1pya Citations

Refined structure of the pyruvoyl-dependent histidine decarboxylase from Lactobacillus 30a.

J Mol Biol 230 516-28 (1993)
Cited: 33 times
EuropePMC logo PMID: 8464063

Abstract

The crystal structure of the pyruvoyl-dependent histidine decarboxylase from Lactobacillus 30a has been refined to an R-value of 0.15 (for the 5.0 to 2.5 A resolution shell) and 0.17 (for the 10.0 to 2.5 A resolution shell). A description of the overall structure is presented, focusing on secondary structure and subunit association. The enzyme is a hexamer of alpha beta subunits. Separate alpha and beta-chains arise from an autocatalytic cleavage reaction between two serine residues, which results in the pyruvoyl cofactor. The central core of the alpha beta subunit is a beta-sandwich which consists of two face-to-face three-stranded antiparallel beta-sheets, flanked by alpha-helices on each side. The beta-sandwich creates a stable fold that allows conformational strain to be introduced across an internal cleavage region between the alpha and beta chains and places the pyruvoyl cofactor in a position for efficient electron withdrawal from the substrate. Three alpha beta subunits are related by a molecular three-fold symmetry axis to form a trimer whose interfaces have complementary surfaces and extensive molecular interactions. Each of the interfaces contains an active site and a solvent channel that leads from the active site to the exterior of the molecule. The trimers are related by a crystallographic two-fold symmetry axis to form the hexamer with an overall dumbbell shape. The interface between trimers has few molecular interactions.

Articles - 1pya mentioned but not cited (3)

  1. Wordom: a user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. Seeber M, Felline A, Raimondi F, Muff S, Friedman R, Rao F, Caflisch A, Fanelli F. J Comput Chem 32 1183-1194 (2011)
  2. The taxonomic distribution of histamine-secreting bacteria in the human gut microbiome. Mou Z, Yang Y, Hall AB, Jiang X. BMC Genomics 22 695 (2021)
  3. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase. Webb ME, Yorke BA, Kershaw T, Lovelock S, Lobley CM, Kilkenny ML, Smith AG, Blundell TL, Pearson AR, Abell C. Acta Crystallogr D Biol Crystallogr 70 1166-1172 (2014)


Reviews citing this publication (8)

  1. Protein splicing and related forms of protein autoprocessing. Paulus H. Annu Rev Biochem 69 447-496 (2000)
  2. Updated molecular knowledge about histamine biosynthesis by bacteria. Landete JM, De las Rivas B, Marcobal A, Muñoz R. Crit Rev Food Sci Nutr 48 697-714 (2008)
  3. Structural trees for protein superfamilies. Efimov AV. Proteins 28 241-260 (1997)
  4. Novel cofactors via post-translational modifications of enzyme active sites. Okeley NM, van der Donk WA. Chem Biol 7 R159-71 (2000)
  5. Structural biology of S-adenosylmethionine decarboxylase. Bale S, Ealick SE. Amino Acids 38 451-460 (2010)
  6. Methylidene-imidazolone: a novel electrophile for substrate activation. Poppe L. Curr Opin Chem Biol 5 512-524 (2001)
  7. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Davidson VL. Biochemistry 57 3115-3125 (2018)
  8. The PLP cofactor: lessons from studies on model reactions. Richard JP, Amyes TL, Crugeiras J, Rios A. Biochim Biophys Acta 1814 1419-1425 (2011)

Articles citing this publication (22)

  1. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG. Nature 378 416-419 (1995)
  2. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA. Cell Host Microbe 16 495-503 (2014)
  3. Structural insights into the mechanism of intramolecular proteolysis. Xu Q, Buckley D, Guan C, Guo HC. Cell 98 651-661 (1999)
  4. Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Lucas PM, Wolken WA, Claisse O, Lolkema JS, Lonvaud-Funel A. Appl Environ Microbiol 71 1417-1424 (2005)
  5. Ligand-induced conformational change in penicillin acylase. Done SH, Brannigan JA, Moody PC, Hubbard RE. J Mol Biol 284 463-475 (1998)
  6. Escherichia coli L-aspartate-alpha-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Ramjee MK, Genschel U, Abell C, Smith AG. Biochem J 323 ( Pt 3) 661-669 (1997)
  7. The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family. Fanuel L, Goffin C, Cheggour A, Devreese B, Van Driessche G, Joris B, Van Beeumen J, Frère JM. Biochem J 341 ( Pt 1) 147-155 (1999)
  8. Structural constraints on protein self-processing in L-aspartate-alpha-decarboxylase. Schmitzberger F, Kilkenny ML, Lobley CM, Webb ME, Vinkovic M, Matak-Vinkovic D, Witty M, Chirgadze DY, Smith AG, Abell C, Blundell TL. EMBO J 22 6193-6204 (2003)
  9. The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 A resolution reveals a novel fold. Ekstrom JL, Mathews II, Stanley BA, Pegg AE, Ealick SE. Structure 7 583-595 (1999)
  10. pH-induced structural changes regulate histidine decarboxylase activity in Lactobacillus 30a. Schelp E, Worley S, Monzingo AF, Ernst S, Robertus JD. J Mol Biol 306 727-732 (2001)
  11. Comment Breaking up is easy with esters. Perler FB. Nat Struct Biol 5 249-252 (1998)
  12. Evolutionary links as revealed by the structure of Thermotoga maritima S-adenosylmethionine decarboxylase. Toms AV, Kinsland C, McCloskey DE, Pegg AE, Ealick SE. J Biol Chem 279 33837-33846 (2004)
  13. Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: crystal structures of the self-cleaved and S53A proenzyme forms. Tolbert WD, Graham DE, White RH, Ealick SE. Structure 11 285-294 (2003)
  14. SEA domain autoproteolysis accelerated by conformational strain: mechanistic aspects. Johansson DG, Macao B, Sandberg A, Härd T. J Mol Biol 377 1130-1143 (2008)
  15. Glycine enolates: the effect of formation of iminium ions to simple ketones on alpha-amino carbon acidity and a comparison with pyridoxal iminium ions. Crugeiras J, Rios A, Riveiros E, Amyes TL, Richard JP. J Am Chem Soc 130 2041-2050 (2008)
  16. Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis. Cho G, Lee E, Kim J. Sci Rep 11 5785 (2021)
  17. Characterization of the histidine decarboxylase gene of Staphylococcus epidermidis TYH1 coded on the staphylococcal cassette chromosome. Yokoi KJ, Harada Y, Shozen K, Satomi M, Taketo A, Kodaira K. Gene 477 32-41 (2011)
  18. Up-regulation of histidine decarboxylase expression and histamine content in B16F10 murine melanoma cells. Davis SC, Clark S, Hayes JR, Green TL, Gruetter CA. Inflamm Res 60 55-61 (2011)
  19. Determinants of histamine recognition: implications for the design of antihistamines. Konkimalla VB, Chandra N. Biochem Biophys Res Commun 309 425-431 (2003)
  20. Homology-based molecular modelling of PLP-dependent histidine decarboxylase from Mmorganella morganii. Tahanejad FS, Naderi-Manesh H, Habibinejad B, Mahmoudian M. Eur J Med Chem 35 567-576 (2000)
  21. Potential folding-function interrelationship in proteins. Barzilai A, Kumar S, Wolfson H, Nussinov R. Proteins 56 635-649 (2004)
  22. Structure and cooperativity of a T-state mutant of histidine decarboxylase from Lactobacillus 30a. Worley S, Schelp E, Monzingo AF, Ernst S, Robertus JD. Proteins 46 321-329 (2002)


Related citations provided by authors (4)

  1. Pyruvoyl-Dependent Histidine Decarboxylase: Active Site Structure and Mechanistic Analysis. Gallagher T, Snell EE, Hackert ML J. Biol. Chem. 264 12737- (1989)
  2. Structure Determination of Histidine Decarboxylase from Lactobacillus 30A at 3.0 Angstroms Resolution. Parks EH, Ernst SR, Hamlin R, Xuong NH, Hackert ML J. Mol. Biol. 182 455- (1985)
  3. The Molecular Symmetry of Histidine Decarboxylase and Prohistidine Decarboxylase by Rotation Function Analysis. Parks EH, Clinger K, Hackert ML Acta Crystallogr., B 39 490- (1983)
  4. Crystallization and Subunit Structure of Histidine Decarboxylase from Lactobacillus 30A. Hackert ML, Meador WE, Oliver RM, Salmon JB, Rescei PA, Snell EE J. Biol. Chem. 256 687- (1981)