1nvs Citations

Structural basis for Chk1 inhibition by UCN-01.

J Biol Chem 277 46609-15 (2002)
Related entries: 1nvq, 1nvr

Cited: 109 times
EuropePMC logo PMID: 12244092

Abstract

Chk1 is a serine-threonine kinase that plays an important role in the DNA damage response, including G(2)/M cell cycle control. UCN-01 (7-hydroxystaurosporine), currently in clinical trials, has recently been shown to be a potent Chk1 inhibitor that abrogates the G(2)/M checkpoint induced by DNA-damaging agents. To understand the structural basis of Chk1 inhibition by UCN-01, we determined the crystal structure of the Chk1 kinase domain in complex with UCN-01. Chk1 structures with staurosporine and its analog SB-218078 were also determined. All three compounds bind in the ATP-binding pocket of Chk1, producing only slight changes in the protein conformation. Selectivity of UCN-01 toward Chk1 over cyclin-dependent kinases can be explained by the presence of a hydroxyl group in the lactam moiety interacting with the ATP-binding pocket. Hydrophobic interactions and hydrogen-bonding interactions were observed in the structures between UCN-01 and the Chk1 kinase domain. The high structural complementarity of these interactions is consistent with the potency and selectivity of UCN-01.

Articles - 1nvs mentioned but not cited (6)

  1. DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations. Cuzzolin A, Sturlese M, Malvacio I, Ciancetta A, Moro S. Molecules 20 9977-9993 (2015)
  2. Discovery of novel checkpoint kinase 1 inhibitors by virtual screening based on multiple crystal structures. Li Y, Kim DJ, Ma W, Lubet RA, Bode AM, Dong Z. J Chem Inf Model 51 2904-2914 (2011)
  3. PixelDB: Protein-peptide complexes annotated with structural conservation of the peptide binding mode. Frappier V, Duran M, Keating AE. Protein Sci 27 276-285 (2018)
  4. Further Characterization of Calcineurin B-Like Protein and Its Interacting Partner CBL-Interacting Protein Kinase from Pisum sativum. Tuteja N, Mahajan S. Plant Signal Behav 2 358-361 (2007)
  5. Development and validation of an improved algorithm for overlaying flexible molecules. Taylor R, Cole JC, Cosgrove DA, Gardiner EJ, Gillet VJ, Korb O. J Comput Aided Mol Des 26 451-472 (2012)
  6. PKIS deep dive yields a chemical starting point for dark kinases and a cell active BRSK2 inhibitor. Tamir TY, Drewry DH, Wells C, Major MB, Axtman AD. Sci Rep 10 15826 (2020)


Reviews citing this publication (18)

  1. Protein kinase C, an elusive therapeutic target? Mochly-Rosen D, Das K, Grimes KV. Nat Rev Drug Discov 11 937-957 (2012)
  2. The Akt/PKB pathway: molecular target for cancer drug discovery. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. Oncogene 24 7482-7492 (2005)
  3. The 14-3-3 cancer connection. Hermeking H. Nat Rev Cancer 3 931-943 (2003)
  4. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Zhou BB, Bartek J. Nat Rev Cancer 4 216-225 (2004)
  5. Cell-cycle targeted therapies. Swanton C. Lancet Oncol 5 27-36 (2004)
  6. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Sánchez C, Méndez C, Salas JA. Nat Prod Rep 23 1007-1045 (2006)
  7. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. Eastman A. J Cell Biochem 91 223-231 (2004)
  8. Protein kinase inhibition of clinically important staurosporine analogues. Gani OA, Engh RA. Nat Prod Rep 27 489-498 (2010)
  9. Imidazoles as potential anticancer agents. Ali I, Lone MN, Aboul-Enein HY. Medchemcomm 8 1742-1773 (2017)
  10. ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. Ronco C, Ronco C, Martin AR, Demange L, Benhida R. Medchemcomm 8 295-319 (2017)
  11. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Blagosklonny MV. Trends Pharmacol Sci 26 77-81 (2005)
  12. Small molecule inhibitors targeting cyclin-dependent kinases as anticancer agents. Dai Y, Grant S. Curr Oncol Rep 6 123-130 (2004)
  13. Marine pyrrolocarbazoles and analogues: synthesis and kinase inhibition. Deslandes S, Chassaing S, Delfourne E. Mar Drugs 7 754-786 (2009)
  14. Novel inhibitors of checkpoint kinase 1. Arrington KL, Dudkin VY. ChemMedChem 2 1571-1585 (2007)
  15. Clinically Applicable Inhibitors Impacting Genome Stability. Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Molecules 23 E1166 (2018)
  16. Therapeutic potential of investigational CHK-1 inhibitors for the treatment of solid tumors. Babiker HM, McBride A, Cooke LS, Mahadevan D. Expert Opin Investig Drugs 26 1063-1072 (2017)
  17. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Silnitsky S, Rubin SJS, Zerihun M, Qvit N. Int J Mol Sci 24 17600 (2023)
  18. Anti-tumor pharmacology of natural products targeting mitosis. Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Cancer Biol Med 19 j.issn.2095-3941.2022.0006 (2022)

Articles citing this publication (85)

  1. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. Cancer Cell 11 175-189 (2007)
  2. Chromosome breakage after G2 checkpoint release. Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S, Stiff T, Jeggo P, Löbrich M. J Cell Biol 176 749-755 (2007)
  3. Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M. J Mol Biol 333 393-407 (2003)
  4. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Sausville E, Lorusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P, Zabludoff S, Agbo F, Oakes P, Senderowicz A. Cancer Chemother Pharmacol 73 539-549 (2014)
  5. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  6. Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM. Biochem J 375 255-262 (2003)
  7. Inhibition of Aurora A in response to DNA damage. Krystyniak A, Garcia-Echeverria C, Prigent C, Ferrari S. Oncogene 25 338-348 (2006)
  8. The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. Flatten K, Dai NT, Vroman BT, Loegering D, Erlichman C, Karnitz LM, Kaufmann SH. J Biol Chem 280 14349-14355 (2005)
  9. Structural and functional characterization of the human protein kinase ASK1. Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S. Structure 15 1215-1226 (2007)
  10. Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN, Palagyi A, Eisen C, Ellwart JW, Rivera J, Rubio-Viqueira B, Hidalgo M, Bunz F, Göke B, Heeschen C. Stem Cells 29 418-429 (2011)
  11. Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Squire CJ, Dickson JM, Ivanovic I, Baker EN. Structure 13 541-550 (2005)
  12. ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells. Despras E, Daboussi F, Hyrien O, Marheineke K, Kannouche PL. Hum Mol Genet 19 1690-1701 (2010)
  13. The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Krueger SA, Wilson GD, Piasentin E, Joiner MC, Marples B. Int J Radiat Oncol Biol Phys 77 1509-1517 (2010)
  14. RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells. Sleeth KM, Sørensen CS, Issaeva N, Dziegielewski J, Bartek J, Helleday T. J Mol Biol 373 38-47 (2007)
  15. On the origins of enzyme inhibitor selectivity and promiscuity: a case study of protein kinase binding to staurosporine. Tanramluk D, Schreyer A, Pitt WR, Blundell TL. Chem Biol Drug Des 74 16-24 (2009)
  16. Sequence and structural analysis of kinase ATP pocket residues. Vulpetti A, Bosotti R. Farmaco 59 759-765 (2004)
  17. Interactions of LY333531 and other bisindolyl maleimide inhibitors with PDK1. Komander D, Kular GS, Schüttelkopf AW, Deak M, Prakash KR, Bain J, Elliott M, Garrido-Franco M, Kozikowski AP, Alessi DR, van Aalten DM. Structure 12 215-226 (2004)
  18. Crystal structure of domain-swapped STE20 OSR1 kinase domain. Lee SJ, Cobb MH, Goldsmith EJ. Protein Sci 18 304-313 (2009)
  19. Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Signore M, Pelacchi F, di Martino S, Runci D, Biffoni M, Giannetti S, Morgante L, De Majo M, Petricoin EF, Stancato L, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L. Cell Death Dis 5 e1223 (2014)
  20. Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1. Park HU, Jeong JH, Chung JH, Brady JN. Oncogene 23 4966-4974 (2004)
  21. Alternative binding modes of an inhibitor to two different kinases. De Moliner E, Brown NR, Johnson LN. Eur J Biochem 270 3174-3181 (2003)
  22. Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. Garate M, Campos EI, Bush JA, Xiao H, Li G. FASEB J 21 3705-3716 (2007)
  23. 4-(Aminoalkylamino)-3-benzimidazole-quinolinones as potent CHK-1 inhibitors. Ni ZJ, Barsanti P, Brammeier N, Diebes A, Poon DJ, Ng S, Pecchi S, Pfister K, Renhowe PA, Ramurthy S, Wagman AS, Bussiere DE, Le V, Zhou Y, Jansen JM, Ma S, Gesner TG. Bioorg Med Chem Lett 16 3121-3124 (2006)
  24. Autorepression of rfx1 gene expression: functional conservation from yeast to humans in response to DNA replication arrest. Lubelsky Y, Reuven N, Shaul Y. Mol Cell Biol 25 10665-10673 (2005)
  25. Crystal structures of the N-terminal kinase domain of human RSK1 bound to three different ligands: Implications for the design of RSK1 specific inhibitors. Ikuta M, Kornienko M, Byrne N, Reid JC, Mizuarai S, Kotani H, Munshi SK. Protein Sci 16 2626-2635 (2007)
  26. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. Göhler T, Munoz IM, Rouse J, Blow JJ. DNA Repair (Amst) 7 775-787 (2008)
  27. Constitutive autophagy in plant root cells. Yano K, Suzuki T, Moriyasu Y. Autophagy 3 360-362 (2007)
  28. Host modulators of H1N1 cytopathogenicity. Ward SE, Kim HS, Komurov K, Mendiratta S, Tsai PL, Schmolke M, Satterly N, Manicassamy B, Forst CV, Roth MG, García-Sastre A, Blazewska KM, McKenna CE, Fontoura BM, White MA. PLoS One 7 e39284 (2012)
  29. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks. Berglund FM, Clarke PR. Biochem Biophys Res Commun 381 59-64 (2009)
  30. ATR signaling mediates an S-phase checkpoint after inhibition of poly(ADP-ribose) polymerase activity. Horton JK, Stefanick DF, Kedar PS, Wilson SH. DNA Repair (Amst) 6 742-750 (2007)
  31. Checkpoint kinase 1-mediated phosphorylation of Cdc25C and bad proteins are involved in antitumor effects of loratadine-induced G2/M phase cell-cycle arrest and apoptosis. Chen JS, Lin SY, Tso WL, Yeh GC, Lee WS, Tseng H, Chen LC, Ho YS. Mol Carcinog 45 461-478 (2006)
  32. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding. Sheinerman FB, Giraud E, Laoui A. J Mol Biol 352 1134-1156 (2005)
  33. Inhibiting NF-κB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures. Li K, McGee LR, Fisher B, Sudom A, Liu J, Rubenstein SM, Anwer MK, Cushing TD, Shin Y, Ayres M, Lee F, Eksterowicz J, Faulder P, Waszkowycz B, Plotnikova O, Farrelly E, Xiao SH, Chen G, Wang Z. Bioorg Med Chem Lett 23 1238-1244 (2013)
  34. The protein kinase C inhibitor bisindolyl maleimide 2 binds with reversed orientations to different conformations of protein kinase A. Gassel M, Breitenlechner CB, König N, Huber R, Engh RA, Bossemeyer D. J Biol Chem 279 23679-23690 (2004)
  35. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes Idel B, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N. Cell Cycle 11 3627-3637 (2012)
  36. Genomic DNA damage and ATR-Chk1 signaling determine oncolytic adenoviral efficacy in human ovarian cancer cells. Connell CM, Shibata A, Tookman LA, Archibald KM, Flak MB, Pirlo KJ, Lockley M, Wheatley SP, McNeish IA. J Clin Invest 121 1283-1297 (2011)
  37. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Marabitti V, Lillo G, Malacaria E, Palermo V, Sanchez M, Pichierri P, Franchitto A. Nucleic Acids Res 47 3485-3502 (2019)
  38. Hypoxia activates tumor suppressor p53 by inducing ATR-Chk1 kinase cascade-mediated phosphorylation and consequent 14-3-3γ inactivation of MDMX protein. Lee JH, Jin Y, He G, Zeng SX, Wang YV, Wahl GM, Lu H. J Biol Chem 287 20898-20903 (2012)
  39. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Dobeš P, Fanfrlík J, Rezáč J, Otyepka M, Hobza P. J Comput Aided Mol Des 25 223-235 (2011)
  40. A first generation inhibitor of human Greatwall kinase, enabled by structural and functional characterisation of a minimal kinase domain construct. Ocasio CA, Rajasekaran MB, Walker S, Le Grand D, Spencer J, Pearl FM, Ward SE, Savic V, Pearl LH, Hochegger H, Oliver AW. Oncotarget 7 71182-71197 (2016)
  41. Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1. Sugimoto K, Sasaki M, Isobe Y, Tsutsui M, Suto H, Ando J, Tamayose K, Ando M, Oshimi K. Oncogene 27 3091-3101 (2008)
  42. New Multitarget Approaches in the War Against Glioblastoma: A Mini-Perspective. Sestito S, Runfola M, Tonelli M, Chiellini G, Rapposelli S. Front Pharmacol 9 874 (2018)
  43. Tubulozole-induced G2/M cell cycle arrest in human colon cancer cells through formation of microtubule polymerization mediated by ERK1/2 and Chk1 kinase activation. Chou YH, Ho YS, Wu CC, Chai CY, Chen SC, Lee CH, Tsai PS, Wu CH. Food Chem Toxicol 45 1356-1367 (2007)
  44. Phase I study of LY2603618, a CHK1 inhibitor, in combination with gemcitabine in Japanese patients with solid tumors. Doi T, Yoshino T, Shitara K, Matsubara N, Fuse N, Naito Y, Uenaka K, Nakamura T, Hynes SM, Lin AB. Anticancer Drugs 26 1043-1053 (2015)
  45. Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding. Ku SY, Yip P, Cornell KA, Riscoe MK, Behr JB, Guillerm G, Howell PL. J Biol Chem 282 22195-22206 (2007)
  46. Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling. Shomin CD, Meyer SC, Ghosh I. Bioorg Med Chem 17 6196-6202 (2009)
  47. Bis-imide granulatimide analogues as potent Checkpoint 1 kinase inhibitors. Hénon H, Messaoudi S, Anizon F, Aboab B, Kucharczyk N, Léonce S, Golsteyn RM, Pfeiffer B, Prudhomme M. Eur J Pharmacol 554 106-112 (2007)
  48. Kinase drug discovery by affinity selection/mass spectrometry (ASMS): application to DNA damage checkpoint kinase Chk1. Comess KM, Trumbull JD, Park C, Chen Z, Judge RA, Voorbach MJ, Coen M, Gao L, Tang H, Kovar P, Cheng X, Schurdak ME, Zhang H, Sowin T, Burns DJ. J Biomol Screen 11 755-764 (2006)
  49. A liquid chromatography/mass spectrometry-based method for the selection of ATP competitive kinase inhibitors. Khandekar SS, Feng B, Yi T, Chen S, Laping N, Bramson N. J Biomol Screen 10 447-455 (2005)
  50. Synthesis and biological activities of 7-aza rebeccamycin analogues bearing the sugar moiety on the nitrogen of the pyridine ring. Messaoudi S, Anizon F, Peixoto P, David-Cordonnier MH, Golsteyn RM, Léonce S, Pfeiffer B, Prudhomme M. Bioorg Med Chem 14 7551-7562 (2006)
  51. Use of photoaffinity labeling and site-directed mutagenesis for identification of the key residue responsible for extraordinarily high affinity binding of UCN-01 in human alpha1-acid glycoprotein. Katsuki M, Chuang VT, Nishi K, Kawahara K, Nakayama H, Yamaotsu N, Hirono S, Otagiri M. J Biol Chem 280 1384-1391 (2005)
  52. DNA damage-induced accumulation of Rad18 protein at stalled replication forks in mammalian cells involves upstream protein phosphorylation. Nikiforov A, Svetlova M, Solovjeva L, Sasina L, Siino J, Nazarov I, Bradbury M, Tomilin N. Biochem Biophys Res Commun 323 831-837 (2004)
  53. Novel 5-azaindolocarbazoles as cytotoxic agents and Chk1 inhibitors. Lefoix M, Coudert G, Routier S, Pfeiffer B, Caignard DH, Hickman J, Pierré A, Golsteyn RM, Léonce S, Bossard C, Mérour JY. Bioorg Med Chem 16 5303-5321 (2008)
  54. Structure-based and shape-complemented pharmacophore modeling for the discovery of novel checkpoint kinase 1 inhibitors. Chen XM, Lu T, Lu S, Li HF, Yuan HL, Ran T, Liu HC, Chen YD. J Mol Model 16 1195-1204 (2010)
  55. Synthesis and biological evaluation of new dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones, substituted with various saturated and unsaturated side chains via palladium catalyzed cross-coupling reactions. Hénon H, Anizon F, Golsteyn RM, Léonce S, Hofmann R, Pfeiffer B, Prudhomme M. Bioorg Med Chem 14 3825-3834 (2006)
  56. Synthesis and structure-activity relationships of N-6 substituted analogues of 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of Wee1 and Chk1 checkpoint kinases. Smaill JB, Baker EN, Booth RJ, Bridges AJ, Dickson JM, Dobrusin EM, Ivanovic I, Kraker AJ, Lee HH, Lunney EA, Ortwine DF, Palmer BD, Quin J, Squire CJ, Thompson AM, Denny WA. Eur J Med Chem 43 1276-1296 (2008)
  57. A chemical genomic study identifying diversity in cell migration signaling in cancer cells. Magi S, Tashiro E, Imoto M. Sci Rep 2 823 (2012)
  58. Checkpoint kinase 1 negatively regulates somatic hypermutation. Frankenberger S, Davari K, Fischer-Burkart S, Böttcher K, Tomi NS, Zimber-Strobl U, Jungnickel B. Nucleic Acids Res 42 3666-3674 (2014)
  59. Chk1 has an essential role in the survival of differentiated cortical neurons in the absence of DNA damage. Ye W, Blain SW. Apoptosis 16 449-459 (2011)
  60. Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy. Bhattacharya S, Asaithamby A. Transl Cancer Res 6 S822-S839 (2017)
  61. Tryptophan residues play an important role in the extraordinarily high affinity binding interaction of UCN-01 to human alpha-1-acid glycoprotein. Katsuki M, Chuang VT, Chuang VT, Nishi K, Suenaga A, Otagiri M. Pharm Res 21 1648-1655 (2004)
  62. Characterization of novel checkpoint kinase 1 inhibitors by in vitro assays and in human cancer cells treated with topoisomerase inhibitors. Ferry G, Studeny A, Bossard C, Kubara PM, Zeyer D, Renaud JP, Casara P, de Nanteuil G, Wierzbicki M, Pfeiffer B, Prudhomme M, Leonce S, Pierré A, Boutin JA, Golsteyn RM. Life Sci 89 259-268 (2011)
  63. Rebeccamycin derivatives as dual DNA-damaging agents and potent checkpoint kinase 1 inhibitors. Marminon C, Anizon F, Moreau P, Pfeiffer B, Pierré A, Golsteyn RM, Peixoto P, Hildebrand MP, David-Cordonnier MH, Lozach O, Meijer L, Prudhomme M. Mol Pharmacol 74 1620-1629 (2008)
  64. Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Al-Ali H, Ragan TJ, Gao X, Harris TK. Bioconjug Chem 18 1294-1302 (2007)
  65. Cell cycle-dependent formation of Cdc45-Claspin complexes in human cells is compromized by UV-mediated DNA damage. Broderick R, Rainey MD, Santocanale C, Nasheuer HP. FEBS J 280 4888-4902 (2013)
  66. Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone. Conchon E, Anizon F, Aboab B, Golsteyn RM, Léonce S, Pfeiffer B, Prudhomme M. Eur J Med Chem 43 282-292 (2008)
  67. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain. Huber RG, Fan H, Bond PJ. PLoS Comput Biol 11 e1004560 (2015)
  68. Design of granulatimide and isogranulatimide analogues as potential Chk1 inhibitors: Study of amino-platforms for their synthesis. Lavrard H, Rodriguez F, Delfourne E. Bioorg Med Chem 22 4961-4967 (2014)
  69. Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1. Gupta PP, Bastikar VA, Kuciauskas D, Kothari SL, Cicenas J, Valius M. Med Oncol 34 176 (2017)
  70. STK3 is a therapeutic target for a subset of acute myeloid leukemias. Camgoz A, Paszkowski-Rogacz M, Satpathy S, Wermke M, Hamann MV, von Bonin M, Choudhary C, Knapp S, Buchholz F. Oncotarget 9 25458-25473 (2018)
  71. CHK1 kinase inhibition: identification of allosteric hits using MD simulations, pharmacophore modeling, docking and MM-PBSA calculations. Al-Shar'i N, Musleh SS. Mol Divers 26 903-921 (2022)
  72. Structural basis for recruitment of the CHK1 DNA damage kinase by the CLASPIN scaffold protein. Day M, Parry-Morris S, Houghton-Gisby J, Oliver AW, Pearl LH. Structure 29 531-539.e3 (2021)
  73. Synthesis, checkpoint kinase 1 inhibitory properties and in vitro antiproliferative activities of new pyrrolocarbazoles. Conchon E, Anizon F, Aboab B, Golsteyn RM, Léonce S, Pfeiffer B, Prudhomme M. Bioorg Med Chem 16 4419-4430 (2008)
  74. Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of indolylpyrazolones and indolylpyridazinedione. Conchon E, Aboab B, Golsteyn RM, Cruzalegui F, Edmonds T, Léonce S, Pfeiffer B, Prudhomme M. Eur J Med Chem 41 1470-1477 (2006)
  75. A robust, target-driven, cell-based assay for checkpoint kinase 1 inhibitors. Ish T, Sootome H, King AJ, Suda M, Noro N, Yamashita K, Noumi T, Ishii T. J Biomol Screen 12 809-817 (2007)
  76. Quantitative tracking of passage and 3D culture effects on chondrocyte and fibrochondrocyte gene expression. Son MS, Levenston ME. J Tissue Eng Regen Med 11 1185-1194 (2017)
  77. Synthesis and preliminary structure-activity relationship study of 2-aryl-2H-pyrazolo[4,3-c]quinolin-3-ones as potential checkpoint kinase 1 (Chk1) inhibitors. Malvacio I, Cuzzolin A, Sturlese M, Vera DMA, Moyano EL, Moro S. J Enzyme Inhib Med Chem 33 171-183 (2017)
  78. Applications of NMR screening techniques to the pharmaceutical target Checkpoint kinase 1. Lancelot N, Piotto M, Theret I, Lesur B, Hennig P. J Pharm Biomed Anal 93 125-135 (2014)
  79. Natural Protein Kinase Inhibitors, Staurosporine, and Chelerythrine Suppress Wheat Blast Disease Caused by Magnaporthe oryzae Triticum. Chakraborty M, Rabby SMF, Gupta DR, Rahman M, Paul SK, Mahmud NU, Rahat AAM, Jankuloski L, Islam T. Microorganisms 10 1186 (2022)
  80. Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia. Casado JA, Valeri A, Sanchez-Domínguez R, Vela P, López A, Navarro S, Alberquilla O, Hanenberg H, Pujol R, Segovia JC, Minguillón J, Surrallés J, de Heredia CD, Sevilla J, Rio P, Bueren JA. J Clin Invest 132 e142842 (2022)
  81. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1. Kim KS, Choi KJ, Bae S. Int J Mol Med 38 1490-1498 (2016)
  82. Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. Osorio-Zambrano WF, Davey S. PLoS One 10 e0144434 (2015)
  83. Configurational stability of bisindolylmaleimide cyclophanes: from conformers to the first configurationally stable, atropisomeric bisindolylmaleimides. Barrett S, Bartlett S, Bolt A, Ironmonger A, Joce C, Nelson A, Woodhall T. Chemistry 11 6277-6285 (2005)
  84. TWN-FS method: A novel fragment screening method for drug discovery. Yoon HR, Park GJ, Balupuri A, Kang NS. Comput Struct Biotechnol J 21 4683-4696 (2023)
  85. The structural basis for high affinity binding of α1-acid glycoprotein to the potent antitumor compound UCN-01. Landin EJB, Williams C, Ryan SA, Bochel A, Akter N, Redfield C, Sessions RB, Dedi N, Taylor RJ, Crump MP. J Biol Chem 297 101392 (2021)