1oey Citations

PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62.

Mol Cell 12 39-50 (2003)
Cited: 122 times
EuropePMC logo PMID: 12887891

Abstract

Maximal activation of NADPH oxidase requires formation of a complex between the p40(phox) and p67(phox) subunits via association of their PB1 domains. We have determined the crystal structure of the p40(phox)/p67(phox) PB1 heterodimer, which reveals that both domains have a beta grasp topology and that they bind in a front-to-back arrangement through conserved electrostatic interactions between an acidic OPCA motif on p40(phox) and basic residues in p67(phox). The structure enabled us to identify residues critical for heterodimerization among other members of the PB1 domain family, including the atypical protein kinase C zeta (PKC zeta) and its partners Par6 and p62 (ZIP, sequestosome). Both Par6 and p62 use their basic "back" to interact with the OPCA motif on the "front" of the PKC zeta. Besides heterodimeric interactions, some PB1 domains, like the p62 PB1, can make homotypic front-to-back arrays.

Reviews - 1oey mentioned but not cited (1)

  1. Activation and assembly of the NADPH oxidase: a structural perspective. Groemping Y, Rittinger K. Biochem. J. 386 401-416 (2005)

Articles - 1oey mentioned but not cited (7)

  1. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q, John S, Quismorio FP, Reiff A, Myones BL, Kaufman KM, McCurdy D, Harley JB, Silverman E, Kimberly RP, Vyse TJ, Gaffney PM, Moser KL, Klein-Gitelman M, Wagner-Weiner L, Langefeld CD, Armstrong DL, Zidovetzki R. Proc. Natl. Acad. Sci. U.S.A. 109 E59-67 (2012)
  2. Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. Honbou K, Minakami R, Yuzawa S, Takeya R, Suzuki NN, Kamakura S, Sumimoto H, Inagaki F. EMBO J. 26 1176-1186 (2007)
  3. Quantitative prediction of protein-protein binding affinity with a potential of mean force considering volume correction. Su Y, Zhou A, Xia X, Li W, Sun Z. Protein Sci 18 2550-2558 (2009)
  4. Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. Kim-Howard X, Sun C, Molineros JE, Maiti AK, Chandru H, Adler A, Wiley GB, Kaufman KM, Kottyan L, Guthridge JM, Rasmussen A, Kelly J, Sánchez E, Raj P, Li QZ, Bang SY, Lee HS, Kim TH, Kang YM, Suh CH, Chung WT, Park YB, Choe JY, Shim SC, Lee SS, Han BG, Olsen NJ, Karp DR, Moser K, Pons-Estel BA, Wakeland EK, James JA, Harley JB, Bae SC, Gaffney PM, Alarcón-Riquelme M, GENLES, Looger LL, Nath SK. Hum. Mol. Genet. 23 1656-1668 (2014)
  5. Discrimination between distant homologs and structural analogs: lessons from manually constructed, reliable data sets. Cheng H, Kim BH, Grishin NV. J. Mol. Biol. 377 1265-1278 (2008)
  6. Systemic lupus erythematosus-associated neutrophil cytosolic factor 2 mutation affects the structure of NADPH oxidase complex. Armstrong DL, Eisenstein M, Zidovetzki R, Jacob CO. J. Biol. Chem. 290 12595-12602 (2015)
  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (34)

  1. Selective autophagy mediated by autophagic adapter proteins. Johansen T, Lamark T. Autophagy 7 279-296 (2011)
  2. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. Sumimoto H. FEBS J. 275 3249-3277 (2008)
  3. Ubiquitination and selective autophagy. Shaid S, Brandts CH, Serve H, Dikic I. Cell Death Differ. 20 21-30 (2013)
  4. Regulation of reactive oxygen species generation in cell signaling. Bae YS, Oh H, Rhee SG, Yoo YD. Mol. Cells 32 491-509 (2011)
  5. Cell signaling and function organized by PB1 domain interactions. Moscat J, Diaz-Meco MT, Albert A, Campuzano S. Mol. Cell 23 631-640 (2006)
  6. Sequestosome 1/p62--more than just a scaffold. Seibenhener ML, Geetha T, Wooten MW. FEBS Lett. 581 175-179 (2007)
  7. Mechanisms of Selective Autophagy. Zaffagnini G, Martens S. J. Mol. Biol. 428 1714-1724 (2016)
  8. PKCzeta at the crossroad of NF-kappaB and Jak1/Stat6 signaling pathways. Moscat J, Rennert P, Diaz-Meco MT. Cell Death Differ. 13 702-711 (2006)
  9. The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Wu H, Fuxreiter M. Cell 165 1055-1066 (2016)
  10. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Corbalán-García S, Gómez-Fernández JC. Biochim. Biophys. Acta 1761 633-654 (2006)
  11. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease. Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I. Prog. Neurobiol. 96 87-95 (2012)
  12. The atypical PKCs in inflammation: NF-κB and beyond. Diaz-Meco MT, Moscat J. Immunol. Rev. 246 154-167 (2012)
  13. The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Guilfoyle TJ. Plant Cell 27 33-43 (2015)
  14. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer. Murray NR, Kalari KR, Fields AP. J. Cell. Physiol. 226 879-887 (2011)
  15. Interaction domains of p62: a bridge between p62 and selective autophagy. Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. DNA Cell Biol. 32 220-227 (2013)
  16. SQSTM1 and Paget's disease of bone. Layfield R, Hocking LJ. Calcif. Tissue Int. 75 347-357 (2004)
  17. The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. Perisic O, Wilson MI, Karathanassis D, Bravo J, Pacold ME, Ellson CD, Hawkins PT, Stephens L, Williams RL. Adv. Enzyme Regul. 44 279-298 (2004)
  18. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. Antioxidants (Basel) 10 890 (2021)
  19. p40phox: the last NADPH oxidase subunit. Matute JD, Arias AA, Dinauer MC, Patiño PJ. Blood Cells Mol. Dis. 35 291-302 (2005)
  20. Crossroads of PI3K and Rac pathways. Campa CC, Ciraolo E, Ghigo A, Germena G, Hirsch E. Small GTPases 6 71-80 (2015)
  21. Evolution of domain combinations in protein kinases and its implications for functional diversity. Deshmukh K, Anamika K, Srinivasan N. Prog. Biophys. Mol. Biol. 102 1-15 (2010)
  22. Autophagy and liver cancer. Chao X, Qian H, Wang S, Fulte S, Ding WX. Clin Mol Hepatol 26 606-617 (2020)
  23. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Schröder K, Weissmann N, Brandes RP. Free Radic. Biol. Med. 109 22-32 (2017)
  24. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? Kirkin V. J Mol Biol 432 3-27 (2020)
  25. NBR1: The archetypal selective autophagy receptor. Rasmussen NL, Kournoutis A, Lamark T, Johansen T. J Cell Biol 221 e202208092 (2022)
  26. The Role of PB1 Domain Proteins in Endothelial Cell Dysfunction and Disease. Burke RM, Berk BC. Antioxid. Redox Signal. 22 1243-1256 (2015)
  27. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Zientara-Rytter K, Subramani S. Cells 8 (2019)
  28. The role of NADPH oxidases in infectious and inflammatory diseases. Taylor JP, Tse HM. Redox Biol 48 102159 (2021)
  29. Autophagy, Mesenchymal Stem Cell Differentiation, and Secretion. Menshikov M, Zubkova E, Stafeev I, Parfyonova Y. Biomedicines 9 1178 (2021)
  30. Relevance of atypical protein kinase C isotypes to the drug discovery process. Jenny M, Wrulich OA, Schwaiger W, Ueberall F. Chembiochem 6 491-499 (2005)
  31. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. Qian H, Ding WX. Am J Pathol 193 1415-1426 (2023)
  32. Oligomerization of Selective Autophagy Receptors for the Targeting and Degradation of Protein Aggregates. Chen W, Shen T, Wang L, Lu K. Cells 10 1989 (2021)
  33. PKC and PKN in heart disease. Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. J. Mol. Cell. Cardiol. 128 212-226 (2019)
  34. Phase Separation and Mechanical Forces in Regulating Asymmetric Cell Division of Neural Stem Cells. Zhang Y, Wei H, Wen W. Int J Mol Sci 22 10267 (2021)

Articles citing this publication (80)

  1. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T. Curr. Biol. 14 1436-1450 (2004)
  2. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. Itakura E, Mizushima N. J. Cell Biol. 192 17-27 (2011)
  3. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Rodriguez A, Durán A, Selloum M, Champy MF, Diez-Guerra FJ, Flores JM, Serrano M, Auwerx J, Diaz-Meco MT, Moscat J. Cell Metab. 3 211-222 (2006)
  4. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, Pawson T, Muthuswamy SK. Nat. Cell Biol. 8 1235-1245 (2006)
  5. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Lamark T, Johansen T. Int J Cell Biol 2012 736905 (2012)
  6. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Teasdale RD, Collins BM. Biochem. J. 441 39-59 (2012)
  7. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. Pankiv S, Lamark T, Bruun JA, Øvervatn A, Bjørkøy G, Johansen T. J. Biol. Chem. 285 5941-5953 (2010)
  8. Neutrophils from p40phox-/- mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. Ellson CD, Davidson K, Ferguson GJ, O'Connor R, Stephens LR, Hawkins PT. J. Exp. Med. 203 1927-1937 (2006)
  9. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Svenning S, Lamark T, Krause K, Johansen T. Autophagy 7 993-1010 (2011)
  10. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. Gal J, Ström AL, Kwinter DM, Kilty R, Zhang J, Shi P, Fu W, Wooten MW, Zhu H. J. Neurochem. 111 1062-1073 (2009)
  11. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred DC, Muthuswamy SK. Cancer Res. 68 8201-8209 (2008)
  12. The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgammaIIA receptor-induced phagocytosis. Suh CI, Stull ND, Li XJ, Tian W, Price MO, Grinstein S, Yaffe MB, Atkinson S, Dinauer MC. J. Exp. Med. 203 1915-1925 (2006)
  13. Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Ciota. Erdogan E, Lamark T, Stallings-Mann M, Lee Jamieson, Pellecchia M, Thompson EA, Johansen T, Fields AP. J Biol Chem 281 28450-28459 (2006)
  14. Structural basis for oligomerization of auxin transcriptional regulators. Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M, Mast D, Lainé S, Wang S, Hagen G, Li H, Guilfoyle TJ, Parcy F, Vernoux T, Dumas R. Nat Commun 5 3617 (2014)
  15. PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NF-kappaB activation. Nakamura K, Kimple AJ, Siderovski DP, Johnson GL. J. Biol. Chem. 285 2077-2089 (2010)
  16. Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes. Kawahara T, Lambeth JD. BMC Evol. Biol. 7 178 (2007)
  17. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL, Saito N. Mol. Biol. Cell 18 441-454 (2007)
  18. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Ciuffa R, Lamark T, Tarafder AK, Guesdon A, Rybina S, Hagen WJ, Johansen T, Sachse C. Cell Rep 11 748-758 (2015)
  19. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. Massenet C, Chenavas S, Cohen-Addad C, Dagher MC, Brandolin G, Pebay-Peyroula E, Fieschi F. J. Biol. Chem. 280 13752-13761 (2005)
  20. PCS-based structure determination of protein-protein complexes. Saio T, Yokochi M, Kumeta H, Inagaki F. J. Biomol. NMR 46 271-280 (2010)
  21. Atypical protein kinase C phosphorylates Par6 and facilitates transforming growth factor β-induced epithelial-to-mesenchymal transition. Gunaratne A, Thai BL, Di Guglielmo GM. Mol. Cell. Biol. 33 874-886 (2013)
  22. TRIM21 Ubiquitylates SQSTM1/p62 and Suppresses Protein Sequestration to Regulate Redox Homeostasis. Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N, Dou Z, Yang B, Chen JS, Catanzaro JM, Du C, Ding WX, Diaz-Meco MT, Moscat J, Ozato K, Lin RZ, Zong WX. Mol. Cell 61 720-733 (2016)
  23. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, Zhang SG. Plant Cell Environ. 33 149-162 (2010)
  24. The Par-3 NTD adopts a PB1-like structure required for Par-3 oligomerization and membrane localization. Feng W, Wu H, Chan LN, Zhang M. EMBO J. 26 2786-2796 (2007)
  25. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Park S, Choi SG, Yoo SM, Son JH, Jung YK. Autophagy 10 1906-1920 (2014)
  26. PB1 domain-dependent signaling complex is required for extracellular signal-regulated kinase 5 activation. Nakamura K, Uhlik MT, Johnson NL, Hahn KM, Johnson GL. Mol. Cell. Biol. 26 2065-2079 (2006)
  27. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity. Mural RV, Liu Y, Rosebrock TR, Brady JJ, Hamera S, Connor RA, Martin GB, Zeng L. Plant Cell 25 3615-3631 (2013)
  28. Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Kongara S, Kravchuk O, Teplova I, Lozy F, Schulte J, Moore D, Barnard N, Neumann CA, White E, Karantza V. Mol. Cancer Res. 8 873-884 (2010)
  29. Novel functions of the phospholipase D2-Phox homology domain in protein kinase Czeta activation. Kim JH, Kim JH, Ohba M, Suh PG, Ryu SH. Mol. Cell. Biol. 25 3194-3208 (2005)
  30. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K, Sumimoto H. Arch. Biochem. Biophys. 444 185-194 (2005)
  31. Induction of Covalently Crosslinked p62 Oligomers with Reduced Binding to Polyubiquitinated Proteins by the Autophagy Inhibitor Verteporfin. Donohue E, Balgi AD, Komatsu M, Roberge M. PLoS ONE 9 e114964 (2014)
  32. Activation of NADPH oxidase subunit NCF4 induces ROS-mediated EMT signaling in HeLa cells. Kim YM, Cho M. Cell. Signal. 26 784-796 (2014)
  33. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. Jain A, Rusten TE, Katheder N, Elvenes J, Bruun JA, Sjøttem E, Lamark T, Johansen T. J. Biol. Chem. 290 14945-14962 (2015)
  34. PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. Christian F, Krause E, Houslay MD, Baillie GS. Biochim. Biophys. Acta 1843 2765-2774 (2014)
  35. Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Shukla S, Jha RK, Laloraya M, Kumar PG. Biochem. Biophys. Res. Commun. 331 476-483 (2005)
  36. Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Horie Y, Suzuki T, Inoue J, Iso T, Wells G, Moore TW, Mizushima T, Dinkova-Kostova AT, Kasai T, Kamei T, Koshiba S, Yamamoto M. Commun Biol 4 576 (2021)
  37. A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments. Schubert M, Labudde D, Leitner D, Oschkinat H, Schmieder P. J. Biomol. NMR 31 115-128 (2005)
  38. Binding to PKC-3, but not to PAR-3 or to a conventional PDZ domain ligand, is required for PAR-6 function in C. elegans. Li J, Kim H, Aceto DG, Hung J, Aono S, Kemphues KJ. Dev. Biol. 340 88-98 (2010)
  39. p62 expression and autophagy in αB-crystallin R120G mutant knock-in mouse model of hereditary cataract. Wignes JA, Goldman JW, Weihl CC, Bartley MG, Andley UP. Exp. Eye Res. 115 263-273 (2013)
  40. Insight into molecular interactions between two PB1 domains. van Drogen-Petit A, Zwahlen C, Peter M, Bonvin AM. J. Mol. Biol. 336 1195-1210 (2004)
  41. Letter A novel fusion of SQSTM1 and FGFR1 in a patient with acute myelomonocytic leukemia with t(5;8)(q35;p11) translocation. Nakamura Y, Ito Y, Wakimoto N, Kakegawa E, Uchida Y, Bessho M. Blood Cancer J 4 e265 (2014)
  42. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, Hattori N, Nukina N. PLoS ONE 8 e84036 (2013)
  43. Structural and biochemical insights into the homotypic PB1-PB1 complex between PKCζ and p62. Ren J, Wang J, Wang Z, Wu J. Sci China Life Sci 57 69-80 (2014)
  44. Hyperglycemia stimulates p62/PKCζ interaction, which mediates NF-κB activation, increased Nox4 expression, and inflammatory cytokine activation in vascular smooth muscle. Xi G, Shen X, Wai C, Vilas CK, Clemmons DR. FASEB J. 29 4772-4782 (2015)
  45. Interactions between Cdc42 and the scaffold protein Scd2: requirement of SH3 domains for GTPase binding. Wheatley E, Rittinger K. Biochem. J. 388 177-184 (2005)
  46. Noncanonical function of MEKK2 and MEK5 PB1 domains for coordinated extracellular signal-regulated kinase 5 and c-Jun N-terminal kinase signaling. Nakamura K, Johnson GL. Mol. Cell. Biol. 27 4566-4577 (2007)
  47. MOAP-1-mediated dissociation of p62/SQSTM1 bodies releases Keap1 and suppresses Nrf2 signaling. Tan CT, Chang HC, Zhou Q, Yu C, Fu NY, Sabapathy K, Yu VC. EMBO Rep 22 e50854 (2021)
  48. p62-containing, proteolytically active nuclear condensates, increase the efficiency of the ubiquitin-proteasome system. Fu A, Cohen-Kaplan V, Avni N, Livneh I, Ciechanover A. Proc Natl Acad Sci U S A 118 e2107321118 (2021)
  49. Association of PKCζ expression with clinicopathological characteristics of breast cancer. Yin J, Liu Z, Li H, Sun J, Chang X, Liu J, He S, Li B. PLoS ONE 9 e90811 (2014)
  50. Crystal structure of the PB1 domain of NBR1. Müller S, Kursula I, Zou P, Wilmanns M. FEBS Lett. 580 341-344 (2006)
  51. NMR structure of the heterodimer of Bem1 and Cdc24 PB1 domains from Saccharomyces cerevisiae. Ogura K, Tandai T, Yoshinaga S, Kobashigawa Y, Kumeta H, Ito T, Sumimoto H, Inagaki F. J. Biochem. 146 317-325 (2009)
  52. Role of an SNP in Alternative Splicing of Bovine NCF4 and Mastitis Susceptibility. Ju Z, Wang C, Wang X, Yang C, Sun Y, Jiang Q, Wang F, Li M, Zhong J, Huang J. PLoS ONE 10 e0143705 (2015)
  53. Characterization and expression of NADPH oxidase in LPS-, poly(I:C)- and zymosan-stimulated trout (Oncorhynchus mykiss W.) macrophages. Boltaña S, Doñate C, Goetz FW, MacKenzie S, Balasch JC. Fish Shellfish Immunol. 26 651-661 (2009)
  54. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity. Andersen AN, Landsverk OJ, Simonsen A, Bogen B, Corthay A, Øynebråten I. Front Immunol 7 167 (2016)
  55. Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. Castiglioni VG, Pires HR, Rosas Bertolini R, Riga A, Kerver J, Boxem M. Elife 9 e62067 (2020)
  56. The NMR structure of the p62 PB1 domain, a key protein in autophagy and NF-kappaB signaling pathway. Saio T, Yokochi M, Inagaki F. J. Biomol. NMR 45 335-341 (2009)
  57. CmTCP20 Plays a Key Role in Nitrate and Auxin Signaling-Regulated Lateral Root Development in Chrysanthemum. Fan HM, Sun CH, Wen LZ, Liu BW, Ren H, Sun X, Ma FF, Zheng CS. Plant Cell Physiol 60 1581-1594 (2019)
  58. Structural basis of p62/SQSTM1 helical filaments and their role in cellular cargo uptake. Jakobi AJ, Huber ST, Mortensen SA, Schultz SW, Palara A, Kuhm T, Shrestha BK, Lamark T, Hagen WJH, Wilmanns M, Johansen T, Brech A, Sachse C. Nat Commun 11 440 (2020)
  59. The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Peng H, Yang F, Hu Q, Sun J, Peng C, Zhao Y, Huang C. Autophagy 16 698-708 (2020)
  60. SQSTM1L341V variant that is linked to sporadic ALS exhibits impaired association with MAP1LC3 in cultured cells. Nozaki M, Otomo A, Mitsui S, Ono S, Shirakawa R, Chen Y, Hama Y, Sato K, Chen X, Suzuki T, Shang HF, Hadano S. eNeurologicalSci 22 100301 (2021)
  61. Transcriptomic analysis of the autophagy machinery in crustaceans. Suwansa-Ard S, Kankuan W, Thongbuakaew T, Saetan J, Kornthong N, Kruangkum T, Khornchatri K, Cummins SF, Isidoro C, Sobhon P. BMC Genomics 17 587 (2016)
  62. Effect of p62/SQSTM1 polyubiquitination on its autophagic adaptor function and cellular survival under oxidative stress induced by arsenite. Lee H, Kim MN, Ryu KY. Biochem. Biophys. Res. Commun. 486 839-844 (2017)
  63. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47(phox) and p67(phox) via thiol accessibility and SRCD spectroscopy. Bizouarn T, Karimi G, Masoud R, Souabni H, Machillot P, Serfaty X, Wien F, Réfrégiers M, Houée-Levin C, Baciou L. FEBS J. 283 2896-2910 (2016)
  64. Hyper-phosphorylation of Sequestosome-1 Distinguishes Resistance to Cisplatin in Patient Derived High Grade Serous Ovarian Cancer Cells. Nguyen EV, Huhtinen K, Goo YA, Kaipio K, Andersson N, Rantanen V, Hynninen J, Lahesmaa R, Carpen O, Goodlett DR. Mol. Cell Proteomics 16 1377-1392 (2017)
  65. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. Ziegler CS, Bouchab L, Tramier M, Durand D, Fieschi F, Dupré-Crochet S, Mérola F, Nüße O, Erard M. J Biol Chem 294 3824-3836 (2019)
  66. Size, organization, and dynamics of soluble SQSTM1 and LC3-SQSTM1 complexes in living cells. Kraft LJ, Dowler J, Manral P, Kenworthy AK. Autophagy 12 1660-1674 (2016)
  67. CD13 orients the apical-basal polarity axis necessary for lumen formation. Wang LT, Rajah A, Brown CM, McCaffrey L. Nat Commun 12 4697 (2021)
  68. Homogeneous time-resolved fluorescence resonance energy transfer assay for measurement of Phox/Bem1p (PB1) domain heterodimerization. Nakamura K, Zawistowski JS, Hughes MA, Sexton JZ, Yeh LA, Johnson GL, Scott JE. J Biomol Screen 13 396-405 (2008)
  69. Protein encoded in human telomerase RNA is involved in cell protective pathways. Rubtsova M, Naraykina Y, Vasilkova D, Meerson M, Zvereva M, Prassolov V, Lazarev V, Manuvera V, Kovalchuk S, Anikanov N, Butenko I, Pobeguts O, Govorun V, Dontsova O. Nucleic Acids Res. 46 8966-8977 (2018)
  70. Comment The higher-order molecular organization of p62/SQSTM1. Johansen T, Sachse C. Oncotarget 6 16796-16797 (2015)
  71. ZZ-dependent regulation of p62/SQSTM1 in autophagy. Zhang Y, Mun SR, Linares JF, Ahn J, Towers CG, Ji CH, Fitzwalter BE, Holden MR, Mi W, Shi X, Moscat J, Thorburn A, Diaz-Meco MT, Kwon YT, Kutateladze TG. Nat Commun 9 4373 (2018)
  72. Interdomain Flexibility within NADPH Oxidase Suggested by SANS Using LMNG Stealth Carrier. Vermot A, Petit-Härtlein I, Breyton C, Le Roy A, Thépaut M, Vivès C, Moulin M, Härtlein M, Grudinin S, Smith SME, Ebel C, Martel A, Fieschi F. Biophys J 119 605-618 (2020)
  73. Labeling and measuring stressed mitochondria using a PINK1-based ratiometric fluorescent sensor. Uesugi R, Ishii S, Matsuura A, Itakura E. J Biol Chem 297 101279 (2021)
  74. Macrophages-aPKCɩ-CCL5 Feedback Loop Modulates the Progression and Chemoresistance in Cholangiocarcinoma. Yang T, Deng Z, Xu L, Li X, Yang T, Qian Y, Lu Y, Tian L, Yao W, Wang J. J Exp Clin Cancer Res 41 23 (2022)
  75. Par complex cluster formation mediated by phase separation. Liu Z, Yang Y, Gu A, Xu J, Mao Y, Lu H, Hu W, Lei QY, Li Z, Zhang M, Cai Y, Wen W. Nat Commun 11 2266 (2020)
  76. Letter Re-examination of chimp protein kinases suggests "novel architectures" are gene prediction artifacts. Robison K. BMC Genomics 11 66 (2010)
  77. Regulation of NADPH Oxidases by G Protein-Coupled Receptors. Petry A, Görlach A. Antioxid. Redox Signal. 30 74-94 (2019)
  78. The E3 Ubiquitin Ligase SCF Cyclin F Promotes Sequestosome-1/p62 Insolubility and Foci Formation and is Dysregulated in ALS and FTD Pathogenesis. Davidson JM, Wu SSL, Rayner SL, Cheng F, Duncan K, Russo C, Newbery M, Ding K, Scherer NM, Balez R, García-Redondo A, Rábano A, Rosa-Fernandes L, Ooi L, Williams KL, Morsch M, Blair IP, Di Ieva A, Yang S, Chung RS, Lee A. Mol Neurobiol (2023)
  79. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Xu D, Li X, Shao F, Lv G, Lv H, Lee JH, Qian X, Wang Z, Xia Y, Du L, Zheng Y, Wang H, Lyu J, Lu Z. Sci Adv 5 eaav4570 (2019)
  80. The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy. Gallagher ER, Holzbaur ELF. Cell Rep 42 112037 (2023)