1naa Citations

Mechanism of the reductive half-reaction in cellobiose dehydrogenase.

J Biol Chem 278 7160-6 (2003)
Cited: 35 times
EuropePMC logo PMID: 12493734

Abstract

The extracellular flavocytochrome cellobiose dehydrogenase (CDH; EC ) participates in lignocellulose degradation by white-rot fungi with a proposed role in the early events of wood degradation. The complete hemoflavoenzyme consists of a catalytically active dehydrogenase fragment (DH(cdh)) connected to a b-type cytochrome domain via a linker peptide. In the reductive half-reaction, DH(cdh) catalyzes the oxidation of cellobiose to yield cellobiono-1,5-lactone. The active site of DH(cdh) is structurally similar to that of glucose oxidase and cholesterol oxidase, with a conserved histidine residue positioned at the re face of the flavin ring close to the N5 atom. The mechanisms of oxidation in glucose oxidase and cholesterol oxidase are still poorly understood, partly because of lack of experimental structure data or difficulties in interpreting existing data for enzyme-ligand complexes. Here we report the crystal structure of the Phanerochaete chrysosporium DH(cdh) with a bound inhibitor, cellobiono-1,5-lactam, at 1.8-A resolution. The distance between the lactam C1 and the flavin N5 is only 2.9 A, implying that in an approximately planar transition state, the maximum distance for the axial 1-hydrogen to travel for covalent addition to N5 is 0.8-0.9 A. The lactam O1 interacts intimately with the side chains of His-689 and Asn-732. Our data lend substantial structural support to a reaction mechanism where His-689 acts as a general base by abstracting the O1 hydroxyl proton in concert with transfer of the C1 hydrogen as hydride to the re face of the flavin N5.

Reviews - 1naa mentioned but not cited (2)

  1. Cellulose degradation by oxidative enzymes. Dimarogona M, Topakas E, Christakopoulos P. Comput Struct Biotechnol J 2 e201209015 (2012)
  2. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. Rui H, Ashton KS, Min J, Wang C, Potts PR. RSC Chem Biol 4 192-215 (2023)

Articles - 1naa mentioned but not cited (7)

  1. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate. Tan TC, Spadiut O, Wongnate T, Sucharitakul J, Krondorfer I, Sygmund C, Haltrich D, Chaiyen P, Peterbauer CK, Divne C. PLoS One 8 e53567 (2013)
  2. Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations. Kracher D, Zahma K, Schulz C, Sygmund C, Gorton L, Ludwig R. FEBS J 282 3136-3148 (2015)
  3. Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons. Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S. Sci Rep 3 3270 (2013)
  4. Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis. Harada H, Onoda A, Uchihashi T, Watanabe H, Sunagawa N, Samejima M, Igarashi K, Hayashi T. Chem Sci 8 6561-6565 (2017)
  5. Cellobiose dehydrogenase of Chaetomium sp. INBI 2-26(-): structural basis of enhanced activity toward glucose at neutral pH. Vasilchenko LG, Karapetyan KN, Yershevich OP, Ludwig R, Zamocky M, Peterbauer CK, Haltrich D, Rabinovich ML. Biotechnol J 6 538-553 (2011)
  6. Crystallographic fragment screening-based study of a novel FAD-dependent oxidoreductase from Chaetomium thermophilum. Švecová L, Østergaard LH, Skálová T, Schnorr KM, Koval' T, Kolenko P, Stránský J, Sedlák D, Dušková J, Trundová M, Hašek J, Dohnálek J. Acta Crystallogr D Struct Biol 77 755-775 (2021)
  7. Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium. Igarashi K, Kaneko S, Kitaoka M, Samejima M. J Appl Glycosci (1999) 67 51-57 (2020)


Reviews citing this publication (3)

  1. Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, Gorton L. Anal Bioanal Chem 405 3637-3658 (2013)
  2. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. Wongnate T, Chaiyen P. FEBS J 280 3009-3027 (2013)
  3. Flavin-containing heme enzymes. Mowat CG, Gazur B, Campbell LP, Chapman SK. Arch Biochem Biophys 493 37-52 (2010)

Articles citing this publication (23)

  1. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C. Nat Commun 6 7542 (2015)
  2. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. Hallberg BM, Leitner C, Haltrich D, Divne C. J Mol Biol 341 781-796 (2004)
  3. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, Larrondo LF, Schmoll M, Druzhinina IS, Kubicek CP, Gaskell JA, Kersten P, St John F, Glasner J, Sabat G, Splinter BonDurant S, Syed K, Yadav J, Mgbeahuruike AC, Kovalchuk A, Asiegbu FO, Lackner G, Hoffmeister D, Rencoret J, Gutiérrez A, Sun H, Lindquist E, Barry K, Riley R, Grigoriev IV, Henrissat B, Kües U, Berka RM, Martínez AT, Covert SF, Blanchette RA, Cullen D. PLoS Genet 10 e1004759 (2014)
  4. Structural analysis of fungus-derived FAD glucose dehydrogenase. Yoshida H, Sakai G, Mori K, Kojima K, Kamitori S, Sode K. Sci Rep 5 13498 (2015)
  5. Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC. J Hazard Mater 181 315-323 (2010)
  6. Structural characterization of glucooligosaccharide oxidase from Acremonium strictum. Lee MH, Lai WL, Lin SF, Hsu CS, Liaw SH, Tsai YC. Appl Environ Microbiol 71 8881-8887 (2005)
  7. Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Maischberger T, Nguyen TH, Sukyai P, Kittl R, Riva S, Ludwig R, Haltrich D. Carbohydr Res 343 2140-2147 (2008)
  8. Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity. Dreveny I, Andryushkova AS, Glieder A, Gruber K, Kratky C. Biochemistry 48 3370-3377 (2009)
  9. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. Ferreira P, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJ, Martínez AT. FEBS J 273 4878-4888 (2006)
  10. Importance of the gating segment in the substrate-recognition loop of pyranose 2-oxidase. Spadiut O, Tan TC, Pisanelli I, Haltrich D, Divne C. FEBS J 277 2892-2909 (2010)
  11. Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases. Karapetyan KN, Fedorova TV, Vasil'chenko LG, Ludwig R, Haltrich D, Rabinovich ML. J Biotechnol 121 34-48 (2006)
  12. Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction. Wongnate T, Sucharitakul J, Chaiyen P. Chembiochem 12 2577-2586 (2011)
  13. Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum. Foumani M, Vuong TV, Master ER. Biotechnol Bioeng 108 2261-2269 (2011)
  14. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. Ferreira P, Hernández-Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT, Medina M. FEBS J 282 3091-3106 (2015)
  15. Engineering pyranose 2-oxidase for modified oxygen reactivity. Brugger D, Krondorfer I, Shelswell C, Huber-Dittes B, Haltrich D, Peterbauer CK. PLoS One 9 e109242 (2014)
  16. Crystal structure of pyridoxine 4-oxidase from Mesorhizobium loti. Mugo AN, Kobayashi J, Yamasaki T, Mikami B, Ohnishi K, Yoshikane Y, Yagi T. Biochim Biophys Acta 1834 953-963 (2013)
  17. Engineering of choline oxidase from Arthrobacter nicotianae for potential use as biological bleach in detergents. Ribitsch D, Winkler S, Gruber K, Karl W, Wehrschütz-Sigl E, Eiteljörg I, Schratl P, Remler P, Stehr R, Bessler C, Mussmann N, Sauter K, Maurer KH, Schwab H. Appl Microbiol Biotechnol 87 1743-1752 (2010)
  18. Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase. Desriani, Ferri S, Sode K. Biochem Biophys Res Commun 391 1246-1250 (2010)
  19. Electrochemical evidence of self-substrate inhibition as functions regulation for cellobiose dehydrogenase from Phanerochaete chrysosporium. Stoica L, Ruzgas T, Gorton L. Bioelectrochemistry 76 42-52 (2009)
  20. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion. Tan TC, Spadiut O, Gandini R, Haltrich D, Divne C. PLoS One 9 e86736 (2014)
  21. Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii. Mulla D, Kracher D, Ludwig R, Nagy G, Grandits M, Holzer W, Saber Y, Gabra N, Viernstein H, Unger FM. Carbohydr Res 382 86-94 (2013)
  22. Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications. Sirota FL, Maurer-Stroh S, Li Z, Eisenhaber F, Eisenhaber B. Front Bioeng Biotechnol 9 701120 (2021)
  23. Characterization of a novel AA3_1 xylooligosaccharide dehydrogenase from Thermothelomyces myriococcoides CBS 398.93. Zhao H, Karppi J, Nguyen TTM, Bellemare A, Tsang A, Master E, Tenkanen M. Biotechnol Biofuels Bioprod 15 135 (2022)


Related citations provided by authors (1)

  1. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. Hallberg BM, Henriksson G, Pettersson G, Divne C J. Mol. Biol. 315 421-434 (2002)