1prc Citations

Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis.

J Mol Biol 246 429-57 (1995)
Cited: 229 times
EuropePMC logo PMID: 7877166

Abstract

The atomic model of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis has been refined to an R-value of 0.193 at 2.3 A resolution. The refined model contains 10,288 non-hydrogen atoms; 10,045 of these have well defined electron density. A Luzzati-plot indicates an average co-ordinate error of 0.26 A. During refinement, the positions of a partially ordered carotenoid, a unibiquinone in the partially occupied QB site, a detergent molecule, seven putative sulphate ions, and 201 water molecules were found. More than half of these waters are bound at interfaces between protein subunits and therefore contribute significantly to subunit interactions. Water molecules also play important structural and probably functional roles in the environment of some of the cofactors. Two water molecules form hydrogen bonds to the accessory bacteriochlorophylls and to the protein in the vicinity of the special pair of bacteriophylls, the primary electron donor. A group of about 10 water molecules is bound near the binding site of the secondary quinone QB. These waters are likely to participate in the transfer of protons to the doubly reduced QB.

Reviews - 1prc mentioned but not cited (8)

  1. The chemistry and biochemistry of heme c: functional bases for covalent attachment. Bowman SE, Bren KL. Nat Prod Rep 25 1118-1130 (2008)
  2. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. Breuer M, Rosso KM, Blumberger J, Butt JN. J R Soc Interface 12 20141117 (2015)
  3. The future of the Protein Data Bank. Berman HM, Kleywegt GJ, Nakamura H, Markley JL. Biopolymers 99 218-222 (2013)
  4. Recent innovations in membrane-protein structural biology. Allen JP. F1000Res 8 (2019)
  5. Biophysical highlights from 54 years of macromolecular crystallography. Richardson JS, Richardson DC. Biophys J 106 510-525 (2014)
  6. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Front Microbiol 12 735666 (2021)
  7. Designing minimalist membrane proteins. Curnow P. Biochem Soc Trans 47 1233-1245 (2019)
  8. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1prc mentioned but not cited (33)

  1. The Calpha ---H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Senes A, Ubarretxena-Belandia I, Engelman DM. Proc Natl Acad Sci U S A 98 9056-9061 (2001)
  2. Multipass membrane protein structure prediction using Rosetta. Yarov-Yarovoy V, Schonbrun J, Baker D. Proteins 62 1010-1025 (2006)
  3. On the analysis of membrane protein circular dichroism spectra. Sreerama N, Woody RW. Protein Sci 13 100-112 (2004)
  4. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Lancaster CR, Michel H. Structure 5 1339-1359 (1997)
  5. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  6. Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K. Proc Natl Acad Sci U S A 97 13561-13566 (2000)
  7. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ, Malmerberg E, Davidsson J, Milathianaki D, DePonte DP, Shoeman RL, Wang D, James D, Katona G, Westenhoff S, White TA, Aquila A, Bari S, Berntsen P, Bogan M, van Driel TB, Doak RB, Kjær KS, Frank M, Fromme R, Grotjohann I, Henning R, Hunter MS, Kirian RA, Kosheleva I, Kupitz C, Liang M, Martin AV, Nielsen MM, Messerschmidt M, Seibert MM, Sjöhamn J, Stellato F, Weierstall U, Zatsepin NA, Spence JC, Fromme P, Schlichting I, Boutet S, Groenhof G, Chapman HN, Neutze R. Nat Methods 11 923-926 (2014)
  8. Helical packing patterns in membrane and soluble proteins. Gimpelev M, Forrest LR, Murray D, Honig B. Biophys J 87 4075-4086 (2004)
  9. The extended environment of mononuclear metal centers in protein structures. Karlin S, Zhu ZY, Karlin KD. Proc Natl Acad Sci U S A 94 14225-14230 (1997)
  10. Transmembrane helix uniformity examined by spectral mapping of torsion angles. Page RC, Kim S, Cross TA. Structure 16 787-797 (2008)
  11. Molecular modeling of nearly full-length ErbB2 receptor. Bagossi P, Horváth G, Vereb G, Szöllösi J, Tözsér J. Biophys J 88 1354-1363 (2005)
  12. Nuclear wave packet motion between P* and P(+)B(A)(-) potential surfaces with a subsequent electron transfer to H(A) in bacterial reaction centers at 90 K. Electron transfer pathway. Yakovlev AG, Shkuropatov AY, Shuvalov VA. Biochemistry 41 14019-14027 (2002)
  13. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem Rev 119 5607-5774 (2019)
  14. Distance metrics for heme protein electron tunneling. Moser CC, Chobot SE, Page CC, Dutton PL. Biochim Biophys Acta 1777 1032-1037 (2008)
  15. Structure of the photochemical reaction centre of a spheroidene-containing purple-bacterium, Rhodobacter sphaeroides Y, at 3 A resolution. Arnoux B, Gaucher JF, Ducruix A, Reiss-Husson F. Acta Crystallogr D Biol Crystallogr 51 368-379 (1995)
  16. Modeling the E. coli 4-hydroxybenzoic acid oligoprenyltransferase ( ubiA transferase) and characterization of potential active sites. Bräuer L, Brandt W, Wessjohann LA. J Mol Model 10 317-327 (2004)
  17. Optimal bundling of transmembrane helices using sparse distance constraints. Sale K, Faulon JL, Gray GA, Schoeniger JS, Young MM. Protein Sci 13 2613-2627 (2004)
  18. Structural details (kinks and non-alpha conformations) in transmembrane helices are intrahelically determined and can be predicted by sequence pattern descriptors. Rigoutsos I, Riek P, Graham RM, Novotny J. Nucleic Acids Res 31 4625-4631 (2003)
  19. Modelling the P2Y purinoceptor using rhodopsin as template. Van Rhee AM, Fischer B, Van Galen PJ, Jacobson KA. Drug Des Discov 13 133-154 (1995)
  20. The effect of loops on the structural organization of alpha-helical membrane proteins. Tastan O, Klein-Seetharaman J, Meirovitch H. Biophys J 96 2299-2312 (2009)
  21. Host defense peptides in skin secretions of the Oregon spotted frog Rana pretiosa: implications for species resistance to chytridiomycosis. Conlon JM, Mechkarska M, Ahmed E, Coquet L, Jouenne T, Leprince J, Vaudry H, Hayes MP, Padgett-Flohr G. Dev Comp Immunol 35 644-649 (2011)
  22. Suppression of population transport and control of exciton distributions by entangled photons. Schlawin F, Dorfman KE, Fingerhut BP, Mukamel S. Nat Commun 4 1782 (2013)
  23. Developing a high-quality scoring function for membrane protein structures based on specific inter-residue interactions. Heim AJ, Li Z. J Comput Aided Mol Des 26 301-309 (2012)
  24. Biocrystallography: past, present, future. Giegé R, Sauter C. HFSP J 4 109-121 (2010)
  25. Protein dynamics control of electron transfer in photosynthetic reaction centers from Rps. sulfoviridis. Medvedev ES, Kotelnikov AI, Barinov AV, Psikha BL, Ortega JM, Popović DM, Stuchebrukhov AA. J Phys Chem B 112 3208-3216 (2008)
  26. Hierarchical Structure of Protein Sequence. Nekrasov AN, Kozmin YP, Kozyrev SV, Ziganshin RH, de Brevern AG, Anashkina AA. Int J Mol Sci 22 8339 (2021)
  27. MemSTATS: A Benchmark Set of Membrane Protein Symmetries and Pseudosymmetries. Aleksandrova AA, Sarti E, Forrest LR. J Mol Biol 432 597-604 (2020)
  28. Electron transfer in deuterated reaction centers of Rhodobacter sphaeroides at 90 K according to femtosecond spectroscopy data. Yakovlev AG, Shuvalov VA. Biochemistry (Mosc) 68 603-610 (2003)
  29. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center. Ponomarenko NS, Li L, Marino AR, Tereshko V, Ostafin A, Popova JA, Bylina EJ, Ismagilov RF, Norris JR. Biochim Biophys Acta 1788 1822-1831 (2009)
  30. Improving integrative 3D modeling into low- to medium-resolution electron microscopy structures with evolutionary couplings. McCafferty CL, Taylor DW, Marcotte EM. Protein Sci 30 1006-1021 (2021)
  31. Novel Action Targets of Natural Product Gliotoxin in Photosynthetic Apparatus. Guo Y, Cheng J, Lu Y, Wang H, Gao Y, Shi J, Yin C, Wang X, Chen S, Strasser RJ, Qiang S. Front Plant Sci 10 1688 (2019)
  32. The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria. Swainsbury DJK, Qian P, Hitchcock A, Hunter CN. Biosci Rep 43 BSR20220089 (2023)
  33. Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center. Miller LC, Zhao L, Canniffe DP, Martin D, Liu LN. Biochim Biophys Acta Bioenerg 1861 148204 (2020)


Reviews citing this publication (39)

  1. Helical membrane protein folding, stability, and evolution. Popot JL, Engelman DM. Annu Rev Biochem 69 881-922 (2000)
  2. Carotenoids in photosynthesis. Frank HA, Cogdell RJ. Photochem Photobiol 63 257-264 (1996)
  3. Membrane protein crystallization. Caffrey M. J Struct Biol 142 108-132 (2003)
  4. The Membrane Protein Data Bank. Raman P, Cherezov V, Caffrey M. Cell Mol Life Sci 63 36-51 (2006)
  5. A lipid's eye view of membrane protein crystallization in mesophases. Caffrey M. Curr Opin Struct Biol 10 486-497 (2000)
  6. Protochlorophyllide reduction: mechanisms and evolutions. Schoefs B, Franck F. Photochem Photobiol 78 543-557 (2003)
  7. Structure of cyanobacterial photosystem I. Grotjohann I, Fromme P. Photosynth Res 85 51-72 (2005)
  8. Lipids in photosynthetic reaction centres: structural roles and functional holes. Jones MR. Prog Lipid Res 46 56-87 (2007)
  9. The Q cycle of cytochrome bc complexes: a structure perspective. Cramer WA, Hasan SS, Yamashita E. Biochim Biophys Acta 1807 788-802 (2011)
  10. Transmembrane protein structures without X-rays. Fleishman SJ, Unger VM, Ben-Tal N. Trends Biochem Sci 31 106-113 (2006)
  11. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q Rev Biophys 43 65-158 (2010)
  12. Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. Rosenbusch JP. J Struct Biol 136 144-157 (2001)
  13. Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. Fyfe PK, McAuley KE, Roszak AW, Isaacs NW, Cogdell RJ, Jones MR. Trends Biochem Sci 26 106-112 (2001)
  14. Separation methods in the analysis of protein membrane complexes. Kashino Y. J Chromatogr B Analyt Technol Biomed Life Sci 797 191-216 (2003)
  15. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. Hippler M, Redding K, Rochaix JD. Biochim Biophys Acta 1367 1-62 (1998)
  16. Subsystem-based theoretical spectroscopy of biomolecules and biomolecular assemblies. Neugebauer J. Chemphyschem 10 3148-3173 (2009)
  17. Structure, function and interfacial allosterism in phospholipase A2: insight from the anion-assisted dimer. Bahnson BJ. Arch Biochem Biophys 433 96-106 (2005)
  18. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. Jaskolski M, Dauter Z, Wlodawer A. FEBS J 281 3985-4009 (2014)
  19. The structure and function of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. Axelrod HL, Okamura MY. Photosynth Res 85 101-114 (2005)
  20. Electron and atomic force microscopy of membrane proteins. Heymann JB, Müller DJ, Mitsuoka K, Engel A. Curr Opin Struct Biol 7 543-549 (1997)
  21. Approaches to determining membrane protein structures to high resolution: do selections of subpopulations occur? Rosenbusch JP, Lustig A, Grabo M, Zulauf M, Regenass M. Micron 32 75-90 (2001)
  22. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur Biophys J 39 723-755 (2010)
  23. Engineering model proteins for Photosystem II function. Wydrzynski T, Hillier W, Conlan B. Photosynth Res 94 225-233 (2007)
  24. Fluorescence line narrowing applied to the study of proteins. Fidy J, Laberge M, Kaposi AD, Vanderkooi JM. Biochim Biophys Acta 1386 331-351 (1998)
  25. The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers. Allen JP, Williams JC. Photosynth Res 107 59-69 (2011)
  26. Biostructural Science Inspired by Next-Generation X-Ray Sources. Gruner SM, Lattman EE. Annu Rev Biophys 44 33-51 (2015)
  27. Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes. Tang KH, Blankenship RE. Photosynth Res 111 205-217 (2012)
  28. Functional implications on the mechanism of the function of photosystem II including water oxidation based on the structure of photosystem II. Fromme P, Kern J, Loll B, Biesiadka J, Saenger W, Witt HT, Krauss N, Zouni A. Philos Trans R Soc Lond B Biol Sci 357 1337-44; discussion 1344-5, 1367 (2002)
  29. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Iverson TM. Curr Opin Chem Biol 10 91-100 (2006)
  30. Structure-function investigations of bacterial photosynthetic reaction centers. Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Biochemistry (Mosc) 76 1465-1483 (2011)
  31. Influence of protein interactions on oxidation/reduction midpoint potentials of cofactors in natural and de novo metalloproteins. Olson TL, Williams JC, Allen JP. Biochim Biophys Acta 1827 914-922 (2013)
  32. The three-dimensional structures of bacterial reaction centers. Olson TL, Williams JC, Allen JP. Photosynth Res 120 87-98 (2014)
  33. Structures of proteins and cofactors: X-ray crystallography. Allen JP, Seng C, Larson C. Photosynth Res 102 231-240 (2009)
  34. Dynamics of electron transfer in photosystem II. Burda K. Cell Biochem Biophys 47 271-284 (2007)
  35. Structural and functional studies on the tetraheme cytochrome subunit and its electron donor proteins: the possible docking mechanisms during the electron transfer reaction. Nogi T, Hirano Y, Miki K. Photosynth Res 85 87-99 (2005)
  36. Artificial photoactive proteins. Razeghifard R. Photosynth Res 98 677-685 (2008)
  37. Redox Tuning in Photosystem II. Allen JF, Nield J. Trends Plant Sci 22 97-99 (2017)
  38. The specificity of the structure of photosynthetic reaction centers, which makes them efficient in excitation trapping and conversion. Borisov AY. J Photochem Photobiol B 75 165-169 (2004)
  39. The mystery of oxygen evolution: analysis of structure and function of photosystem II, the water-plastoquinone oxido-reductase. Raval MK, Biswal B, Biswal UC. Photosynth Res 85 267-293 (2005)

Articles citing this publication (149)

  1. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Nature 411 909-917 (2001)
  2. g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmüller H, Groenhof G. J Comput Chem 31 2169-2174 (2010)
  3. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. Fetrow JS, Skolnick J. J Mol Biol 281 949-968 (1998)
  4. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. Adamian L, Liang J. J Mol Biol 311 891-907 (2001)
  5. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauss N. J Mol Biol 280 297-314 (1998)
  6. Evolution of protein complexes by duplication of homomeric interactions. Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA. Genome Biol 8 R51 (2007)
  7. Structural details of an interaction between cardiolipin and an integral membrane protein. McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR. Proc Natl Acad Sci U S A 96 14706-14711 (1999)
  8. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Kerfeld CA, Sawaya MR, Brahmandam V, Cascio D, Ho KK, Trevithick-Sutton CC, Krogmann DW, Yeates TO. Structure 11 55-65 (2003)
  9. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. Schubert WD, Klukas O, Krauss N, Saenger W, Fromme P, Witt HT. J Mol Biol 272 741-769 (1997)
  10. Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. Li YF, Zhou W, Blankenship RE, Allen JP. J Mol Biol 271 456-471 (1997)
  11. Long-range electron tunneling. Winkler JR, Gray HB. J Am Chem Soc 136 2930-2939 (2014)
  12. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Lancaster CR, Michel H, Honig B, Gunner MR. Biophys J 70 2469-2492 (1996)
  13. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model. Hilgemann DW, Lu CC. J Gen Physiol 114 459-475 (1999)
  14. Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Langosch D, Heringa J. Proteins 31 150-159 (1998)
  15. Non-alpha-helical elements modulate polytopic membrane protein architecture. Riek RP, Rigoutsos I, Novotny J, Graham RM. J Mol Biol 306 349-362 (2001)
  16. Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Staehelin LA. Photosynth Res 76 185-196 (2003)
  17. Interactions between lipids and bacterial reaction centers determined by protein crystallography. Camara-Artigas A, Brune D, Allen JP. Proc Natl Acad Sci U S A 99 11055-11060 (2002)
  18. Three-dimensional models of non-NMDA glutamate receptors. Sutcliffe MJ, Wo ZG, Oswald RE. Biophys J 70 1575-1589 (1996)
  19. Are membrane proteins "inside-out" proteins? Stevens TJ, Arkin IT. Proteins 36 135-143 (1999)
  20. Control of electron transfer between the L- and M-sides of photosynthetic reaction centers. Heller BA, Holten D, Kirmaier C. Science 269 940-945 (1995)
  21. KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins. Bienstock RJ, Barrett JC. Mol Carcinog 32 139-153 (2001)
  22. Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D. Nat Struct Biol 10 928-934 (2003)
  23. A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. Redding K, MacMillan F, Leibl W, Brettel K, Hanley J, Rutherford AW, Breton J, Rochaix JD. EMBO J 17 50-60 (1998)
  24. Crystal structures at atomic resolution reveal the novel concept of "electron-harvesting" as a role for the small tetraheme cytochrome c. Leys D, Meyer TE, Tsapin AS, Nealson KH, Cusanovich MA, Van Beeumen JJ. J Biol Chem 277 35703-35711 (2002)
  25. Electron Crystallography of Two-Dimensional Crystals of Membrane Proteins. Walz T, Grigorieff N. J Struct Biol 121 142-161 (1998)
  26. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Mehnert T, Routh A, Judge PJ, Lam YH, Fischer D, Watts A, Fischer WB. Proteins 70 1488-1497 (2008)
  27. Influence of proline residues in transmembrane helix packing. Orzáez M, Salgado J, Giménez-Giner A, Pérez-Payá E, Mingarro I. J Mol Biol 335 631-640 (2004)
  28. Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Moosmann B, Behl C. Eur J Biochem 267 5687-5692 (2000)
  29. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. Lancaster CR, Michel H. J Mol Biol 286 883-898 (1999)
  30. Shr3p mediates specific COPII coatomer-cargo interactions required for the packaging of amino acid permeases into ER-derived transport vesicles. Gilstring CF, Melin-Larsson M, Ljungdahl PO. Mol Biol Cell 10 3549-3565 (1999)
  31. Statistical thermodynamics of membrane bending-mediated protein-protein attractions. Chou T, Kim KS, Oster G. Biophys J 80 1075-1087 (2001)
  32. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Xiong J, Subramaniam S, Govindjee. Protein Sci 5 2054-2073 (1996)
  33. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Giraud E, Fleischman D. Photosynth Res 82 115-130 (2004)
  34. Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KV, Hanada S. Appl Environ Microbiol 68 1665-1673 (2002)
  35. Photosynthetic water oxidation: a simplex-scheme of its partial reactions Haumann M, Junge W. Biochim Biophys Acta 1411 86-91 (1999)
  36. Characterization of the low molecular weight photosystem II reaction center subunits and their light-induced modifications by mass spectrometry. Sharma J, Panico M, Barber J, Morris HR. J Biol Chem 272 3935-3943 (1997)
  37. Polar mutations in membrane proteins as a biophysical basis for disease. Partridge AW, Therien AG, Deber CM. Biopolymers 66 350-358 (2002)
  38. Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Liu Y, Gerstein M, Engelman DM. Proc Natl Acad Sci U S A 101 3495-3497 (2004)
  39. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Raja SM, Rawat SS, Chattopadhyay A, Lala AK. Biophys J 76 1469-1479 (1999)
  40. Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-A resolution. Lancaster CR, Bibikova MV, Sabatino P, Oesterhelt D, Michel H. J Biol Chem 275 39364-39368 (2000)
  41. Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery. Rusinova R, Herold KF, Sanford RL, Greathouse DV, Hemmings HC, Andersen OS. J Gen Physiol 138 249-270 (2011)
  42. A simple method for predicting transmembrane alpha helices with better accuracy. Gromiha MM. Protein Eng 12 557-561 (1999)
  43. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Senge MO, MacGowan SA, O'Brien JM. Chem Commun (Camb) 51 17031-17063 (2015)
  44. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Scheuring S, Sturgis JN. Photosynth Res 102 197-211 (2009)
  45. Photoinduced symmetry-breaking charge separation. Vauthey E. Chemphyschem 13 2001-2011 (2012)
  46. Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Lemcke T, Christensen IT, Jørgensen FS. Bioorg Med Chem 7 1003-1011 (1999)
  47. Cyanobacterial photosystem II at 3.2 A resolution - the plastoquinone binding pockets. Kern J, Loll B, Zouni A, Saenger W, Irrgang KD, Biesiadka J. Photosynth Res 84 153-159 (2005)
  48. Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Parson WW, Chu ZT, Warshel A. Biophys J 74 182-191 (1998)
  49. Calculation of electron transfer reorganization energies using the finite difference Poisson-Boltzmann model. Sharp KA. Biophys J 74 1241-1250 (1998)
  50. Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Li Y, van der Est A, Lucas MG, Ramesh VM, Gu F, Petrenko A, Lin S, Webber AN, Rappaport F, Redding K. Proc Natl Acad Sci U S A 103 2144-2149 (2006)
  51. ;Evolution of Photosynthesis' (1970), re-examined thirty years later. Olson JM. Photosynth Res 68 95-112 (2001)
  52. Photosynthetic reaction center mimicry of a "special pair" dimer linked to electron acceptors by a supramolecular approach: self-assembled cofacial zinc porphyrin dimer complexed with fullerene(s). D'Souza F, Chitta R, Gadde S, Rogers LM, Karr PA, Zandler ME, Sandanayaka AS, Araki Y, Ito O. Chemistry 13 916-922 (2007)
  53. Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Shlyk-Kerner O, Samish I, Kaftan D, Holland N, Sai PS, Kless H, Scherz A. Nature 442 827-830 (2006)
  54. Role of the special pair in the charge-separating event in photosynthesis. Ozeki H, Nomoto A, Ogawa K, Kobuke Y, Murakami M, Hosoda K, Ohtani M, Nakashima S, Miyasaka H, Okada T. Chemistry 10 6393-6401 (2004)
  55. Is there a conserved interaction between cardiolipin and the type II bacterial reaction center? Wakeham MC, Sessions RB, Jones MR, Fyfe PK. Biophys J 80 1395-1405 (2001)
  56. New EPR methods for investigating photoprocesses with paramagnetic intermediates. Stehlik D, Möbius K. Annu Rev Phys Chem 48 745-784 (1997)
  57. The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles. Shinkarev VP, Wraight CA. Biophys J 72 2304-2319 (1997)
  58. Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Baxter RH, Ponomarenko N, Srajer V, Pahl R, Moffat K, Norris JR. Proc Natl Acad Sci U S A 101 5982-5987 (2004)
  59. Helix-bundle membrane protein fold templates. Bowie JU. Protein Sci 8 2711-2719 (1999)
  60. An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. Devillé J, Rey J, Chabbert M. J Mol Evol 68 475-489 (2009)
  61. Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I. Mix LJ, Haig D, Cavanaugh CM. J Mol Evol 60 153-163 (2005)
  62. Which side of the pi-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Oba T, Tamiaki H. Photosynth Res 74 1-10 (2002)
  63. Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Hughes AV, Rees P, Heathcote P, Jones MR. Biophys J 90 4155-4166 (2006)
  64. Modeling of variant copies of subunit D1 in the structure of photosystem II from Thermosynechococcus elongatus. Loll B, Broser M, Kós PB, Kern J, Biesiadka J, Vass I, Saenger W, Zouni A. Biol Chem 389 609-617 (2008)
  65. Structure of a novel c7-type three-heme cytochrome domain from a multidomain cytochrome c polymer. Pokkuluri PR, Londer YY, Duke NE, Erickson J, Pessanha M, Salgueiro CA, Schiffer M. Protein Sci 13 1684-1692 (2004)
  66. Thermodynamic model of secondary structure for alpha-helical peptides and proteins. Lomize AL, Mosberg HI. Biopolymers 42 239-269 (1997)
  67. Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN. Nature 556 203-208 (2018)
  68. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Pawlowicz NP, van Grondelle R, van Stokkum IH, Breton J, Jones MR, Groot ML. Biophys J 95 1268-1284 (2008)
  69. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition. Mohan S, Sheena A, Poulose N, Anilkumar G. PLoS One 5 e14217 (2010)
  70. Side chains in transmembrane helices are shorter at helix-helix interfaces. Jiang S, Vakser IA. Proteins 40 429-435 (2000)
  71. Cluster phases of membrane proteins. Destainville N. Phys Rev E Stat Nonlin Soft Matter Phys 77 011905 (2008)
  72. Role of medium--and long-range interactions in discriminating globular and membrane proteins. Gromiha MM, Selvaraj S. Int J Biol Macromol 29 25-34 (2001)
  73. Structure and function in the isolated reaction center complex of Photosystem II: energy and charge transfer dynamics and mechanism. Yoder LM, Cole AG, Sension RJ. Photosynth Res 72 147-158 (2002)
  74. Electronic energy transfer in a multiporphyrin-based molecular box. Prodi A, Chiorboli C, Scandola F, Iengo E, Alessio E. Chemphyschem 7 1514-1519 (2006)
  75. Functional role of C(alpha)-H...O hydrogen bonds between transmembrane alpha-helices in photosystem I. Loll B, Raszewski G, Saenger W, Biesiadka J. J Mol Biol 328 737-747 (2003)
  76. New insights into the structure of the reaction centre from Blastochloris viridis: evolution in the laboratory. Roszak AW, Moulisová V, Reksodipuro AD, Gardiner AT, Fujii R, Hashimoto H, Isaacs NW, Cogdell RJ. Biochem J 442 27-37 (2012)
  77. Preference functions for prediction of membrane-buried helices in integral membrane proteins. Juretić D, Zucić D, Lucić B, Trinajstić N. Comput Chem 22 279-294 (1998)
  78. Demonstration of the key role played by the PufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. Fulcher TK, Beatty JT, Jones MR. J Bacteriol 180 642-646 (1998)
  79. Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Parson WW. Photosynth Res 76 81-92 (2003)
  80. Investigation on the detergent role in the function of secondary quinone in bacterial reaction centers. Agostiano A, Milano F, Trotta M. Eur J Biochem 262 358-364 (1999)
  81. NMR structure of the haem core of a novel tetrahaem cytochrome isolated from Shewanella frigidimarina: identification of the haem-specific axial ligands and order of oxidation. Pessanha M, Brennan L, Xavier AV, Cuthbertson PM, Reid GA, Chapman SK, Turner DL, Salgueiro CA. FEBS Lett 489 8-13 (2001)
  82. Low-temperature electron transfer from cytochrome to the special pair in Rhodopseudomonas viridis: role of the L162 residue. Ortega JM, Dohse B, Oesterhelt D, Mathis P. Biophys J 74 1135-1148 (1998)
  83. Structure of the H subunit of the photosynthetic reaction center from the thermophilic purple sulfur bacterium, Thermochromatium tepidum Implications for the specific binding of the lipid molecule to the membrane protein complex. Fathir I, Mori T, Nogi T, Kobayashi M, Miki K, Nozawa T. Eur J Biochem 268 2652-2657 (2001)
  84. Thermodynamic characterization of a tetrahaem cytochrome isolated from a facultative aerobic bacterium, Shewanella frigidimarina: a putative redox model for flavocytochrome c3. Pessanha M, Louro RO, Correia IJ, Rothery EL, Pankhurst KL, Reid GA, Chapman SK, Turner DL, Salgueiro CA. Biochem J 370 489-495 (2003)
  85. What do diffusion measurements tell us about membrane compartmentalisation? Emergence of the role of interprotein interactions. Destainville N, Dumas F, Salomé L. J Chem Biol 1 37-48 (2008)
  86. Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Ma F, Kimura Y, Zhao XH, Wu YS, Wang P, Fu LM, Wang ZY, Zhang JP. Biophys J 95 3349-3357 (2008)
  87. Fragment molecular orbital study of the electronic excitations in the photosynthetic reaction center of Blastochloris viridis. Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S. J Comput Chem 31 447-454 (2010)
  88. On the role of basic residues in adapting the reaction centre-LH1 complex for growth at elevated temperatures in purple bacteria. Watson AJ, Hughes AV, Fyfe PK, Wakeham MC, Holden-Dye K, Heathcote P, Jones MR. Photosynth Res 86 81-100 (2005)
  89. Proton uptake associated with the reduction of the primary quinone Q(A) influences the binding site of the secondary quinone Q(B) in Rhodopseudomonas viridis photosynthetic reaction centers. Zachariae U, Lancaster CR. Biochim Biophys Acta 1505 280-290 (2001)
  90. Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor. Kirner SV, Guldi DM, Megiatto JD, Schuster DI. Nanoscale 7 1145-1160 (2015)
  91. The general kinetic model of electron transfer in photosynthetic reaction centers activated by multiple flashes. Shinkarev VP. Photochem Photobiol 67 683-699 (1998)
  92. 3D modeling of the activated states of constitutively active mutants of rhodopsin. Nikiforovich GV, Marshall GR. Biochem Biophys Res Commun 345 430-437 (2006)
  93. Modeling of the structural features of integral-membrane proteins reverse-environment prediction of integral membrane protein structure (REPIMPS). Dastmalchi S, Morris MB, Church WB. Protein Sci 10 1529-1538 (2001)
  94. Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers. Laible PD, Chynwat V, Thurnauer MC, Schiffer M, Hanson DK, Frank HA. Biophys J 74 2623-2637 (1998)
  95. The detailed balance limit of photochemical energy conversion. Fingerhut BP, Zinth W, de Vivie-Riedle R. Phys Chem Chem Phys 12 422-432 (2010)
  96. 15-Cis-β-carotene found in the reaction center of spinach Photosystem I. Bialek-Bylka GE, Hiyama T, Yumoto K, Koyama Y. Photosynth Res 49 245-250 (1996)
  97. Chimeric photosynthetic reaction center complex of purple bacteria composed of the core subunits of Rubrivivax gelatinosus and the cytochrome subunit of Blastochloris viridis. Maki H, Matsuura K, Shimada K, Nagashima KV. J Biol Chem 278 3921-3928 (2003)
  98. Continuum electrostatic investigations of charge transfer processes in biological molecules using a microstate description. Bombarda E, Ullmann GM. Faraday Discuss 148 173-93; discussion 207-28 (2011)
  99. Electron transfer in reaction centers of Rhodobacter sphaeroides and Rhodobacter capsulatus monitored by fluorescence of the bacteriochlorophyll dimer. Osváth S, Laczkó G, Sebban P, Maróti P. Photosynth Res 47 41-49 (1996)
  100. Isolation and spectral characterization of Photosystem II reaction center from Synechocystis sp. PCC 6803. Tomo T, Akimoto S, Tsuchiya T, Fukuya M, Tanaka K, Mimuro M. Photosynth Res 98 293-302 (2008)
  101. Synthesis of a peptide-linked chlorin dyad as a model compound for the photosynthetic reaction centre. Könekamp T, Ruiz A, Duwenhorst J, Schmidt W, Borrmann T, Stohrer WD, Montforts FP. Chemistry 13 6595-6604 (2007)
  102. Comment The remarkable complexity of hydroxylamine oxidoreductase. Prince RC, George GN. Nat Struct Biol 4 247-250 (1997)
  103. Crystallization and X-ray analysis of the reaction center from the thermophilic green bacterium Chloroflexus aurantiacus. Feick R, Ertlmaier A, Ermler U. FEBS Lett 396 161-164 (1996)
  104. Distinct protein interfaces in transmembrane domains suggest an in vivo folding model. Stevens TJ, Mizuguchi K, Arkin IT. Protein Sci 13 3028-3037 (2004)
  105. Identification of a hydrogen bond in the phe M197-->Tyr mutant reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides by X-ray crystallography and FTIR spectroscopy. Kuglstatter A, Hellwig P, Fritzsch G, Wachtveitl J, Oesterhelt D, Mäntele W, Michel H. FEBS Lett 463 169-174 (1999)
  106. Planarity of metal chlorins in n-octane solution. Singh A, Johnson LW. Spectrochim Acta A Mol Biomol Spectrosc 58 1573-1576 (2002)
  107. Spin-lattice relaxation of coupled metal-radical spin-dimers in proteins: application to Fe(2+)-cofactor (Q(A)(-.), Q(B)(-.), phi(-.)) dimers in reaction centers from photosynthetic bacteria. Calvo R, Isaacson RA, Abresch EC, Okamura MY, Feher G. Biophys J 83 2440-2456 (2002)
  108. Three-dimensional structures of photosynthetic reaction centers. Lancaster CR, Michel H. Photosynth Res 48 65-74 (1996)
  109. A native electrostatic environment near Q(B) is not sufficient to ensure rapid proton delivery in photosynthetic reaction centers. Valerio-Lepiniec M, Delcroix JD, Schiffer M, Hanson DK, Sebban P. FEBS Lett 407 159-163 (1997)
  110. A new fragment-based approach for calculating electronic excitation energies of large systems. Ma Y, Liu Y, Ma H. J Chem Phys 136 024113 (2012)
  111. Chlorophyll chemistry before and after crystals of photosynthetic reaction centers. Fajer J. Photosynth Res 80 165-172 (2004)
  112. Excitation energy trapping in anoxygenic photosynthetic bacteria. Amesz J, Neerken S. Photosynth Res 73 73-81 (2002)
  113. Photoreduction of zinc 8-vinylated chlorophyll derivative to bacteriochlorophyll-b/g analog possessing an 8-ethylidene group. Tamiaki H, Xu M, Tanaka T, Mizoguchi T. Bioorg Med Chem Lett 23 2377-2379 (2013)
  114. Recent advances in the structural diversity of reaction centers. Gisriel CJ, Azai C, Cardona T. Photosynth Res 149 329-343 (2021)
  115. Theoretical studies on the mechanism of primary electron transfer in the photosynthetic reaction center of Rhodobacter sphaeroides. Xu H, Zhang RB, Ma SH, Qu ZW, Zhang XK, Zhang QY. Photosynth Res 74 11-36 (2002)
  116. Tuning the vibrational coupling of H3O+ by changing its solvation environment. Tan JA, Li JW, Chiu CC, Liao HY, Huynh HT, Kuo JL. Phys Chem Chem Phys 18 30721-30732 (2016)
  117. Comparative analyses of three-dimensional models of bacterial reaction centers. Camara-Artigas A, Allen JP. Photosynth Res 81 227-237 (2004)
  118. Different scenarios for inter-protein electron tunneling: the effect of water-mediated pathways. Miyashita O, Axelrod HL, Onuchic JN. J Biol Phys 28 383-394 (2002)
  119. Energetics and mechanisms of high efficiency of charge separation and electron transfer processes in Rhodobacter sphaeroides reaction centers. Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G, Rubin AB. Bioelectrochemistry 61 73-84 (2003)
  120. Femtosecond charge separation in dry films of reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus. Yakovlev AG, Khmelnitsky AY, Shuvalov VA. Biochemistry (Mosc) 77 444-455 (2012)
  121. A new mutation in the pufL gene responsible for the terbutryn resistance phenotype in Rubrivivax gelatinosus. Ouchane S, Picaud M, Astier C. FEBS Lett 374 130-134 (1995)
  122. Analysis of the role of detergent mixtures on the crystallization of the reaction center of Photosystem II. Rukhman V, Lerner N, Adir N. Photosynth Res 65 249-259 (2000)
  123. DCCD inhibits the reactions of the iron-sulfur protein in Rhodobacter sphaeroides chromatophores. Shinkarev VP, Ugulava NB, Crofts AR, Wraight CA. Biochemistry 39 16206-16212 (2000)
  124. Efficient exchange of the primary quinone acceptor Q(A) in isolated reaction centers of Rhodopseudomonas viridis. Breton J. Proc Natl Acad Sci U S A 94 11318-11323 (1997)
  125. Isolated transmembrane helices arranged across a membrane: computational studies. Tseitin VM, Nikiforovich GV. Protein Eng 12 305-311 (1999)
  126. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/D-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence. Kumar A, Tyagi NK, Kinne RK. Biophys Chem 127 69-77 (2007)
  127. Proton-transfer pathways in photosynthetic reaction centers analyzed by profile hidden markov models and network calculations. Krammer EM, Till MS, Sebban P, Ullmann GM. J Mol Biol 388 631-643 (2009)
  128. Synthesis and self-organization of zinc β-(dialkoxyphosphoryl)porphyrins in the solid state and in solution. Vinogradova EV, Enakieva YY, Nefedov SE, Birin KP, Tsivadze AY, Gorbunova YG, Bessmertnykh Lemeune AG, Stern C, Guilard R. Chemistry 18 15092-15104 (2012)
  129. Theoretical study on primary reaction of photosynthetic bacteria. Zhang C, Fan H, Li L, Kuang T. Sci China C Life Sci 42 155-161 (1999)
  130. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum. Kimura Y, Kawakami T, Yu LJ, Yoshimura M, Kobayashi M, Wang-Otomo ZY. FEBS Lett 589 1761-1765 (2015)
  131. Efficient Green Light Acclimation of the Green Algae Picochlorum sp. Triggering Geranylgeranylated Chlorophylls. Paper M, Glemser M, Haack M, Lorenzen J, Mehlmer N, Fuchs T, Schenk G, Garbe D, Weuster-Botz D, Eisenreich W, Lakatos M, Brück TB. Front Bioeng Biotechnol 10 885977 (2022)
  132. Electron transport dynamics at the quinone acceptor site of bacterial photosynthetic reaction centers as probed using fast temperature changes. Chamorovsky SK, Knox PP, Chizhov IV, Zubov BV. Eur Biophys J 32 537-543 (2003)
  133. Metal-mediated linear self-assembly of porphyrins. Wytko JA, Ruppert R, Jeandon C, Weiss J. Chem Commun (Camb) 54 1550-1558 (2018)
  134. Mixed-Valence Porphyrin π-Cation Radical Derivatives: Electrochemical Investigations. Scheidt WR, Buentello KE, Ehlinger N, Cinquantini A, Fontani M, Laschi F. Inorganica Chim Acta 361 1722-1727 (2008)
  135. Purification, redox and spectroscopic properties of the tetraheme cytochrome c isolated from Rubrivivax gelatinosus. Agalidis I, Othman S, Boussac A, Reiss-Husson F, Desbois A. Eur J Biochem 261 325-336 (1999)
  136. Relationship between altered structure and photochemistry in mutant reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. Czarnecki K, Cua A, Kirmaier C, Holten D, Bocian DF. Biospectroscopy 5 346-357 (1999)
  137. Resonance Raman characterization of Rhodobacter capsulatus reaction centers with lysine mutations near the accessory bacteriochlorophylls. Chen L, Kirmaier C, Holten D, Bocian DF. Photosynth Res 83 35-43 (2005)
  138. Ultrafast structural changes within a photosynthetic reaction centre. Dods R, Båth P, Morozov D, Gagnér VA, Arnlund D, Luk HL, Kübel J, Maj M, Vallejos A, Wickstrand C, Bosman R, Beyerlein KR, Nelson G, Liang M, Milathianaki D, Robinson J, Harimoorthy R, Berntsen P, Malmerberg E, Johansson L, Andersson R, Carbajo S, Claesson E, Conrad CE, Dahl P, Hammarin G, Hunter MS, Li C, Lisova S, Royant A, Safari C, Sharma A, Williams GJ, Yefanov O, Westenhoff S, Davidsson J, DePonte DP, Boutet S, Barty A, Katona G, Groenhof G, Brändén G, Neutze R. Nature 589 310-314 (2021)
  139. Conformational landscape surfing induced by off-on pi-pi stacking in a porphyrin-quinone dyad. Nurco DJ, Smith KM, Fajer J. Chem Commun (Camb) 2982-2983 (2002)
  140. Cooperative interaction of high-potential hemes in the cytochrome subunit of the photosynthetic reaction center of bacterium Ectothiorhodospira shaposhnikovii. Pottosin II, Chamorovsky CS, Chamorovsky SK. Biochemistry (Mosc) 72 1254-1260 (2007)
  141. Coupled excitation energy and charge transfer dynamics in reaction centre inspired model systems. Richter M, Fingerhut BP. Faraday Discuss 216 72-93 (2019)
  142. Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolvents. Shi Y, Yu J, Yu LJ, Wang P, Fu LM, Zhang JP, Wang-Otomo ZY. Photochem Photobiol Sci 16 795-807 (2017)
  143. Dimeric Corrole Analogs of Chlorophyll Special Pairs. Sharma VK, Mahammed A, Mizrahi A, Morales M, Fridman N, Gray HB, Gross Z. J Am Chem Soc 143 9450-9460 (2021)
  144. Dynamics of electron transfer from high-potential cytochrome c to bacteriochlorophyll dimer in photosynthetic reaction centers as probed using laser-induced temperature jump. Chamorovsky SK, Chamorovsky CS, Knox PP, Chizhov IV, Zubov BV. Eur Biophys J 36 601-608 (2007)
  145. Low-frequency resonance Raman studies of the H(M202)G cavity mutant of bacterial photosynthetic reaction centers. Czarnecki K, Chen L, Diers JR, Frank HA, Bocian DF. Photosynth Res 88 31-41 (2006)
  146. Single site electronic spectroscopy of free base octaethylporphyrin, octaethychlorin and their diacids in n-octane at 298K and 7K. Singh A, Johnson LW. Spectrochim Acta A Mol Biomol Spectrosc 64 761-770 (2006)
  147. Historical Article Spotlight on... Irmgard Sinning. Walma T. FEBS Lett 579 2751 (2005)
  148. The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II. Luo H, Jackson SA, Fagerlund RD, Summerfield TC, Eaton-Rye JJ. Biochim Biophys Acta 1837 1435-1446 (2014)
  149. The lumenal loop connecting transmembrane helices I and II of the D1 polypeptide is important for assembly of the photosystem two complex. Chiesa MD, Deák Z, Vass I, Barber J, Nixon PJ. Photosynth Res 50 79-91 (1996)


Related citations provided by authors (4)