1mwt Citations

Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.

Nat Struct Biol 9 870-6 (2002)
Related entries: 1mwr, 1mws, 1mwu, 1vqq

Cited: 219 times
EuropePMC logo PMID: 12389036

Abstract

The multiple antibiotic resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) has become a major clinical problem worldwide. The key determinant of the broad-spectrum beta-lactam resistance in MRSA strains is the penicillin-binding protein 2a (PBP2a). Because of its low affinity for beta-lactams, PBP2a provides transpeptidase activity to allow cell wall synthesis at beta-lactam concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by S. aureus. The crystal structure of a soluble derivative of PBP2a has been determined to 1.8 A resolution and provides the highest resolution structure for a high molecular mass PBP. Additionally, structures of the acyl-PBP complexes of PBP2a with nitrocefin, penicillin G and methicillin allow, for the first time, a comparison of an apo and acylated resistant PBP. An analysis of the PBP2a active site in these forms reveals the structural basis of its resistance and identifies features in newly developed beta-lactams that are likely important for high affinity binding.

Reviews - 1mwt mentioned but not cited (2)

  1. Standardized Outcomes Measures in Physical Therapy Practice for Treatment and Rehabilitation of Cerebral PALSY: A Systematic Review. Apolo-Arenas MD, Jerônimo AFA, Caña-Pino A, Fernandes O, Alegrete J, Parraca JA. J Pers Med 11 604 (2021)
  2. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. Mora-Ochomogo M, Lohans CT. RSC Med Chem 12 1623-1639 (2021)

Articles - 1mwt mentioned but not cited (11)

  1. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. Lovering AL, Gretes MC, Safadi SS, Danel F, de Castro L, Page MG, Strynadka NC. J. Biol. Chem. 287 32096-32102 (2012)
  2. Intrinsic evaluation of text mining tools may not predict performance on realistic tasks. Caporaso JG, Deshpande N, Fink JL, Bourne PE, Cohen KB, Hunter L. Pac Symp Biocomput 640-651 (2008)
  3. Effect of Motor Intervention for Infants and Toddlers With Cerebral Palsy: A Systematic Review and Meta-analysis. Baker A, Niles N, Kysh L, Sargent B. Pediatr Phys Ther 34 297-307 (2022)
  4. Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review. Toovey R, Bernie C, Harvey AR, McGinley JL, Spittle AJ. BMJ Paediatr Open 1 e000078 (2017)
  5. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Okella H, Okello E, Mtewa AG, Ikiriza H, Kaggwa B, Aber J, Ndekezi C, Nkamwesiga J, Ajayi CO, Mugeni IM, Ssentamu G, Ochwo S, Odongo S, Tolo CU, Kato CD, Engeu PO. Front Mol Biosci 9 1039286 (2022)
  6. Antibacterial and Antibiofilm Activity of Myrtenol against Staphylococcus aureus. Cordeiro L, Figueiredo P, Souza H, Sousa A, Andrade-Júnior F, Barbosa-Filho J, Lima E. Pharmaceuticals (Basel) 13 (2020)
  7. Investigation of Plant Antimicrobial Peptides against Selected Pathogenic Bacterial Species Using a Peptide-Protein Docking Approach. Mustafa G, Mehmood R, Mahrosh HS, Mehmood K, Ahmed S. Biomed Res Int 2022 1077814 (2022)
  8. Methicillin-Resistant Staphylococcus aureus: Docking-Based Virtual Screening and Molecular Dynamics Simulations to Identify Potential Penicillin-Binding Protein 2a Inhibitors from Natural Flavonoids. Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A. Int J Microbiol 2022 9130700 (2022)
  9. Molecular docking and pharmacokinetic prediction of phytochemicals from Syzygium cumini in interaction with penicillin-binding protein 2a and erythromycin ribosomal methylase of Staphylococcus aureus. Shidiki A, Vyas A. BioTechnologia (Pozn) 103 5-18 (2022)
  10. Monoclonal antibody anti-PBP2a protects mice against MRSA (methicillin-resistant Staphylococcus aureus) infections. Saraiva FB, de Araújo ACC, de Araújo AÉV, Senna JPM. PLoS ONE 14 e0225752 (2019)
  11. Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Cordeiro L, Figueiredo P, Souza H, Sousa A, Andrade-Júnior F, Medeiros D, Nóbrega J, Silva D, Martins E, Barbosa-Filho J, Lima E. Int J Mol Sci 21 (2020)


Reviews citing this publication (50)

  1. Antimicrobial resistance: the example of Staphylococcus aureus. Lowy FD. J. Clin. Invest. 111 1265-1273 (2003)
  2. Bacterial cell wall synthesis: new insights from localization studies. Scheffers DJ, Pinho MG. Microbiol. Mol. Biol. Rev. 69 585-607 (2005)
  3. Structural perspective of peptidoglycan biosynthesis and assembly. Lovering AL, Safadi SS, Strynadka NC. Annu. Rev. Biochem. 81 451-478 (2012)
  4. Antibacterial natural products in medicinal chemistry--exodus or revival? von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Angew. Chem. Int. Ed. Engl. 45 5072-5129 (2006)
  5. Listeria monocytogenes surface proteins: from genome predictions to function. Bierne H, Cossart P. Microbiol. Mol. Biol. Rev. 71 377-397 (2007)
  6. Beta-lactam antibiotic resistance: a current structural perspective. Wilke MS, Lovering AL, Strynadka NC. Curr. Opin. Microbiol. 8 525-533 (2005)
  7. Molecular basis and phenotype of methicillin resistance in Staphylococcus aureus and insights into new beta-lactams that meet the challenge. Llarrull LI, Fisher JF, Mobashery S. Antimicrob. Agents Chemother. 53 4051-4063 (2009)
  8. Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. Biek D, Critchley IA, Riccobene TA, Thye DA. J. Antimicrob. Chemother. 65 Suppl 4 iv9-16 (2010)
  9. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Peacock SJ, Paterson GK. Annu. Rev. Biochem. 84 577-601 (2015)
  10. Understanding the longevity of the beta-lactam antibiotics and of antibiotic/beta-lactamase inhibitor combinations. Buynak JD. Biochem. Pharmacol. 71 930-940 (2006)
  11. Bridging cell wall biosynthesis and bacterial morphogenesis. Matteï PJ, Neves D, Dessen A. Curr. Opin. Struct. Biol. 20 749-755 (2010)
  12. Targeting Antibiotic Resistance. Chellat MF, Raguž L, Riedl R. Angew. Chem. Int. Ed. Engl. 55 6600-6626 (2016)
  13. Methicillin-resistant Staphylococcus aureus: a pervasive pathogen highlights the need for new antimicrobial development. Morell EA, Balkin DM. Yale J Biol Med 83 223-233 (2010)
  14. Can beta-lactams be re-engineered to beat MRSA? Livermore DM. Clin. Microbiol. Infect. 12 Suppl 2 11-16 (2006)
  15. Development of new drugs for an old target: the penicillin binding proteins. Zervosen A, Sauvage E, Frère JM, Charlier P, Luxen A. Molecules 17 12478-12505 (2012)
  16. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. Foster TJ. FEMS Microbiol. Rev. 41 430-449 (2017)
  17. Ceftobiprole: an extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Anderson SD, Gums JG. Ann Pharmacother 42 806-816 (2008)
  18. Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. Sewell EW, Brown ED. J. Antibiot. 67 43-51 (2014)
  19. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Fishovitz J, Hermoso JA, Chang M, Mobashery S. IUBMB Life 66 572-577 (2014)
  20. Regulation of antibiotic resistance in Staphylococcus aureus. McCallum N, Berger-Bächi B, Senn MM. Int. J. Med. Microbiol. 300 118-129 (2010)
  21. Bacteriophages: biosensing tools for multi-drug resistant pathogens. Tawil N, Sacher E, Mandeville R, Meunier M. Analyst 139 1224-1236 (2014)
  22. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Gautam A, Vyas R, Tewari R. Crit. Rev. Biotechnol. 31 295-336 (2011)
  23. One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams. King DT, Sobhanifar S, Strynadka NC. Protein Sci. 25 787-803 (2016)
  24. Resistance to antibiotics targeted to the bacterial cell wall. Nikolaidis I, Favini-Stabile S, Dessen A. Protein Sci. 23 243-259 (2014)
  25. Solving staphylococcal resistance to beta-lactams. Chambers HF. Trends Microbiol. 11 145-148 (2003)
  26. Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus. Hao H, Dai M, Wang Y, Huang L, Yuan Z. Future Microbiol 7 1315-1329 (2012)
  27. New and emerging treatment of Staphylococcus aureus infections in the hospital setting. Moreillon P. Clin. Microbiol. Infect. 14 Suppl 3 32-41 (2008)
  28. Envelope Structures of Gram-Positive Bacteria. Rajagopal M, Walker S. Curr. Top. Microbiol. Immunol. 404 1-44 (2017)
  29. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Fisher JF, Mobashery S. Chem Rev 121 3412-3463 (2021)
  30. Novel beta-lactam antibiotics and inhibitor combinations. Bassetti M, Righi E, Viscoli C. Expert Opin Investig Drugs 17 285-296 (2008)
  31. Staphylococcal methicillin resistance: fine focus on folds and functions. Mallorquí-Fernández G, Marrero A, García-Piquè S, García-Castellanos R, Gomis-Rüth FX. FEMS Microbiol. Lett. 235 1-8 (2004)
  32. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Cheesman MJ, Ilanko A, Blonk B, Cock IE. Pharmacogn Rev 11 57-72 (2017)
  33. Penicillin-binding proteins: evergreen drug targets. Frère JM, Page MG. Curr Opin Pharmacol 18 112-119 (2014)
  34. Ceftobiprole: a new broad spectrum cephalosporin. El Solh A. Expert Opin Pharmacother 10 1675-1686 (2009)
  35. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Bahr G, González LJ, Vila AJ. Chem Rev 121 7957-8094 (2021)
  36. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Lakhundi S, Zhang K. Clin. Microbiol. Rev. 31 (2018)
  37. Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Sauvage E, Terrak M. Antibiotics (Basel) 5 (2016)
  38. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Assis LM, Nedeljković M, Dessen A. Drug Resist. Updat. 31 1-14 (2017)
  39. Pharmacokinetic and pharmacodynamics evaluation of ceftobiprole medocaril for the treatment of hospital-acquired pneumonia. Lagacé-Wiens PR, Rubinstein E. Expert Opin Drug Metab Toxicol 9 789-799 (2013)
  40. Ceftobiprole: a new beta-lactam antibiotic. Stein RA, Goetz RM, Ganea GM. Int. J. Clin. Pract. 63 930-943 (2009)
  41. The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus. Acebrón I, Chang M, Mobashery S, Hermoso JA. Curr. Med. Chem. 22 1678-1686 (2015)
  42. Constructing and deconstructing the bacterial cell wall. Fisher JF, Mobashery S. Protein Sci 29 629-646 (2020)
  43. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Miragaia M. Front Microbiol 9 2723 (2018)
  44. A review on quinoline derivatives as anti-methicillin resistant Staphylococcus aureus (MRSA) agents. Kumar P. BMC Chem 14 17 (2020)
  45. An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Bilyk BL, Panchal VV, Tinajero-Trejo M, Hobbs JK, Foster SJ. Microbiol Mol Biol Rev 86 e0015921 (2022)
  46. Current and emerging pharmacotherapy for the treatment of infections following open-heart surgery. Giacobbe DR, Corcione S, Salsano A, Del Puente F, Mornese Pinna S, De Rosa FG, Mikulska M, Santini F, Viscoli C. Expert Opin Pharmacother 20 751-772 (2019)
  47. PBP4: A New Perspective on Staphylococcus aureus β-Lactam Resistance. da Costa TM, de Oliveira CR, Chambers HF, Chatterjee SS. Microorganisms 6 (2018)
  48. A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant Staphylococcus aureus (MRSA). Ambade SS, Gupta VK, Bhole RP, Khedekar PB, Chikhale RV. Molecules 28 7008 (2023)
  49. Ceftobiprole medocaril for the treatment of community-acquired pneumonia. Falcó V, Burgos J, Almirante B. Expert Opin Pharmacother 19 1503-1509 (2018)
  50. Virulence Mechanisms of Staphylococcal Animal Pathogens. Cheung GYC, Otto M. Int J Mol Sci 24 14587 (2023)

Articles citing this publication (156)

  1. Three-dimensional structure of the bacterial cell wall peptidoglycan. Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S. Proc. Natl. Acad. Sci. U.S.A. 103 4404-4409 (2006)
  2. Cell wall peptidoglycan architecture in Bacillus subtilis. Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ. Proc. Natl. Acad. Sci. U.S.A. 105 14603-14608 (2008)
  3. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Johnson DS, Weerapana E, Cravatt BF. Future Med Chem 2 949-964 (2010)
  4. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Kosowska-Shick K, McGhee PL, Appelbaum PC. Antimicrob. Agents Chemother. 54 1670-1677 (2010)
  5. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. Matias VR, Beveridge TJ. J. Bacteriol. 188 1011-1021 (2006)
  6. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. Proc. Natl. Acad. Sci. U.S.A. 110 16808-16813 (2013)
  7. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. Farha MA, Leung A, Sewell EW, D'Elia MA, Allison SE, Ejim L, Pereira PM, Pinho MG, Wright GD, Brown ED. ACS Chem. Biol. 8 226-233 (2013)
  8. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA beta-lactam antibiotics. Villegas-Estrada A, Lee M, Hesek D, Vakulenko SB, Mobashery S. J. Am. Chem. Soc. 130 9212-9213 (2008)
  9. Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. Mendes RE, Tsakris A, Sader HS, Jones RN, Biek D, McGhee P, Appelbaum PC, Kosowska-Shick K. J. Antimicrob. Chemother. 67 1321-1324 (2012)
  10. Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Pinho MG, Soisson SM, Roemer T. Sci Transl Med 4 126ra35 (2012)
  11. Evaluation of ceftobiprole in a rabbit model of aortic valve endocarditis due to methicillin-resistant and vancomycin-intermediate Staphylococcus aureus. Chambers HF. Antimicrob. Agents Chemother. 49 884-888 (2005)
  12. In vitro selection and characterization of ceftobiprole-resistant methicillin-resistant Staphylococcus aureus. Banerjee R, Gretes M, Basuino L, Strynadka N, Chambers HF. Antimicrob. Agents Chemother. 52 2089-2096 (2008)
  13. Gene acquisition at the insertion site for SCCmec, the genomic island conferring methicillin resistance in Staphylococcus aureus. Noto MJ, Kreiswirth BN, Monk AB, Archer GL. J. Bacteriol. 190 1276-1283 (2008)
  14. PBP2a mutations causing high-level Ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Long SW, Olsen RJ, Mehta SC, Palzkill T, Cernoch PL, Perez KK, Musick WL, Rosato AE, Musser JM. Antimicrob. Agents Chemother. 58 6668-6674 (2014)
  15. Tertiary structure of Staphylococcus aureus cell wall murein. Dmitriev BA, Toukach FV, Holst O, Rietschel ET, Ehlers S. J. Bacteriol. 186 7141-7148 (2004)
  16. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Macheboeuf P, Di Guilmi AM, Job V, Vernet T, Dideberg O, Dessen A. Proc. Natl. Acad. Sci. U.S.A. 102 577-582 (2005)
  17. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: an epidemiological and structural perspective. Alm RA, McLaughlin RE, Kos VN, Sader HS, Iaconis JP, Lahiri SD. J. Antimicrob. Chemother. 69 2065-2075 (2014)
  18. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Alves MJ, Ferreira IC, Froufe HJ, Abreu RM, Martins A, Pintado M. J. Appl. Microbiol. 115 346-357 (2013)
  19. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. Zuber B, Haenni M, Ribeiro T, Minnig K, Lopes F, Moreillon P, Dubochet J. J. Bacteriol. 188 6652-6660 (2006)
  20. PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. Contreras-Martel C, Dahout-Gonzalez C, Martins Ados S, Kotnik M, Dessen A. J. Mol. Biol. 387 899-909 (2009)
  21. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. J. Biol. Chem. 284 1202-1212 (2009)
  22. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. Levisson M, van der Oost J, Kengen SW. FEBS J. 274 2832-2842 (2007)
  23. Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. Sainsbury S, Bird L, Rao V, Shepherd SM, Stuart DI, Hunter WN, Owens RJ, Ren J. J. Mol. Biol. 405 173-184 (2011)
  24. PBP 2a mutations producing very-high-level resistance to beta-lactams. Katayama Y, Zhang HZ, Chambers HF. Antimicrob. Agents Chemother. 48 453-459 (2004)
  25. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. Harrison EM, Paterson GK, Holden MT, Ba X, Rolo J, Morgan FJ, Pichon B, Kearns A, Zadoks RN, Peacock SJ, Parkhill J, Holmes MA. J. Antimicrob. Chemother. 69 911-918 (2014)
  26. A novel strategy for in vitro selection of peptide-drug conjugates. Li S, Roberts RW. Chem. Biol. 10 233-239 (2003)
  27. A Staphylococcus xylosus isolate with a new mecC allotype. Harrison EM, Paterson GK, Holden MT, Morgan FJ, Larsen AR, Petersen A, Leroy S, De Vliegher S, Perreten V, Fox LK, Lam TJ, Sampimon OC, Zadoks RN, Peacock SJ, Parkhill J, Holmes MA. Antimicrob. Agents Chemother. 57 1524-1528 (2013)
  28. Real-time PCR testing for mecA reduces vancomycin usage and length of hospitalization for patients infected with methicillin-sensitive staphylococci. Nguyen DT, Yeh E, Perry S, Luo RF, Pinsky BA, Lee BP, Sisodiya D, Baron EJ, Banaei N. J. Clin. Microbiol. 48 785-790 (2010)
  29. Crystal structures of penicillin-binding protein 6 from Escherichia coli. Chen Y, Zhang W, Shi Q, Hesek D, Lee M, Mobashery S, Shoichet BK. J. Am. Chem. Soc. 131 14345-14354 (2009)
  30. Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with Gram-positive antibacterial activity. O'Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E, Leemans E, Boudreau MA, Yamaguchi T, Schroeder VA, Wolter WR, Llarrull LI, Song W, Lastochkin E, Kumarasiri M, Antunes NT, Espahbodi M, Lichtenwalter K, Suckow MA, Vakulenko S, Mobashery S, Chang M. J. Am. Chem. Soc. 136 3664-3672 (2014)
  31. Disruption of allosteric response as an unprecedented mechanism of resistance to antibiotics. Fishovitz J, Rojas-Altuve A, Otero LH, Dawley M, Carrasco-López C, Chang M, Hermoso JA, Mobashery S. J. Am. Chem. Soc. 136 9814-9817 (2014)
  32. An antibiotic-inducible cell wall-associated protein that protects Bacillus subtilis from autolysis. Salzberg LI, Helmann JD. J. Bacteriol. 189 4671-4680 (2007)
  33. Ceftobiprole- and ceftaroline-resistant methicillin-resistant Staphylococcus aureus. Chan LC, Basuino L, Diep B, Hamilton S, Chatterjee SS, Chambers HF. Antimicrob. Agents Chemother. 59 2960-2963 (2015)
  34. Penicillin-binding protein 2 is essential for expression of high-level vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Severin A, Wu SW, Tabei K, Tomasz A. Antimicrob. Agents Chemother. 48 4566-4573 (2004)
  35. The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. Di Guilmi AM, Dessen A, Dideberg O, Vernet T. J. Bacteriol. 185 4418-4423 (2003)
  36. Function of penicillin-binding protein 2 in viability and morphology of Pseudomonas aeruginosa. Legaree BA, Daniels K, Weadge JT, Cockburn D, Clarke AJ. J. Antimicrob. Chemother. 59 411-424 (2007)
  37. Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA). Contreras-Martel C, Amoroso A, Woon EC, Zervosen A, Inglis S, Martins A, Verlaine O, Rydzik AM, Job V, Luxen A, Joris B, Schofield CJ, Dessen A. ACS Chem. Biol. 6 943-951 (2011)
  38. Restoration of susceptibility of methicillin-resistant Staphylococcus aureus to beta-lactam antibiotics by acidic pH: role of penicillin-binding protein PBP 2a. Lemaire S, Fuda C, Van Bambeke F, Tulkens PM, Mobashery S. J. Biol. Chem. 283 12769-12776 (2008)
  39. Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle. Sauvage E, Powell AJ, Heilemann J, Josephine HR, Charlier P, Davies C, Pratt RF. J. Mol. Biol. 381 383-393 (2008)
  40. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. Shi Q, Meroueh SO, Fisher JF, Mobashery S. J Am Chem Soc 130 9293-9303 (2008)
  41. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Harrison EM, Ba X, Coll F, Blane B, Restif O, Carvell H, Köser CU, Jamrozy D, Reuter S, Lovering A, Gleadall N, Bellis KL, Uhlemann AC, Lowy FD, Massey RC, Grilo IR, Sobral R, Larsen J, Rhod Larsen A, Vingsbo Lundberg C, Parkhill J, Paterson GK, Holden MTG, Peacock SJ, Holmes MA. Nat Microbiol 4 1680-1691 (2019)
  42. New noncovalent inhibitors of penicillin-binding proteins from penicillin-resistant bacteria. Turk S, Verlaine O, Gerards T, Zivec M, Humljan J, Sosič I, Amoroso A, Zervosen A, Luxen A, Joris B, Gobec S. PLoS ONE 6 e19418 (2011)
  43. Protective immune response against methicillin resistant Staphylococcus aureus in a murine model using a DNA vaccine approach. Senna JP, Roth DM, Oliveira JS, Machado DC, Santos DS. Vaccine 21 2661-2666 (2003)
  44. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. El Ghachi M, Matteï PJ, Ecobichon C, Martins A, Hoos S, Schmitt C, Colland F, Ebel C, Prévost MC, Gabel F, England P, Dessen A, Boneca IG. Mol. Microbiol. 82 68-86 (2011)
  45. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms. Yoshida H, Kawai F, Obayashi E, Akashi S, Roper DI, Tame JR, Park SY. J. Mol. Biol. 423 351-364 (2012)
  46. Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. Sauvage E, Derouaux A, Fraipont C, Joris M, Herman R, Rocaboy M, Schloesser M, Dumas J, Kerff F, Nguyen-Distèche M, Charlier P. PLoS ONE 9 e98042 (2014)
  47. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. Bouley R, Kumarasiri M, Peng Z, Otero LH, Song W, Suckow MA, Schroeder VA, Wolter WR, Lastochkin E, Antunes NT, Pi H, Vakulenko S, Hermoso JA, Chang M, Mobashery S. J. Am. Chem. Soc. 137 1738-1741 (2015)
  48. Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Koga T, Masuda N, Kakuta M, Namba E, Sugihara C, Fukuoka T. Antimicrob. Agents Chemother. 52 2849-2854 (2008)
  49. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C. Biochemistry 49 8094-8104 (2010)
  50. Crystal structures of penicillin-binding proteins 4 and 5 from Haemophilus influenzae. Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. J. Mol. Biol. 396 634-645 (2010)
  51. Detection of Antibiotic Resistant Staphylococcus aureus from Milk: A Public Health Implication. Akindolire MA, Babalola OO, Ateba CN. Int J Environ Res Public Health 12 10254-10275 (2015)
  52. Structural analysis of an "open" form of PBP1B from Streptococcus pneumoniae. Lovering AL, De Castro L, Lim D, Strynadka NC. Protein Sci. 15 1701-1709 (2006)
  53. A novel DNA-binding protein modulating methicillin resistance in Staphylococcus aureus. Ender M, Berger-Bächi B, McCallum N. BMC Microbiol. 9 15 (2009)
  54. Correlation of penicillin Binding protein 2a detection with oxacillin resistance in Staphylococcus aureus and discovery of a novel penicillin binding protein 2a mutation. Bressler AM, Williams T, Culler EE, Zhu W, Lonsway D, Patel JB, Nolte FS. J. Clin. Microbiol. 43 4541-4544 (2005)
  55. Structure-activity relationships of different beta-lactam antibiotics against a soluble form of Enterococcus faecium PBP5, a type II bacterial transpeptidase. Hujer AM, Kania M, Gerken T, Anderson VE, Buynak JD, Ge X, Caspers P, Page MG, Rice LB, Bonomo RA. Antimicrob. Agents Chemother. 49 612-618 (2005)
  56. Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L,D-transpeptidase. Lecoq L, Bougault C, Hugonnet JE, Veckerlé C, Pessey O, Arthur M, Simorre JP. Structure 20 850-861 (2012)
  57. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M. PLoS Genet. 13 e1006674 (2017)
  58. Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin-resistant Staphylococcus aureus to beta-lactam antibiotics. Sato Y, Shibata H, Arai T, Yamamoto A, Okimura Y, Arakaki N, Higuti T. Int. J. Antimicrob. Agents 24 226-233 (2004)
  59. A seven-year survey of management of coagulase-negative staphylococcal sepsis in the neonatal intensive care unit: vancomycin may not be necessary as empiric therapy. Hemels MA, van den Hoogen A, Verboon-Maciolek MA, Fleer A, Krediet TG. Neonatology 100 180-185 (2011)
  60. Structural Insights into Inhibition of Escherichia coli Penicillin-binding Protein 1B. King DT, Wasney GA, Nosella M, Fong A, Strynadka NC. J. Biol. Chem. 292 979-993 (2017)
  61. The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. Fedarovich A, Nicholas RA, Davies C. J. Mol. Biol. 418 316-330 (2012)
  62. Ceftobiprole - a case study. Page MG. Expert Opin Drug Discov 2 115-129 (2007)
  63. Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3. Yoshimune K, Shirakihara Y, Shiratori A, Wakayama M, Chantawannakul P, Moriguchi M. Biochem. Biophys. Res. Commun. 346 1118-1124 (2006)
  64. On the substrate specificity of bacterial DD-peptidases: evidence from two series of peptidoglycan-mimetic peptides. Anderson JW, Adediran SA, Charlier P, Nguyen-Distèche M, Frère JM, Nicholas RA, Pratt RF. Biochem. J. 373 949-955 (2003)
  65. Proposal for common Nordic epidemiological terms and definitions for methicillin-resistant Staphylococcus aureus (MRSA). Skov R, Gudlaugsson O, Hardardottir H, Harthug S, Jakobsen T, Kolmos HJ, Olsson-Liljequist B, Peltonen R, Tveten Y, Vuopio-Varkila J, Ahrén C. Scand. J. Infect. Dis. 40 495-502 (2008)
  66. The Tipper-Strominger Hypothesis and Triggering of Allostery in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus (MRSA). Fishovitz J, Taghizadeh N, Fisher JF, Chang M, Mobashery S. J. Am. Chem. Soc. 137 6500-6505 (2015)
  67. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. Severin A, Wu SW, Tabei K, Tomasz A. J. Bacteriol. 187 6651-6658 (2005)
  68. Presence of a motif conserved between Helicobacter pylori TNF-alpha inducing protein (Tipalpha) and penicillin-binding proteins. Kuzuhara T, Suganuma M, Tsuge H, Fujiki H. Biol. Pharm. Bull. 28 2133-2137 (2005)
  69. Towards an ontological representation of resistance: the case of MRSA. Goldfain A, Smith B, Cowell LG. J Biomed Inform 44 35-41 (2011)
  70. Ubiquitous selection for mecA in community-associated MRSA across diverse chemical environments. Snitser O, Russ D, Stone LK, Wang KK, Sharir H, Kozer N, Cohen G, Barr HM, Kishony R. Nat Commun 11 6038 (2020)
  71. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. Biochemistry 51 2775-2784 (2012)
  72. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli. Nicola G, Fedarovich A, Nicholas RA, Davies C. Biochem. J. 392 55-63 (2005)
  73. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues. Chakraborty S, Ásgeirsson B, Rao BJ. PLoS ONE 7 e49313 (2012)
  74. Cloning, Expression and Purification of Penicillin Binding Protein2a (PBP2a) from Methicillin Resistant Staphylococcus aureus: A Study on Immunoreactivity in Balb/C Mouse. Haghighat S, Siadat SD, Sorkhabadi SM, Sepahi AA, Mahdavi M. Avicenna J Med Biotechnol 5 204-211 (2013)
  75. LB11058, a new cephalosporin with high penicillin-binding protein 2a affinity and activity in experimental endocarditis due to homogeneously methicillin-resistant Staphylococcus aureus. Vouillamoz J, Entenza JM, Hohl P, Moreillon P. Antimicrob. Agents Chemother. 48 4322-4327 (2004)
  76. Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with mecC Are Susceptible to a Combination of Penicillin and Clavulanic Acid. Ba X, Harrison EM, Lovering AL, Gleadall N, Zadoks R, Parkhill J, Peacock SJ, Holden MT, Paterson GK, Holmes MA. Antimicrob. Agents Chemother. 59 7396-7404 (2015)
  77. Structure-Activity Relationship for the 4(3H)-Quinazolinone Antibacterials. Bouley R, Ding D, Peng Z, Bastian M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. J. Med. Chem. 59 5011-5021 (2016)
  78. A positive interaction between inhibitors of protein synthesis and cefepime in the fight against methicillin-resistant Staphylococcus aureus. Guignard B, Vouillamoz J, Giddey M, Moreillon P. Eur. J. Clin. Microbiol. Infect. Dis. 32 899-907 (2013)
  79. Computer aided screening and evaluation of herbal therapeutics against MRSA infections. Skariyachan S, Krishnan RS, Siddapa SB, Salian C, Bora P, Sebastian D. Bioinformation 7 222-233 (2011)
  80. Methicillin/per-6-(4-methoxylbenzyl)-amino-6-deoxy-β-cyclodextrin 1:1 complex and its potentiation in vitro against methicillin-resistant Staphylococcus aureus. Deng JZ. J. Antibiot. 66 517-521 (2013)
  81. Peptidoglycan Cross-Linking Preferences of Staphylococcus aureus Penicillin-Binding Proteins Have Implications for Treating MRSA Infections. Srisuknimit V, Qiao Y, Schaefer K, Kahne D, Walker S. J. Am. Chem. Soc. 139 9791-9794 (2017)
  82. Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus. Bessa LJ, Palmeira A, Gomes AS, Vasconcelos V, Sousa E, Pinto M, Martins da Costa P. Microb. Drug Resist. 21 404-415 (2015)
  83. A multiplex PCR assay for the rapid and sensitive detection of methicillin-resistant Staphylococcus aureus and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Xu B, Liu L, Liu L, Li X, Li X, Wang X. J. Food Sci. 77 M638-42 (2012)
  84. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. Mahasenan KV, Molina R, Bouley R, Batuecas MT, Fisher JF, Hermoso JA, Chang M, Mobashery S. J. Am. Chem. Soc. 139 2102-2110 (2017)
  85. Alanine 501 Mutations in Penicillin-Binding Protein 2 from Neisseria gonorrhoeae: Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Tomberg J, Fedarovich A, Vincent LR, Jerse AE, Unemo M, Davies C, Nicholas RA. Biochemistry 56 1140-1150 (2017)
  86. Artesunate has its enhancement on antibacterial activity of β-lactams via increasing the antibiotic accumulation within methicillin-resistant Staphylococcus aureus (MRSA). Jiang W, Li B, Zheng X, Liu X, Pan X, Qing R, Cen Y, Zheng J, Zhou H. J. Antibiot. 66 339-345 (2013)
  87. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis. Sassine J, Xu M, Sidiq KR, Emmins R, Errington J, Daniel RA. Mol. Microbiol. 106 304-318 (2017)
  88. Reduced expression of PBP-2A by neonatal mecA-positive coagulase-negative staphylococci (CoNS) blood isolates: β-lactams are useful first-line agents for the treatment of neonatal CoNS sepsis, restricting the use of vancomycin. Fleer A, Hemels MA, Paauw A, Krediet TG. J. Antimicrob. Chemother. 67 1616-1618 (2012)
  89. Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Chen FJ, Wang CH, Chen CY, Hsu YC, Wang KT. Antimicrob. Agents Chemother. 58 1047-1054 (2014)
  90. Trapping of an acyl-enzyme intermediate in a penicillin-binding protein (PBP)-catalyzed reaction. Macheboeuf P, Lemaire D, Teller N, Martins Ados S, Luxen A, Dideberg O, Jamin M, Dessen A. J. Mol. Biol. 376 405-413 (2008)
  91. "Intelligence coup" for drug designers: crystal structure of Staphylococcus aureus beta-lactam resistance protein PBP2A. Tomasz A. Lancet 361 795-796 (2003)
  92. Development of Multi-concentration Cu:Ag Bimetallic Nanoparticles as a Promising Bactericidal for Antibiotic-Resistant Bacteria as Evaluated with Molecular Docking Study. Mureed S, Naz S, Haider A, Raza A, Ul-Hamid A, Haider J, Ikram M, Ghaffar R, Irshad M, Ghaffar A, Saeed A. Nanoscale Res Lett 16 91 (2021)
  93. Generation and Characterization of Murine Monoclonal Antibodies anti-PBP2a of Methicillin-resistant Staphylococcus aureus. Senna JP, Teixeira Mda G, Santiago Mde A, Batoréu NM, Valadares N, Galler R. Monoclon Antib Immunodiagn Immunother 34 257-262 (2015)
  94. Genome-Wide Association Studies for the Detection of Genetic Variants Associated With Daptomycin and Ceftaroline Resistance in Staphylococcus aureus. Weber RE, Fuchs S, Layer F, Sommer A, Bender JK, Thürmer A, Werner G, Strommenger B. Front Microbiol 12 639660 (2021)
  95. Macrocycle-embedded β-lactams as novel inhibitors of the Penicillin Binding Protein PBP2a from MRSA. Dive G, Bouillon C, Sliwa A, Valet B, Verlaine O, Sauvage E, Marchand-Brynaert J. Eur J Med Chem 64 365-376 (2013)
  96. Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study. Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Alzahrani OR, Alshabrmi FM, Khalaf E, Moustafa MF, Alrumaihi F, Allemailem KS, Soliman MES, Paré PW, Hegazy MF, Atia MAM. Antibiotics (Basel) 10 934 (2021)
  97. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Bonvegna M, Grego E, Sona B, Stella MC, Nebbia P, Mannelli A, Tomassone L. Antibiotics (Basel) 10 676 (2021)
  98. Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni. Lin CS, Chan ACK, Vermeulen J, Brockerman J, Soni AS, Tanner ME, Gaynor EC, McIntosh LP, Simorre JP, Murphy MEP. J Biol Chem 296 100528 (2021)
  99. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. Singh A, Tomberg J, Nicholas RA, Davies C. J Biol Chem 294 14020-14032 (2019)
  100. Substituted aryl malonamates as new serine beta-lactamase substrates: structure-activity studies. Adediran SA, Cabaret D, Lohier JF, Wakselman M, Pratt RF. Bioorg. Med. Chem. 18 282-291 (2010)
  101. 12- to 22-membered bridged β-lactams as potential penicillin-binding protein inhibitors. Sliwa A, Dive G, Marchand-Brynaert J. Chem Asian J 7 425-434 (2012)
  102. Antimicrobial resistance patterns of Staphylococcus species isolated from cats presented at a veterinary academic hospital in South Africa. Qekwana DN, Sebola D, Oguttu JW, Odoi A. BMC Vet. Res. 13 286 (2017)
  103. Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes. Søborg DA, Hendriksen NB, Kilian M, Christensen JH, Kroer N. Front Microbiol 7 1712 (2016)
  104. Combined Structural Analysis and Molecular Dynamics Reveal Penicillin-Binding Protein Inhibition Mode with β-Lactones. Flanders PL, Contreras-Martel C, Brown NW, Shirley JD, Martins A, Nauta KN, Dessen A, Carlson EE, Ambrose EA. ACS Chem Biol 17 3110-3120 (2022)
  105. Diclofenac Resensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactams and Prevents Implant Infections. Zhang S, Qu X, Tang H, Wang Y, Yang H, Yuan W, Yue B. Adv Sci (Weinh) 8 2100681 (2021)
  106. Effects of passage number on growth and productivity of hybridoma secreting MRSA anti-PBP2a monoclonal antibodies. Corrêa AL, Senna JP, de Sousa ÁP. Cytotechnology 68 419-427 (2016)
  107. Genotypic and Phenotypic Evaluation of Biofilm Production and Antimicrobial Resistance in Staphylococcus aureus Isolated from Milk, North West Province, South Africa. Bissong MEA, Ateba CN. Antibiotics (Basel) 9 (2020)
  108. Neutral β-Lactams Inactivate High Molecular Mass Penicillin-Binding Proteins of Class B1, Including PBP2a of MRSA. Dave K, Palzkill T, Pratt RF. ACS Med Chem Lett 5 154-157 (2014)
  109. Photocatalytic, Bactericidal and Molecular Docking Analysis of Annealed Tin Oxide Nanostructures. Sharif MS, Aqeel M, Haider A, Naz S, Ikram M, Ul-Hamid A, Haider J, Aslam I, Nazir A, Butt AR. Nanoscale Res Lett 16 33 (2021)
  110. Phytochemical Investigation of Cordia africana Lam. Stem Bark: Molecular Simulation Approach. Sabry MM, El-Fishawy AM, El-Rashedy AA, El Gedaily RA. Molecules 27 4039 (2022)
  111. Quercetin 3-O-rutinoside mediated inhibition of PBP2a: computational and experimental evidence to its anti-MRSA activity. Rani N, Vijayakumar S, Thanga Velan LP, Arunachalam A. Mol Biosyst 10 3229-3237 (2014)
  112. Rapid MRSA detection via tandem mass spectrometry of the intact 80 kDa PBP2a resistance protein. Neil JR, Verma A, Kronewitter SR, McGee WM, Mullen C, Viirtola M, Kotovuori A, Friedrich H, Finell J, Rannisto J, Syka JEP, Stephenson JL. Sci Rep 11 18309 (2021)
  113. Synthesis and biological evaluation of the progenitor of a new class of cephalosporin analogues, with a particular focus on structure-based computational analysis. Verdino A, Vigliotta G, Giordano D, Caputo I, Soriente A, De Rosa M, Marabotti A. PLoS ONE 12 e0181563 (2017)
  114. The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus. Lee YS, Lee DY, Kim YB, Lee SW, Cha SW, Park HW, Kim GS, Kwon DY, Lee MH, Han SH. Evid Based Complement Alternat Med 2015 520578 (2015)
  115. Staphylococcus aureus Induced Wound Infections Which Antimicrobial Resistance, Methicillin- and Vancomycin-Resistant: Assessment of Emergence and Cross Sectional Study. Almuhayawi MS, Alruhaili MH, Gattan HS, Alharbi MT, Nagshabandi M, Al Jaouni S, Selim S, Alanazi A, Alruwaili Y, Faried OA, Elnosary ME. Infect Drug Resist 16 5335-5346 (2023)
  116. A new antibiotic: lessons and perspectives. Stein RA. Int. J. Clin. Pract. 62 1836-1837 (2008)
  117. A unique class of Zn2+-binding serine-based PBPs underlies cephalosporin resistance and sporogenesis in Clostridioides difficile. Sacco MD, Wang S, Adapa SR, Zhang X, Lewandowski EM, Gongora MV, Keramisanou D, Atlas ZD, Townsend JA, Gatdula JR, Morgan RT, Hammond LR, Marty MT, Wang J, Eswara PJ, Gelis I, Jiang RHY, Sun X, Chen Y. Nat Commun 13 4370 (2022)
  118. Antibiotic Education: Not Just Another Brick in the Cell Wall. Sastalla I, Datta SK. Cell Host Microbe 18 520-522 (2015)
  119. Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology. Liu J, Huang T, Soteyome T, Miao J, Yu G, Chen D, Ye C, Yang L, Xu Z. Antibiotics (Basel) 12 368 (2023)
  120. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. Aziz T, Imran M, Haider A, Shahzadi A, Ul Abidin MZ, Ul-Hamid A, Nabgan W, Algaradah MM, Fouda AM, Ikram M. RSC Adv 13 28008-28020 (2023)
  121. Computational Screening of Approved Drugs for Inhibition of the Antibiotic Resistance Gene mecA in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. Otarigho B, Falade MO. BioTech (Basel) 12 25 (2023)
  122. Development of Nanobodies as Theranostic Agents against CMY-2-Like Class C β-Lactamases. Cawez F, Mercuri PS, Morales-Yãnez FJ, Maalouf R, Vandevenne M, Kerff F, Guérin V, Mainil J, Thiry D, Saulmont M, Vanderplasschen A, Lafaye P, Aymé G, Bogaerts P, Dumoulin M, Galleni M. Antimicrob Agents Chemother 67 e0149922 (2023)
  123. Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO2 nanoparticles. Ikram M, Umar E, Raza A, Haider A, Naz S, Ul-Hamid A, Haider J, Shahzadi I, Hassan J, Ali S. RSC Adv 10 24215-24233 (2020)
  124. Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes. Fan Y, Pauer AC, Gonzales AA, Fenniri H. Int J Nanomedicine 14 7281-7289 (2019)
  125. Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus. Lan JE, Li XJ, Zhu XF, Sun ZL, He JM, Zloh M, Gibbons S, Mu Q. Nat Prod Res 1-6 (2019)
  126. Genetic Determinants Enabling Medium-Dependent Adaptation to Nafcillin in Methicillin-Resistant Staphylococcus aureus. Salazar MJ, Machado H, Dillon NA, Tsunemoto H, Szubin R, Dahesh S, Pogliano J, Sakoulas G, Palsson BO, Nizet V, Feist AM. mSystems 5 (2020)
  127. Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Sandhu P, Kumari M, Naini K, Akhter Y. Curr. Genet. 63 553-576 (2017)
  128. Hierarchical Virtual Screening of Potential New Antibiotics from Polyoxygenated Dibenzofurans against Staphylococcus aureus Strains. Oliveira LPS, Lima LR, Silva LB, Cruz JN, Ramos RS, Lima LS, Cardoso FMN, Silva AV, Rodrigues DP, Rodrigues GS, Proietti-Junior AA, Dos Santos GB, Campos JM, Santos CBR. Pharmaceuticals (Basel) 16 1430 (2023)
  129. Hydrothermal Synthesis of Fe-Doped Cadmium Oxide Showed Bactericidal Behavior and Highly Efficient Visible Light Photocatalysis. Shahzadi I, Aqeel M, Haider A, Naz S, Imran M, Nabgan W, Al-Shanini A, Shahzadi A, Alshahrani T, Ikram M. ACS Omega 8 30681-30693 (2023)
  130. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. J Med Chem 65 13910-13934 (2022)
  131. Identification of Staphylococcus aureus Penicillin Binding Protein 4 (PBP4) Inhibitors. Young M, Walsh DJ, Masters E, Gondil VS, Laskey E, Klaczko M, Awad H, McGrath J, Schwarz EM, Melander C, Dunman PM. Antibiotics (Basel) 11 1351 (2022)
  132. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Biochemistry 61 1404-1414 (2022)
  133. Molecular basis of β-lactam antibiotic resistance of ESKAPE bacterium E. faecium Penicillin Binding Protein PBP5. Hunashal Y, Kumar GS, Choy MS, D'Andréa ÉD, Da Silva Santiago A, Schoenle MV, Desbonnet C, Arthur M, Rice LB, Page R, Peti W. Nat Commun 14 4268 (2023)
  134. Molecular docking and proteomics reveals the synergistic antibacterial mechanism of theaflavin with β-lactam antibiotics against MRSA. Guan S, Zhong L, Yu H, Wang L, Jin Y, Liu J, Xiang H, Yu H, Wang L, Wang D. Front Microbiol 13 993430 (2022)
  135. Molecular docking-based screening of methicillin-resistant Staphylococcus aureus FEM proteins with FDA-approved drugs. Akkiraju AG, Badugu A, Das A, Sagurthi SR. Bioinformation 19 1035-1042 (2023)
  136. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. Singh A, Turner JM, Tomberg J, Fedarovich A, Unemo M, Nicholas RA, Davies C. J Biol Chem 295 7529-7543 (2020)
  137. Novel prism shaped C3N4-doped Fe@Co3O4 nanocomposites and their dye degradation and bactericidal potential with molecular docking study. Ali Ahmad SO, Ikram M, Imran M, Naz S, Ul-Hamid A, Haider A, Shahzadi A, Haider J. RSC Adv 11 23330-23344 (2021)
  138. Phenotypic and Genotypic Characterization with MALDI-TOF-MS Based Identification of Staphylococcus spp. Isolated from Mobile Phones with their Antibiotic Susceptibility, Biofilm Formation, and Adhesion Properties. Noumi E, Merghni A, Alreshidi M, Del Campo R, Adnan M, Haddad O, De Feo V, Snoussi M. Int J Environ Res Public Health 17 (2020)
  139. Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. Hui J, Dong PT, Liang L, Mandal T, Li J, Ulloa ER, Zhan Y, Jusuf S, Zong C, Seleem MN, Liu GY, Cui Q, Cheng JX. Adv Sci (Weinh) 7 1903117 (2020)
  140. Recombinant PBP2a/autolysin conjugate as PLGA-based nanovaccine induced humoral responses with opsonophagocytosis activity, and protection versus methicillin-resistant Staphylococcus aureus infection. Haghighat S, Siadat SD, Akhavan Sepahi A, Mahdavi M. Iran J Basic Med Sci 25 442-450 (2022)
  141. Repurposing Amphotericin B: anti-microbial, molecular docking and molecular dynamics simulation studies suggest inhibition potential of Amphotericin B against MRSA. Farid N, Bux K, Ali K, Bashir A, Tahir R. BMC Chem 17 67 (2023)
  142. Resistome analysis of bloodstream infection bacterial genomes reveals a specific set of proteins involved in antibiotic resistance and drug efflux. Oliveira WK, Ferrarini M, Morello LG, Faoro H. NAR Genom Bioinform 2 lqaa055 (2020)
  143. Structural analysis of avibactam-mediated activation of the bla and mec divergons in methicillin-resistant Staphylococcus aureus. Alexander JAN, Radaeva M, King DT, Chambers HF, Cherkasov A, Chatterjee SS, Strynadka NCJ. J Biol Chem 295 10870-10884 (2020)
  144. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Alexander JAN, Worrall LJ, Hu J, Vuckovic M, Satishkumar N, Poon R, Sobhanifar S, Rosell FI, Jenkins J, Chiang D, Mosimann WA, Chambers HF, Paetzel M, Chatterjee SS, Strynadka NCJ. Nature 613 375-382 (2023)
  145. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. Verdú-Expósito C, Romanyk J, Cuadros-González J, TesfaMariam A, Copa-Patiño JL, Pérez-Serrano J, Soliveri J. PLoS One 15 e0230031 (2020)
  146. Synergistic Combinations of FDA-Approved Drugs with Ceftobiprole against Methicillin-Resistant Staphylococcus aureus. Sharma AD, Gutheil WG. Microbiol Spectr 11 e0372622 (2023)
  147. Synergistic Interaction between Boesenbergia rotunda (L.) Mansf. Essential Oil and Cloxacillin on Methicillin-Resistant Staphylococcus aureus (MRSA) Inhibition. Apinundecha C, Teethaisong Y, Suknasang S, Ayamuang IO, Eumkeb G. Evid Based Complement Alternat Med 2023 3453273 (2023)
  148. Synthesis and antimicrobial activity of new 7 beta-(benzo[a]dihydrocarbazolyloxyacetyl)-substituted cephalosporins. Rossello A, Orlandini E, Nuti E, Rapposelli S, Macchia M, Di Modugno E, Balsamo A. Farmaco 59 691-696 (2004)
  149. Synthesis, Stereochemical Confirmation, and Derivatization of 12(S),16ϵ-Dihydroxycleroda-3,13-dien-15,16-olide, a Clerodane Diterpene That Sensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Zeiler MJ, Connors GM, Durling GM, Oliver AG, Marquez L, Melander RJ, Quave CL, Melander C. Angew Chem Int Ed Engl 61 e202117458 (2022)
  150. Targeting Staphylococcal Cell-Wall Biosynthesis Protein FemX Through Steered Molecular Dynamics and Drug-Repurposing Approach. Rahman S, Nath S, Mohan U, Das AK. ACS Omega 8 29292-29301 (2023)
  151. The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against Methicillin-Resistant Staphylococcus aureus. Janardhanan J, Bouley R, Martínez-Caballero S, Peng Z, Batuecas-Mordillo M, Meisel JE, Ding D, Schroeder VA, Wolter WR, Mahasenan KV, Hermoso JA, Mobashery S, Chang M. Antimicrob. Agents Chemother. 63 (2019)
  152. The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into β-lactam resistance. Moon TM, D'Andréa ÉD, Lee CW, Soares A, Jakoncic J, Desbonnet C, Garcia-Solache M, Rice LB, Page R, Peti W. J. Biol. Chem. 293 18574-18584 (2018)
  153. Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA β-lactam resistance. Roch M, Lelong E, Panasenko OO, Sierra R, Renzoni A, Kelley WL. Commun Biol 2 417 (2019)
  154. Unraveling the mechanism of ceftaroline-induced allosteric regulation in penicillin-binding protein 2a: insights for novel antibiotic development against methicillin-resistant Staphylococcus aureus. Jiao F, Bao Y, Li M, Zhang Y, Zhang F, Wang P, Tao J, Tong HHY, Guo J. Antimicrob Agents Chemother 67 e0089523 (2023)
  155. β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. Shang W, Rao Y, Zheng Y, Yang Y, Hu Q, Hu Z, Yuan J, Peng H, Xiong K, Tan L, Li S, Zhu J, Li M, Hu X, Mao X, Rao X. MBio 10 (2019)
  156. β-lactams against emerging 'superbugs': progress and pitfalls. Skalweit Helfand M. Expert Rev Clin Pharmacol 1 559-571 (2008)