1mt0 Citations

Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains.

J Mol Biol 330 333-42 (2003)
Cited: 112 times
EuropePMC logo PMID: 12823972

Abstract

The ABC-transporter haemolysin B is a central component of the secretion machinery that translocates the toxin, haemolysin A, in a Sec-independent fashion across both membranes of E. coli. Here, we report the X-ray crystal structure of the nucleotide-binding domain (NBD) of HlyB. The molecule shares the common overall architecture of ABC-transporter NBDs. However, the last three residues of the Walker A motif adopt a 3(10) helical conformation, stabilized by a bound anion. In consequence, this results in an unusual interaction between the Walker A lysine residue and the Walker B glutamate residue. As these residues are normally required to be available for ATP binding, for catalysis and for dimer formation of ABC domains, we suggest that this conformation may represent a latent monomeric form of the NBD. Surprisingly, comparison of available NBD structures revealed a structurally diverse region (SDR) of about 30 residues within the helical arm II domain, unique to each of the eight NBDs analyzed. As this region interacts with the transmembrane part of ABC-transporters, the SDR helps to explain the selectivity and/or targeting of different NBDs to their cognate transmembrane domains.

Articles - 1mt0 mentioned but not cited (6)

  1. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis. Hirabayashi K, Yuda E, Tanaka N, Katayama S, Iwasaki K, Matsumoto T, Kurisu G, Outten FW, Fukuyama K, Takahashi Y, Wada K. J Biol Chem 290 29717-29731 (2015)
  2. Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: a molecular modeling study. Rutledge RM, Esser L, Ma J, Xia D. J Struct Biol 173 333-344 (2011)
  3. Coverage of whole proteome by structural genomics observed through protein homology modeling database. Yura K, Yamaguchi A, Go M. J Struct Funct Genomics 7 65-76 (2006)
  4. Molecular basis for differential nucleotide binding of the nucleotide-binding domain of ABC-transporter CvaB. Guo X, Chen X, Weber IT, Harrison RW, Tai PC. Biochemistry 45 14473-14480 (2006)
  5. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer. Rungsardthong K, Mares-Sámano S, Penny J. Bioinformation 8 907-911 (2012)
  6. Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system. Pourhassan N Z, Hachani E, Spitz O, Smits SHJ, Schmitt L. Front Microbiol 13 1055032 (2022)


Reviews citing this publication (38)

  1. Structure, function, and evolution of bacterial ATP-binding cassette systems. Davidson AL, Dassa E, Orelle C, Chen J. Microbiol Mol Biol Rev 72 317-64, table of contents (2008)
  2. ABC transporters: the power to change. Rees DC, Johnson E, Lewinson O. Nat Rev Mol Cell Biol 10 218-227 (2009)
  3. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Deeley RG, Westlake C, Cole SP. Physiol Rev 86 849-899 (2006)
  4. The ATP switch model for ABC transporters. Higgins CF, Linton KJ. Nat Struct Mol Biol 11 918-926 (2004)
  5. ATP-binding cassette transporters in bacteria. Davidson AL, Chen J. Annu Rev Biochem 73 241-268 (2004)
  6. Type I secretion in gram-negative bacteria. Delepelaire P. Biochim Biophys Acta 1694 149-161 (2004)
  7. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Koronakis V, Eswaran J, Hughes C. Annu Rev Biochem 73 467-489 (2004)
  8. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Holland IB, Schmitt L, Young J. Mol Membr Biol 22 29-39 (2005)
  9. Structure and function of ABC transporters: the ATP switch provides flexible control. Linton KJ, Higgins CF. Pflugers Arch 453 555-567 (2007)
  10. ABC transporters involved in export of cell surface glycoconjugates. Cuthbertson L, Kos V, Whitfield C. Microbiol Mol Biol Rev 74 341-362 (2010)
  11. The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Molday RS, Zhong M, Quazi F. Biochim Biophys Acta 1791 573-583 (2009)
  12. The Type 1 secretion pathway - the hemolysin system and beyond. Thomas S, Holland IB, Schmitt L. Biochim Biophys Acta 1843 1629-1641 (2014)
  13. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Greenfield LK, Whitfield C. Carbohydr Res 356 12-24 (2012)
  14. Structure and mechanism of ABC transporters. Locher KP. Curr Opin Struct Biol 14 426-431 (2004)
  15. ATP-binding cassette transporters in Escherichia coli. Moussatova A, Kandt C, O'Mara ML, Tieleman DP. Biochim Biophys Acta 1778 1757-1771 (2008)
  16. 'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. Mutat Res 577 92-117 (2005)
  17. CLC-0 and CFTR: chloride channels evolved from transporters. Chen TY, Hwang TC. Physiol Rev 88 351-387 (2008)
  18. The motor domains of ABC-transporters. What can structures tell us? Oswald C, Holland IB, Schmitt L. Naunyn Schmiedebergs Arch Pharmacol 372 385-399 (2006)
  19. Protein secretion and membrane insertion systems in gram-negative bacteria. Saier MH. J Membr Biol 214 75-90 (2006)
  20. How can we best use structural information on P-glycoprotein to design inhibitors? McDevitt CA, Callaghan R. Pharmacol Ther 113 429-441 (2007)
  21. TolC--the bacterial exit duct for proteins and drugs. Koronakis V. FEBS Lett 555 66-71 (2003)
  22. The ATP-binding cassette family: a structural perspective. Kos V, Ford RC. Cell Mol Life Sci 66 3111-3126 (2009)
  23. The cell wall in heterocyst formation by Anabaena sp. PCC 7120. Nicolaisen K, Hahn A, Schleiff E. J Basic Microbiol 49 5-24 (2009)
  24. How do ABC transporters drive transport? van der Does C, Tampé R. Biol Chem 385 927-933 (2004)
  25. Structure of ABC transporters. Zolnerciks JK, Andress EJ, Nicolaou M, Linton KJ. Essays Biochem 50 43-61 (2011)
  26. ABC transporters, mechanisms and biology: an overview. Holland IB. Essays Biochem 50 1-17 (2011)
  27. Structure and mechanism of ATP-dependent phospholipid transporters. López-Marqués RL, Poulsen LR, Bailly A, Geisler M, Pomorski TG, Palmgren MG. Biochim Biophys Acta 1850 461-475 (2015)
  28. Molecular insights into the mechanism of ATP-hydrolysis by the NBD of the ABC-transporter HlyB. Hanekop N, Zaitseva J, Jenewein S, Holland IB, Schmitt L. FEBS Lett 580 1036-1041 (2006)
  29. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Muallem D, Vergani P. Philos Trans R Soc Lond B Biol Sci 364 247-255 (2009)
  30. ABC transporter architecture and mechanism: implications from the crystal structures of BtuCD and BtuF. Locher KP, Borths E. FEBS Lett 564 264-268 (2004)
  31. Molecular basis for the ATPase activity of CFTR. Cheung JC, Kim Chiaw P, Pasyk S, Bear CE. Arch Biochem Biophys 476 95-100 (2008)
  32. The structures of MsbA: Insight into ABC transporter-mediated multidrug efflux. Reyes CL, Ward A, Yu J, Chang G. FEBS Lett 580 1042-1048 (2006)
  33. The ABC of binding-protein-dependent transport in Archaea. Lee SJ, Böhm A, Krug M, Boos W. Trends Microbiol 15 389-397 (2007)
  34. Type I secretion system-it takes three and a substrate. Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. FEMS Microbiol Lett 365 (2018)
  35. Bacterial peptide transporters: Messengers of nutrition to virulence. Garai P, Chandra K, Chakravortty D. Virulence 8 297-309 (2017)
  36. Proteins that bind and move lipids: MsbA and NPC1. King G, Sharom FJ. Crit Rev Biochem Mol Biol 47 75-95 (2012)
  37. Biochemical and structural analysis of the Bacillus subtilis ABC transporter OpuA and its isolated subunits. Horn C, Jenewein S, Sohn-Bösser L, Bremer E, Schmitt L. J Mol Microbiol Biotechnol 10 76-91 (2005)
  38. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Filipi K, Rahman WU, Osickova A, Osicka R. Microorganisms 10 518 (2022)

Articles citing this publication (68)

  1. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Ward A, Reyes CL, Yu J, Roth CB, Chang G. Proc Natl Acad Sci U S A 104 19005-19010 (2007)
  2. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S. EMBO J 23 282-293 (2004)
  3. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L. EMBO J 24 1901-1910 (2005)
  4. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE. J Bacteriol 191 6555-6570 (2009)
  5. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Filloux A. Front Microbiol 2 155 (2011)
  6. A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L. EMBO J 25 3432-3443 (2006)
  7. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF. J Mol Biol 396 406-430 (2010)
  8. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Lu G, Westbrooks JM, Davidson AL, Chen J. Proc Natl Acad Sci U S A 102 17969-17974 (2005)
  9. Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR. Aleksandrov AA, Kota P, Aleksandrov LA, He L, Jensen T, Cui L, Gentzsch M, Dokholyan NV, Riordan JR. J Mol Biol 401 194-210 (2010)
  10. Evidence for a Sav1866-like architecture for the human multidrug transporter P-glycoprotein. Zolnerciks JK, Wooding C, Linton KJ. FASEB J 21 3937-3948 (2007)
  11. The CFTR ion channel: gating, regulation, and anion permeation. Hwang TC, Kirk KL. Cold Spring Harb Perspect Med 3 a009498 (2013)
  12. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Pakotiprapha D, Inuzuka Y, Bowman BR, Moolenaar GF, Goosen N, Jeruzalmi D, Verdine GL. Mol Cell 29 122-133 (2008)
  13. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Sherman DJ, Lazarus MB, Murphy L, Liu C, Walker S, Ruiz N, Kahne D. Proc Natl Acad Sci U S A 111 4982-4987 (2014)
  14. Structural arrangement of the transmission interface in the antigen ABC transport complex TAP. Oancea G, O'Mara ML, Bennett WF, Tieleman DP, Abele R, Tampé R. Proc Natl Acad Sci U S A 106 5551-5556 (2009)
  15. Crystal structures of a polypeptide processing and secretion transporter. Lin DY, Huang S, Chen J. Nature 523 425-430 (2015)
  16. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Jones PM, George AM. Proteins 75 387-396 (2009)
  17. Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. Ramaen O, Leulliot N, Sizun C, Ulryck N, Pamlard O, Lallemand JY, Tilbeurgh Hv, Jacquet E. J Mol Biol 359 940-949 (2006)
  18. Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus. Verdon G, Albers SV, van Oosterwijk N, Dijkstra BW, Driessen AJ, Thunnissen AM. J Mol Biol 334 255-267 (2003)
  19. Dynamics of ATP-binding cassette contribute to allosteric control, nucleotide binding and energy transduction in ABC transporters. Wang C, Karpowich N, Hunt JF, Rance M, Palmer AG. J Mol Biol 342 525-537 (2004)
  20. Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer. Jones PM, George AM. J Biol Chem 282 22793-22803 (2007)
  21. X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Karcher A, Büttner K, Märtens B, Jansen RP, Hopfner KP. Structure 13 649-659 (2005)
  22. CFTR gating II: Effects of nucleotide binding on the stability of open states. Bompadre SG, Cho JH, Wang X, Zou X, Sohma Y, Li M, Hwang TC. J Gen Physiol 125 377-394 (2005)
  23. Dynamics of alpha-helical subdomain rotation in the intact maltose ATP-binding cassette transporter. Orelle C, Alvarez FJ, Oldham ML, Orelle A, Wiley TE, Chen J, Davidson AL. Proc Natl Acad Sci U S A 107 20293-20298 (2010)
  24. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L, Chan KW, Nairn AC, Gadsby DC. J Gen Physiol 125 43-55 (2005)
  25. Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. Pimenta AL, Racher K, Jamieson L, Blight MA, Holland IB. J Bacteriol 187 7471-7480 (2005)
  26. Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria. Lee M, Jun SY, Yoon BY, Song S, Lee K, Ha NC. PLoS One 7 e40460 (2012)
  27. Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs. Timmins J, Gordon E, Caria S, Leonard G, Acajjaoui S, Kuo MS, Monchois V, McSweeney S. Structure 17 547-558 (2009)
  28. Nucleotide dependent monomer/dimer equilibrium of OpuAA, the nucleotide-binding protein of the osmotically regulated ABC transporter OpuA from Bacillus subtilis. Horn C, Bremer E, Schmitt L. J Mol Biol 334 403-419 (2003)
  29. Conformational coupling of the nucleotide-binding and the transmembrane domains in ABC transporters. Wen PC, Tajkhorshid E. Biophys J 101 680-690 (2011)
  30. Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery. Kitaoka S, Wada K, Hasegawa Y, Minami Y, Fukuyama K, Takahashi Y. FEBS Lett 580 137-143 (2006)
  31. The PTS(Ntr) system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Prell J, Mulley G, Haufe F, White JP, Williams A, Karunakaran R, Downie JA, Poole PS. Mol Microbiol 84 117-129 (2012)
  32. In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Badhan R, Penny J. Eur J Med Chem 41 285-295 (2006)
  33. Arabidopsis ERG28 tethers the sterol C4-demethylation complex to prevent accumulation of a biosynthetic intermediate that interferes with polar auxin transport. Mialoundama AS, Jadid N, Brunel J, Di Pascoli T, Heintz D, Erhardt M, Mutterer J, Bergdoll M, Ayoub D, Van Dorsselaer A, Rahier A, Nkeng P, Geoffroy P, Miesch M, Camara B, Bouvier F. Plant Cell 25 4879-4893 (2013)
  34. Positive co-operative activity and dimerization of the isolated ABC ATPase domain of HlyB from Escherichia coli. Benabdelhak H, Schmitt L, Horn C, Jumel K, Blight MA, Holland IB. Biochem J 386 489-495 (2005)
  35. Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli. Sugamata Y, Shiba T. Appl Environ Microbiol 71 656-662 (2005)
  36. Characterization of the E506Q and H537A dysfunctional mutants in the E. coli ABC transporter MsbA. Schultz KM, Merten JA, Klug CS. Biochemistry 50 3599-3608 (2011)
  37. The human transporter associated with antigen processing: molecular models to describe peptide binding competent states. Corradi V, Singh G, Tieleman DP. J Biol Chem 287 28099-28111 (2012)
  38. Functionally important ATP binding and hydrolysis sites in Escherichia coli MsbA. Westfahl KM, Merten JA, Buchaklian AH, Klug CS. Biochemistry 47 13878-13886 (2008)
  39. Kinetics of the association/dissociation cycle of an ATP-binding cassette nucleotide-binding domain. Zoghbi ME, Fuson KL, Sutton RB, Altenberg GA. J Biol Chem 287 4157-4164 (2012)
  40. Structural basis of substrate recognition by a polypeptide processing and secretion transporter. Kieuvongngam V, Olinares PDB, Palillo A, Oldham ML, Chait BT, Chen J. Elife 9 e51492 (2020)
  41. The conformational coupling and translocation mechanism of vitamin B12 ATP-binding cassette transporter BtuCD. Weng J, Ma J, Fan K, Wang W. Biophys J 94 612-621 (2008)
  42. Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. Granzin J, Eckhoff A, Weiergräber OH. J Mol Biol 364 799-809 (2006)
  43. Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability. Palou R, Dhanaraman T, Marrakchi R, Pascariu M, Tyers M, D'Amours D. PLoS Biol 16 e2003980 (2018)
  44. H-loop histidine catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB. Zhou Y, Ojeda-May P, Pu J. Phys Chem Chem Phys 15 15811-15815 (2013)
  45. Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8. Watanabe S, Kita A, Miki K. J Mol Biol 353 1043-1054 (2005)
  46. A vector system for ABC transporter-mediated secretion and purification of recombinant proteins in Pseudomonas species. Ryu J, Lee U, Park J, Yoo DH, Ahn JH. Appl Environ Microbiol 81 1744-1753 (2015)
  47. Mapping Free Energy Pathways for ATP Hydrolysis in the E. coli ABC Transporter HlyB by the String Method. Zhou Y, Ojeda-May P, Nagaraju M, Kim B, Pu J. Molecules 23 E2652 (2018)
  48. Structures of the nucleotide-binding domain of the human ABCB6 transporter and its complexes with nucleotides. Haffke M, Menzel A, Carius Y, Jahn D, Heinz DW. Acta Crystallogr D Biol Crystallogr 66 979-987 (2010)
  49. Mutational analysis of conserved aromatic residues in the A-loop of the ABC transporter ABCB1A (mouse Mdr3). Carrier I, Urbatsch IL, Senior AE, Gros P. FEBS Lett 581 301-308 (2007)
  50. Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion. Guo X, Harrison RW, Tai PC. J Bacteriol 188 2383-2391 (2006)
  51. The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Case BC, Hartley S, Osuga M, Jeruzalmi D, Hingorani MM. Nucleic Acids Res 47 4136-4152 (2019)
  52. Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6. Kurashima-Ito K, Ikeya T, Senbongi H, Tochio H, Mikawa T, Shibata T, Ito Y. J Biomol NMR 35 53-71 (2006)
  53. Homology model of the multidrug transporter LmrA from Lactococcus lactis. Pleban K, Macchiarulo A, Costantino G, Pellicciari R, Chiba P, Ecker GF. Bioorg Med Chem Lett 14 5823-5826 (2004)
  54. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path-Force Matching QM/MM Method. Zhou Y, Ojeda-May P, Nagaraju M, Pu J. Methods Enzymol 577 185-212 (2016)
  55. Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1. Weng J, Ma J, Fan K, Wang W. Biophys J 96 1918-1930 (2009)
  56. LptB-LptF coupling mediates the closure of the substrate-binding cavity in the LptB2 FGC transporter through a rigid-body mechanism to extract LPS. Lundstedt EA, Simpson BW, Ruiz N. Mol Microbiol 114 200-213 (2020)
  57. Movement of the β-hairpin in the third zinc-binding module of UvrA is required for DNA damage recognition. Kraithong T, Channgam K, Itsathitphaisarn O, Tiensuwan M, Jeruzalmi D, Pakotiprapha D. DNA Repair (Amst) 51 60-69 (2017)
  58. Structures of the Carbon-Phosphorus Lyase Complex Reveal the Binding Mode of the NBD-like PhnK. Yang K, Ren Z, Raushel FM, Zhang J. Structure 24 37-42 (2016)
  59. Comment Variations on the ABC. Lebbink JH, Sixma TK. Structure 13 498-500 (2005)
  60. Conserved Walker A cysteines 431 and 1074 in human P-glycoprotein are accessible to thiol-specific agents in the apo and ADP-vanadate trapped conformations. Sim HM, Bhatnagar J, Chufan EE, Kapoor K, Ambudkar SV. Biochemistry 52 7327-7338 (2013)
  61. Identification of putative steroid-binding sites in human ABCB1 and ABCG2. Mares-Sámano S, Badhan R, Penny J. Eur J Med Chem 44 3601-3611 (2009)
  62. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain. Li X, Zhuo W, Yu J, Ge J, Gu J, Feng Y, Yang M, Wang L, Wang N. Acta Crystallogr D Biol Crystallogr 69 256-265 (2013)
  63. Water-mediated protein-fluorophore interactions modulate the affinity of an ABC-ATPase/TNP-ADP complex. Oswald C, Jenewein S, Smits SH, Holland IB, Schmitt L. J Struct Biol 162 85-93 (2008)
  64. Characterization of the nucleotide-binding domain NsrF from the BceAB-type ABC-transporter NsrFP from the human pathogen Streptococcus agalactiae. Furtmann F, Porta N, Hoang DT, Reiners J, Schumacher J, Gottstein J, Gohlke H, Smits SHJ. Sci Rep 10 15208 (2020)
  65. Molecular model and ATPase activity of carboxyl-terminal nucleotide binding domain from human P-glycoprotein. Qian F, Wei D, Liu J, Yang S. Biochemistry (Mosc) 71 Suppl 1 S18-24, 1-2 (2006)
  66. Substitution of Yor1p NBD1 residues improves the thermal stability of Human Cystic Fibrosis Transmembrane Conductance Regulator. Xavier BM, Hildebrandt E, Jiang F, Ding H, Kappes JC, Urbatsch IL. Protein Eng Des Sel 30 729-741 (2017)
  67. Characterization of ABC transporter genes, sll1180, sll1181, and slr1270, involved in acid stress tolerance of Synechocystis sp. PCC 6803. Uchiyama J, Itagaki A, Ishikawa H, Tanaka Y, Kohga H, Nakahara A, Imaida A, Tahara H, Ohta H. Photosynth Res 139 325-335 (2019)
  68. A step forward to the optimized HlyA type 1 secretion system through directed evolution. Pourhassan ZN, Cui H, Muckhoff N, Davari MD, Smits SHJ, Schwaneberg U, Schmitt L. Appl Microbiol Biotechnol 107 5131-5143 (2023)