40 12690-12698 (2011)
  58. Modelling the site of bromide binding in vanadate-dependent bromoperoxidases. Kraehmer V, Rehder D. Dalton Trans 41 5225-5234 (2012)
  59. Probing for missing links in the binary and ternary V(V)-citrate-(H2O2) systems: synthetic efforts and in vitro insulin mimetic activity studies. Gabriel C, Venetis J, Kaliva M, Raptopoulou CP, Terzis A, Drouza C, Meier B, Voyiatzis G, Potamitis C, Salifoglou A. J Inorg Biochem 103 503-516 (2009)
  60. RfiA, a novel PAP2 domain-containing polytopic membrane protein that confers resistance to the FtsZ inhibitor PC190723. Chen X, Zhang B, Xiao J, Ju F, Li S, Ren C, An L, Chen T, Liu G, Facey P, Mullins JG, Dyson P. Future Microbiol 10 325-335 (2015)
  61. Peroxo-bridged divanadate as selective bromide oxidant in bromoperoxidation. Sarmah S, Hazarika P, Islam NS, Rao AV, Ramasarma T. Mol Cell Biochem 236 95-105 (2002)
  62. Stereospecificity in vanadium Schiff base complexes: Formation, crystallization and epimerization processes. Krivosudský L, Schwendt P, Šimunek J, Gyepes R. J Inorg Biochem 147 65-70 (2015)
  63. Modelling the sulfoxygenation activity of vanadate-dependent peroxidases. Wu P, Santoni G, Fröba M, Rehder D. Chem Biodivers 5 1913-1926 (2008)
  64. Quantitative elemental imaging in eukaryotic algae. Schmollinger S, Chen S, Merchant SS. Metallomics 15 mfad025 (2023)
  65. Synthesis, Spectroscopic Characterization, Catalytic and Biological Activity of Oxidovanadium(V) Complexes with Chiral Tetradentate Schiff Bases. Romanowski G, Budka J, Inkielewicz-Stepniak I. Molecules 28 7408 (2023)
  66. Vanadium(V) complex with Schiff-base ligand containing a flexible amino side chain: Synthesis, structure and reactivity. Nica S, Rudolph M, Lippold I, Buchholz A, Görls H, Plass W. J Inorg Biochem 147 193-203 (2015)