1oit Citations

Imidazo[1,2-a]pyridines: a potent and selective class of cyclin-dependent kinase inhibitors identified through structure-based hybridisation.

Abstract

High-throughput screening identified the imidazo[1,2-a]pyridine and bisanilinopyrimidine series as inhibitors of the cyclin-dependent kinase CDK4. Comparison of their experimentally-determined binding modes and emerging structure-activity trends led to the development of potent and selective imidazo[1,2-a]pyridine inhibitors for CDK4 and in particular CDK2.

Articles - 1oit mentioned but not cited (10)

  1. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  2. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug. Shi XN, Li H, Yao H, Liu X, Li L, Leung KS, Kung HF, Lu D, Wong MH, Lin MC. PLoS One 10 e0132072 (2015)
  3. Identifying unexpected therapeutic targets via chemical-protein interactome. Yang L, Chen J, Shi L, Hudock MP, Wang K, He L. PLoS One 5 e9568 (2010)
  4. Combining docking with pharmacophore filtering for improved virtual screening. Peach ML, Nicklaus MC. J Cheminform 1 6 (2009)
  5. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Bioorg. Med. Chem. 22 6409-6421 (2014)
  6. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Paul F, Meng Y, Roux B. J Chem Theory Comput 16 1896-1912 (2020)
  7. A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space. Singh N, Sun H, Chaudhury S, Abdulhameed MD, Wallqvist A, Tawa G. J Cheminform 4 4 (2012)
  8. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design. Bardhan JP, Altman MD, Tidor B, White JK. J Chem Theory Comput 5 3260-3278 (2009)
  9. Structure of a cyclin-dependent kinase from Giardia lamblia. Leibly DJ, Newling PA, Abendroth J, Guo W, Kelley A, Stewart LJ, Van Voorhis W. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 1084-1089 (2011)
  10. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases. Ma Z, Huang SY, Cheng F, Zou X. J Phys Chem B 125 2288-2298 (2021)


Reviews citing this publication (6)

  1. Cyclin-dependent kinase pathways as targets for cancer treatment. Shapiro GI. J. Clin. Oncol. 24 1770-1783 (2006)
  2. Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Fischer PM, Gianella-Borradori A. Expert Opin Investig Drugs 14 457-477 (2005)
  3. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  4. Recent applications of protein crystallography and structure-guided drug design. Williams SP, Kuyper LF, Pearce KH. Curr Opin Chem Biol 9 371-380 (2005)
  5. Standing on the shoulders of giants: a retrospective analysis of kinase drug discovery at AstraZeneca. Kettle JG, Wilson DM. Drug Discov. Today 21 1596-1608 (2016)
  6. Recent Progress in CDK4/6 Inhibitors and PROTACs. Wang H, Ba J, Kang Y, Gong Z, Liang T, Zhang Y, Qi J, Wang J. Molecules 28 8060 (2023)

Articles citing this publication (24)

  1. The discovery of 2-amino-3,5-diarylbenzamide inhibitors of IKK-alpha and IKK-beta kinases. Christopher JA, Avitabile BG, Bamborough P, Champigny AC, Cutler GJ, Dyos SL, Grace KG, Kerns JK, Kitson JD, Mellor GW, Morey JV, Morse MA, O'Malley CF, Patel CB, Probst N, Rumsey W, Smith CA, Wilson MJ. Bioorg. Med. Chem. Lett. 17 3972-3977 (2007)
  2. Imidazo[1,2-a]pyridines. Part 2: SAR and optimisation of a potent and selective class of cyclin-dependent kinase inhibitors. Byth KF, Culshaw JD, Green S, Oakes SE, Thomas AP. Bioorg. Med. Chem. Lett. 14 2245-2248 (2004)
  3. Imidazo[1,2-b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors. Byth KF, Cooper N, Culshaw JD, Heaton DW, Oakes SE, Minshull CA, Norman RA, Pauptit RA, Tucker JA, Breed J, Pannifer A, Rowsell S, Stanway JJ, Valentine AL, Thomas AP. Bioorg. Med. Chem. Lett. 14 2249-2252 (2004)
  4. The lab oddity prevails: discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the treatment of cancer. Lücking U, Jautelat R, Krüger M, Brumby T, Lienau P, Schäfer M, Briem H, Schulze J, Hillisch A, Reichel A, Wengner AM, Siemeister G. ChemMedChem 8 1067-1085 (2013)
  5. Loop flexibility and solvent dynamics as determinants for the selective inhibition of cyclin-dependent kinase 4: comparative molecular dynamics simulation studies of CDK2 and CDK4. Park H, Yeom MS, Lee S. Chembiochem 5 1662-1672 (2004)
  6. Structure-based design of a new class of highly selective aminoimidazo[1,2-a]pyridine-based inhibitors of cyclin dependent kinases. Hamdouchi C, Zhong B, Mendoza J, Collins E, Jaramillo C, De Diego JE, Robertson D, Spencer CD, Anderson BD, Watkins SA, Zhang F, Brooks HB. Bioorg. Med. Chem. Lett. 15 1943-1947 (2005)
  7. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory. Bardhan JP. J Chem Phys 129 144105 (2008)
  8. Flavopiridol reduces malignant transformation of the esophageal mucosa in p27 knockout mice. Lechpammer M, Xu X, Ellis FH, Bhattacharaya N, Shapiro GI, Loda M. Oncogene 24 1683-1688 (2005)
  9. Synthesis of 1,7-annulated indoles and their applications in the studies of cyclin dependent kinase inhibitors. Zhu G, Conner SE, Zhou X, Chan HK, Shih C, Engler TA, Al-Awar RS, Brooks HB, Watkins SA, Spencer CD, Schultz RM, Dempsey JA, Considine EL, Patel BR, Ogg CA, Vasudevan V, Lytle ML. Bioorg. Med. Chem. Lett. 14 3057-3061 (2004)
  10. Structural basis for the inhibition of Aurora A kinase by a novel class of high affinity disubstituted pyrimidine inhibitors. Tari LW, Hoffman ID, Bensen DC, Hunter MJ, Nix J, Nelson KJ, McRee DE, Swanson RV. Bioorg. Med. Chem. Lett. 17 688-691 (2007)
  11. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. García-Sosa AT, Mancera RL. J Mol Model 12 422-431 (2006)
  12. Macrocyclic aminopyrimidines as multitarget CDK and VEGF-R inhibitors with potent antiproliferative activities. Lücking U, Siemeister G, Schäfer M, Briem H, Krüger M, Lienau P, Jautelat R. ChemMedChem 2 63-77 (2007)
  13. 3-Acyl-2,6-diaminopyridines as cyclin-dependent kinase inhibitors: synthesis and biological evaluation. Lin R, Lu Y, Wetter SK, Connolly PJ, Turchi IJ, Murray WV, Emanuel SL, Gruninger RH, Fuentes-Pesquera AR, Adams M, Pandey N, Moreno-Mazza S, Middleton SA, Jolliffe LK. Bioorg. Med. Chem. Lett. 15 2221-2224 (2005)
  14. Imidazole pyrimidine amides as potent, orally bioavailable cyclin-dependent kinase inhibitors. Jones CD, Andrews DM, Barker AJ, Blades K, Byth KF, Finlay MR, Geh C, Green CP, Johannsen M, Walker M, Weir HM. Bioorg. Med. Chem. Lett. 18 6486-6489 (2008)
  15. Imidazoles: SAR and development of a potent class of cyclin-dependent kinase inhibitors. Anderson M, Andrews DM, Barker AJ, Brassington CA, Breed J, Byth KF, Culshaw JD, Finlay MR, Fisher E, McMiken HH, Green CP, Heaton DW, Nash IA, Newcombe NJ, Oakes SE, Pauptit RA, Roberts A, Stanway JJ, Thomas AP, Tucker JA, Walker M, Weir HM. Bioorg. Med. Chem. Lett. 18 5487-5492 (2008)
  16. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors. Vulpetti A, Casale E, Roletto F, Amici R, Villa M, Pevarello P. J. Mol. Graph. Model. 24 341-348 (2006)
  17. Identification of pyrimidine derivatives as hSMG-1 inhibitors. Gopalsamy A, Bennett EM, Shi M, Zhang WG, Bard J, Yu K. Bioorg. Med. Chem. Lett. 22 6636-6641 (2012)
  18. Molecular modelling on small molecular CDK2 inhibitors: an integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling. Yuan H, Liu H, Tai W, Wang F, Zhang Y, Yao S, Ran T, Lu S, Ke Z, Xiong X, Xu J, Chen Y, Lu T. SAR QSAR Environ Res 24 795-817 (2013)
  19. Structural basis for the modulation of CDK-dependent/independent activity of cyclin D1. Ferrer JL, Dupuy J, Borel F, Jacquamet L, Noel JP, Dulic V. Cell Cycle 5 2760-2768 (2006)
  20. Synthesis and cytotoxic activity of 2-methylimidazo[1,2-a]pyridine- and quinoline-substituted 2-aminopyrimidine derivatives. Vilchis-Reyes MA, Zentella A, Martínez-Urbina MA, Guzmán A, Vargas O, Ramírez Apan MT, Ventura Gallegos JL, Díaz E. Eur J Med Chem 45 379-386 (2010)
  21. Synthesis of 2-amino-4-(7-azaindol-3-yl)pyrimidines as cyclin dependent kinase 1 (CDK1) inhibitors. Huang S, Li R, Connolly PJ, Emanuel S, Middleton SA. Bioorg. Med. Chem. Lett. 16 4818-4821 (2006)
  22. Visible-light-mediated C3-azolylation of imidazo[1,2-a]pyridines with 2-bromoazoles. Chang Q, Wu Z, Yu L, Liu P, Sun P. Org. Biomol. Chem. 15 5318-5324 (2017)
  23. A Cu(ii)-promoted tandem decarboxylative halogenation and oxidative diamination reaction of 2-aminopyridines with alkynoic acids for the synthesis of 2-haloimidazo[1,2-a]pyridines. Liu Y, Wang W, Han J, Sun J. Org. Biomol. Chem. 15 9311-9318 (2017)
  24. Feature-map vectors: a new class of informative descriptors for computational drug discovery. Landrum GA, Penzotti JE, Putta S. J. Comput. Aided Mol. Des. 20 751-762 (2006)


Related citations provided by authors (1)