1m9x Citations

Structural insights into the catalytic mechanism of cyclophilin A.

Nat Struct Biol 10 475-81 (2003)
Related entries: 1m9c, 1m9d, 1m9e, 1m9f, 1m9y

Cited: 98 times
EuropePMC logo PMID: 12730686

Abstract

Cyclophilins constitute a ubiquitous protein family whose functions include protein folding, transport and signaling. They possess both sequence-specific binding and proline cis-trans isomerase activities, as exemplified by the interaction between cyclophilin A (CypA) and the HIV-1 CA protein. Here, we report crystal structures of CypA in complex with HIV-1 CA protein variants that bind preferentially with the substrate proline residue in either the cis or the trans conformation. Cis- and trans-Pro substrates are accommodated within the enzyme active site by rearrangement of their N-terminal residues and with minimal distortions in the path of the main chain. CypA Arg55 guanidinium group probably facilitates catalysis by anchoring the substrate proline oxygen and stabilizing sp3 hybridization of the proline nitrogen in the transition state.

Articles - 1m9x mentioned but not cited (3)

  1. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  2. Structure collisions between interacting proteins. Emig D, Sander O, Mayr G, Albrecht M. PLoS One 6 e19581 (2011)
  3. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)


Reviews citing this publication (12)

  1. Prolyl cis-trans isomerization as a molecular timer. Lu KP, Finn G, Lee TH, Nicholson LK. Nat Chem Biol 3 619-629 (2007)
  2. The structural biology of HIV assembly. Ganser-Pornillos BK, Yeager M, Sundquist WI. Curr Opin Struct Biol 18 203-217 (2008)
  3. HIV Gag polyprotein: processing and early viral particle assembly. Bell NM, Lever AM. Trends Microbiol 21 136-144 (2013)
  4. Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Gutiérrez-Aguilar M, Baines CP. Biochim Biophys Acta 1850 2041-2047 (2015)
  5. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. Dunyak BM, Gestwicki JE. J Med Chem 59 9622-9644 (2016)
  6. Roles of cyclophilins in cancers and other organ systems. Yao Q, Li M, Yang H, Chai H, Fisher W, Chen C. World J Surg 29 276-280 (2005)
  7. Molecular Architecture of the Retroviral Capsid. Perilla JR, Gronenborn AM. Trends Biochem Sci 41 410-420 (2016)
  8. The capsid protein of human immunodeficiency virus: interactions of HIV-1 capsid with host protein factors. Mascarenhas AP, Musier-Forsyth K. FEBS J 276 6118-6127 (2009)
  9. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. Singh H, Kaur K, Singh M, Kaur G, Singh P. Front Plant Sci 11 585212 (2020)
  10. Nuclear Import of HIV-1. Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Viruses 13 2242 (2021)
  11. Versatility of Cyclophilins in Plant Growth and Survival: A Case Study in Arabidopsis. Barbosa Dos Santos I, Park SW. Biomolecules 9 E20 (2019)
  12. Inhibitors of peptidyl proline isomerases as antivirals in hepatitis C and other viruses. Striker R, Mehle A. PLoS Pathog 10 e1004428 (2014)

Articles citing this publication (83)

  1. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hué S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ. PLoS Pathog 7 e1002439 (2011)
  2. Hidden alternative structures of proline isomerase essential for catalysis. Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T. Nature 462 669-673 (2009)
  3. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. Davis TL, Walker JR, Campagna-Slater V, Finerty PJ, Paramanathan R, Bernstein G, MacKenzie F, Tempel W, Ouyang H, Lee WH, Eisenmesser EZ, Dhe-Paganon S. PLoS Biol 8 e1000439 (2010)
  4. SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models. Moal IH, Fernández-Recio J. Bioinformatics 28 2600-2607 (2012)
  5. The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. Shah VB, Shi J, Hout DR, Oztop I, Krishnan L, Ahn J, Shotwell MS, Engelman A, Aiken C. J Virol 87 422-432 (2013)
  6. Bcl-2 regulator FKBP38 is activated by Ca2+/calmodulin. Edlich F, Weiwad M, Erdmann F, Fanghänel J, Jarczowski F, Rahfeld JU, Fischer G. EMBO J 24 2688-2699 (2005)
  7. Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. Li Y, Kar AK, Sodroski J. J Virol 83 10951-10962 (2009)
  8. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Doshi U, Holliday MJ, Eisenmesser EZ, Hamelberg D. Proc Natl Acad Sci U S A 113 4735-4740 (2016)
  9. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, Sun T, He P, Chen J, Shen J, Luo X, Li Y, Liu H, Bai D, Shen J, Yang Y, Li F, Zuo J, Hilgenfeld R, Pei G, Chen K, Shen X, Jiang H. Biochem Biophys Res Commun 321 557-565 (2004)
  10. A systematic methodology for defining coarse-grained sites in large biomolecules. Zhang Z, Lu L, Noid WG, Krishna V, Pfaendtner J, Voth GA. Biophys J 95 5073-5083 (2008)
  11. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T, Wilson SJ, Towers GJ, James LC. Nat Struct Mol Biol 16 1036-1042 (2009)
  12. Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Lammers M, Neumann H, Chin JW, James LC. Nat Chem Biol 6 331-337 (2010)
  13. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Bichel K, Price AJ, Schaller T, Towers GJ, Freund SM, James LC. Retrovirology 10 81 (2013)
  14. Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Stremlau M, Song B, Javanbakht H, Perron M, Sodroski J. Virology 351 112-120 (2006)
  15. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. Ramanathan A, Agarwal PK. PLoS Biol 9 e1001193 (2011)
  16. Enzymes: An integrated view of structure, dynamics and function. Agarwal PK. Microb Cell Fact 5 2 (2006)
  17. A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5alphas. Song H, Nakayama EE, Yokoyama M, Sato H, Levy JA, Shioda T. J Virol 81 7280-7285 (2007)
  18. Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson's disease-like pathology. Gerard M, Deleersnijder A, Daniëls V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM, Debyser Z, Baekelandt V. J Neurosci 30 2454-2463 (2010)
  19. The design of artificial retroviral restriction factors. Yap MW, Mortuza GB, Taylor IA, Stoye JP. Virology 365 302-314 (2007)
  20. Human immunodeficiency virus type 1 N-terminal capsid mutants containing cores with abnormally high levels of capsid protein and virtually no reverse transcriptase. Tang S, Murakami T, Cheng N, Steven AC, Freed EO, Levin JG. J Virol 77 12592-12602 (2003)
  21. A Biophysical Perspective on Enzyme Catalysis. Agarwal PK. Biochemistry 58 438-449 (2019)
  22. Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity: direct binding between CyPA and the ectodomain of CD147. Song F, Zhang X, Ren XB, Zhu P, Xu J, Wang L, Li YF, Zhong N, Ru Q, Zhang DW, Jiang JL, Xia B, Chen ZN. J Biol Chem 286 8197-8203 (2011)
  23. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Goldstone DC, Yap MW, Robertson LE, Haire LF, Taylor WR, Katzourakis A, Stoye JP, Taylor IA. Cell Host Microbe 8 248-259 (2010)
  24. Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Lasaro MO, Tatsis N, Hensley SE, Whitbeck JC, Lin SW, Rux JJ, Wherry EJ, Cohen GH, Eisenberg RJ, Ertl HC. Nat Med 14 205-212 (2008)
  25. Discovering conformational sub-states relevant to protein function. Ramanathan A, Savol AJ, Langmead CJ, Agarwal PK, Chennubhotla CS. PLoS One 6 e15827 (2011)
  26. Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A. J Mol Biol 425 1318-1329 (2013)
  27. Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. Earley KW, Poethig RS. J Biol Chem 286 38184-38189 (2011)
  28. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Ahmed-Belkacem A, Colliandre L, Ahnou N, Nevers Q, Gelin M, Bessin Y, Brillet R, Cala O, Douguet D, Bourguet W, Krimm I, Pawlotsky JM, Guichou JF. Nat Commun 7 12777 (2016)
  29. Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein. Bayro MJ, Chen B, Yau WM, Tycko R. J Mol Biol 426 1109-1127 (2014)
  30. Generation of rhesus macaque-tropic HIV-1 clones that are resistant to major anti-HIV-1 restriction factors. Nomaguchi M, Yokoyama M, Kono K, Nakayama EE, Shioda T, Doi N, Fujiwara S, Saito A, Akari H, Miyakawa K, Ryo A, Ode H, Iwatani Y, Miura T, Igarashi T, Sato H, Adachi A. J Virol 87 11447-11461 (2013)
  31. Redox regulation of cyclophilin A by glutathionylation. Ghezzi P, Casagrande S, Massignan T, Basso M, Bellacchio E, Mollica L, Biasini E, Tonelli R, Eberini I, Gianazza E, Dai WW, Fratelli M, Salmona M, Sherry B, Bonetto V. Proteomics 6 817-825 (2006)
  32. The overlap of small molecule and protein binding sites within families of protein structures. Davis FP, Sali A. PLoS Comput Biol 6 e1000668 (2010)
  33. Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant. Song C, Aiken C. J Virol 81 11946-11956 (2007)
  34. HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. Onyango CO, Leligdowicz A, Yokoyama M, Sato H, Song H, Nakayama EE, Shioda T, de Silva T, Townend J, Jaye A, Whittle H, Rowland-Jones S, Cotten M. Vaccine 28 Suppl 2 B60-7 (2010)
  35. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies. Agarwal PK. Proteins 56 449-463 (2004)
  36. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. Kong G, Zhao Y, Jing M, Huang J, Yang J, Xia Y, Kong L, Ye W, Xiong Q, Qiao Y, Dong S, Ma W, Wang Y. PLoS Pathog 11 e1005139 (2015)
  37. Characterizing and controlling the inherent dynamics of cyclophilin-A. Schlegel J, Armstrong GS, Redzic JS, Zhang F, Eisenmesser EZ. Protein Sci 18 811-824 (2009)
  38. Gain-of-sensitivity mutations in a Trim5-resistant primary isolate of pathogenic SIV identify two independent conserved determinants of Trim5α specificity. McCarthy KR, Schmidt AG, Kirmaier A, Wyand AL, Newman RM, Johnson WE. PLoS Pathog 9 e1003352 (2013)
  39. Mechanistic insight into the role of transition-state stabilization in cyclophilin A. Hamelberg D, McCammon JA. J Am Chem Soc 131 147-152 (2009)
  40. Crystal structure of the N-terminal domain of Nup358/RanBP2. Kassube SA, Stuwe T, Lin DH, Antonuk CD, Napetschnig J, Blobel G, Hoelz A. J Mol Biol 423 752-765 (2012)
  41. Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes. Lauranzano E, Pozzi S, Pasetto L, Stucchi R, Massignan T, Paolella K, Mombrini M, Nardo G, Lunetta C, Corbo M, Mora G, Bendotti C, Bonetto V. Brain 138 974-991 (2015)
  42. Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Saleh T, Jankowski W, Sriram G, Rossi P, Shah S, Lee KB, Cruz LA, Rodriguez AJ, Birge RB, Kalodimos CG. Nat Chem Biol 12 117-123 (2016)
  43. L1CAM promotes epithelial to mesenchymal transition and formation of cancer initiating cells in human endometrial cancer. Chen J, Gao F, Liu N. Exp Ther Med 15 2792-2797 (2018)
  44. Structural, biochemical, and in vivo characterization of the first virally encoded cyclophilin from the Mimivirus. Thai V, Renesto P, Fowler CA, Brown DJ, Davis T, Gu W, Pollock DD, Kern D, Raoult D, Eisenmesser EZ. J Mol Biol 378 71-86 (2008)
  45. Cyclophilin A enables specific HIV-1 Tat palmitoylation and accumulation in uninfected cells. Chopard C, Tong PBV, Tóth P, Schatz M, Yezid H, Debaisieux S, Mettling C, Gross A, Pugnière M, Tu A, Strub JM, Mesnard JM, Vitale N, Beaumelle B. Nat Commun 9 2251 (2018)
  46. Gag-CA Q110D mutation elicits TRIM5-independent enhancement of HIV-1mt replication in macaque cells. Nomaguchi M, Yokoyama M, Kono K, Nakayama EE, Shioda T, Saito A, Akari H, Yasutomi Y, Matano T, Sato H, Adachi A. Microbes Infect 15 56-65 (2013)
  47. Mechanism of action of cyclophilin a explored by metadynamics simulations. Leone V, Lattanzi G, Molteni C, Carloni P. PLoS Comput Biol 5 e1000309 (2009)
  48. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data. Trzesniak D, van Gunsteren WF. Protein Sci 15 2544-2551 (2006)
  49. Diverse HIV viruses are targeted by a conformationally dynamic antiviral. Caines ME, Bichel K, Price AJ, McEwan WA, Towers GJ, Willett BJ, Freund SM, James LC. Nat Struct Mol Biol 19 411-416 (2012)
  50. The peptidyl prolyl isomerase cyclophilin A localizes at the centrosome and the midbody and is required for cytokinesis. Bannon JH, O'Donovan DS, Kennelly SM, Mc Gee MM. Cell Cycle 11 1340-1353 (2012)
  51. The crystal structure of human WD40 repeat-containing peptidylprolyl isomerase (PPWD1). Davis TL, Walker JR, Ouyang H, MacKenzie F, Butler-Cole C, Newman EM, Eisenmesser EZ, Dhe-Paganon S. FEBS J 275 2283-2295 (2008)
  52. 19F NMR relaxation studies of fluorosubstituted tryptophans. Lu M, Ishima R, Polenova T, Gronenborn AM. J Biomol NMR 73 401-409 (2019)
  53. A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins. Campos BM, Sforça ML, Ambrosio AL, Domingues MN, Brasil de Souza Tde A, Barbosa JA, Paes Leme AF, Perez CA, Whittaker SB, Murakami MT, Zeri AC, Benedetti CE. Plant Physiol 162 1311-1323 (2013)
  54. Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. Kovalskyy DB, Ivanov DN. Biochemistry 53 1466-1476 (2014)
  55. A cyclophilin A inducible expressed in gonad of zhikong scallop Chlamys farreri. Song X, Wang L, Song L, Zhao J, Zhang H, Zheng P, Qiu L, Liu X, Wu L. Mol Biol Rep 36 1637-1645 (2009)
  56. Homology-based identification of capsid determinants that protect HIV1 from human TRIM5α restriction. Maillard PV, Zoete V, Michielin O, Trono D. J Biol Chem 286 8128-8140 (2011)
  57. An intramolecular chaperone inserted in bacteriophage P22 coat protein mediates its chaperonin-independent folding. Suhanovsky MM, Teschke CM. J Biol Chem 288 33772-33783 (2013)
  58. Efficient transduction of simian cells by HIV-1-based lentiviral vectors that contain mutations in the capsid protein. Rits MA, van Dort KA, Münk C, Meijer AB, Kootstra NA. Mol Ther 15 930-937 (2007)
  59. Cyclophilin A is an important mediator of platelet function by regulating integrin αIIbβ3 bidirectional signalling. Wang L, Soe NN, Sowden M, Xu Y, Modjeski K, Baskaran P, Kim Y, Smolock EM, Morrell CN, Berk BC. Thromb Haemost 111 873-882 (2014)
  60. Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD. Quistgaard EM, Weininger U, Ural-Blimke Y, Modig K, Nordlund P, Akke M, Löw C. BMC Biol 14 82 (2016)
  61. Theiler's murine encephalomyelitis virus leader protein amino acid residue 57 regulates subgroup-specific virus growth on BHK-21 cells. Takano-Maruyama M, Ohara Y, Asakura K, Okuwa T. J Virol 80 12025-12031 (2006)
  62. Kinetic isotope effects support the twisted amide mechanism of Pin1 peptidyl-prolyl isomerase. Mercedes-Camacho AY, Mullins AB, Mason MD, Xu GG, Mahoney BJ, Wang X, Peng JW, Etzkorn FA. Biochemistry 52 7707-7713 (2013)
  63. Inhibition of synovitis and joint destruction by a new single domain antibody specific for cyclophilin A in two different mouse models of rheumatoid arthritis. Wang L, Jia J, Wang C, Ma X, Liao C, Fu Z, Wang B, Yang X, Zhu P, Li Y, Chen Z. Arthritis Res Ther 15 R208 (2013)
  64. A structural constraint for functional interaction between N-terminal and C-terminal domains in simian immunodeficiency virus capsid proteins. Inagaki N, Takeuchi H, Yokoyama M, Sato H, Ryo A, Yamamoto H, Kawada M, Matano T. Retrovirology 7 90 (2010)
  65. Comparative EST analysis of a Zoophthora radicans isolate derived from Pieris brassicae and an isogenic strain adapted to Plutella xylostella. Xu J, Baldwin D, Kindrachuk C, Hegedus DD. Microbiology (Reading) 155 174-185 (2009)
  66. Defective cyclophilin A induces TDP-43 proteinopathy: implications for amyotrophic lateral sclerosis and frontotemporal dementia. Pasetto L, Grassano M, Pozzi S, Luotti S, Sammali E, Migazzi A, Basso M, Spagnolli G, Biasini E, Micotti E, Cerovic M, Carli M, Forloni G, De Marco G, Manera U, Moglia C, Mora G, Traynor BJ, Chiò A, Calvo A, Bonetto V. Brain 144 3710-3726 (2021)
  67. Molecular dynamics of the proline switch and its role in Crk signaling. Xia J, Levy RM. J Phys Chem B 118 4535-4545 (2014)
  68. Novel mutant human immunodeficiency virus type 1 strains with high degree of resistance to cynomolgus macaque TRIMCyp generated by random mutagenesis. Sultana T, Nakayama EE, Tobita S, Yokoyama M, Seki Y, Saito A, Nomaguchi M, Adachi A, Akari H, Sato H, Shioda T. J Gen Virol 97 963-976 (2016)
  69. Structural insight into proline cis/trans isomerization of unfolded proteins catalyzed by the trigger factor chaperone. Kawagoe S, Nakagawa H, Kumeta H, Ishimori K, Saio T. J Biol Chem 293 15095-15106 (2018)
  70. A nonessential role for Arg 55 in cyclophilin18 for catalysis of proline isomerization during protein folding. Moparthi SB, Hammarström P, Carlsson U. Protein Sci 18 475-479 (2009)
  71. Dynamic design: manipulation of millisecond timescale motions on the energy landscape of cyclophilin A. Juárez-Jiménez J, Gupta AA, Karunanithy G, Mey ASJS, Georgiou C, Ioannidis H, De Simone A, Barlow PN, Hulme AN, Walkinshaw MD, Baldwin AJ, Michel J. Chem Sci 11 2670-2680 (2020)
  72. 1.88 A crystal structure of the C domain of hCyP33: a novel domain of peptidyl-prolyl cis-trans isomerase. Wang T, Yun CH, Gu SY, Chang WR, Liang DC. Biochem Biophys Res Commun 333 845-849 (2005)
  73. Evasion from CypA- and APOBEC-mediated restrictions is insufficient for HIV-1 to efficiently grow in simian cells. Kamada K, Yamashita T, Hatcho K, Adachi A, Nomaguchi M. Microbes Infect 11 164-171 (2009)
  74. The cysteine residues of HIV-1 capsid regulate oligomerization and cyclophilin A-induced changes. Bon Homme M, Carter C, Scarlata S. Biophys J 88 2078-2088 (2005)
  75. De novo mapping of α-helix recognition sites on protein surfaces using unbiased libraries. Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG, Olsen TJ, Brennan MJ, Verdine GL, McGee JH. Proc Natl Acad Sci U S A 119 e2210435119 (2022)
  76. In vivo regulation of human CrkII by cyclophilin A and FK506-binding protein. Nath PR, Dong G, Braiman A, Isakov N. Biochem Biophys Res Commun 470 411-416 (2016)
  77. Unfolding of CPR3 Gets Initiated at the Active Site and Proceeds via Two Intermediates. Shukla VK, Singh JS, Vispute N, Ahmad B, Kumar A, Hosur RV. Biophys J 112 605-619 (2017)
  78. Structure of a bacterial cytoplasmic cyclophilin A in complex with a tetrapeptide. Christoforides E, Dimou M, Katinakis P, Bethanis K, Karpusas M. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 259-264 (2012)
  79. Comment Multienzyme assembly of a p53 transcription complex. Hupp TR, Walkinshaw M. Nat Struct Mol Biol 14 885-887 (2007)
  80. A Tripartite Complex HIV-1 Tat-Cyclophilin A-Capsid Protein Enables Tat Encapsidation That Is Required for HIV-1 Infectivity. Schatz M, Marty L, Ounadjela C, Tong PBV, Cardace I, Mettling C, Milhiet PE, Costa L, Godefroy C, Pugnière M, Guichou JF, Mesnard JM, Blaise M, Beaumelle B. J Virol 97 e0027823 (2023)
  81. Identification of cyclophilin A as a CD99-binding protein by yeast two-hybrid screening. Kim HJ, Chong KH, Kang SW, Lee JR, Kim JY, Hahn MJ, Kim TJ. Immunol Lett 95 155-159 (2004)
  82. The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1. Twizerimana AP, Becker D, Zhu S, Luedde T, Gohlke H, Münk C. Proc Natl Acad Sci U S A 120 e2306374120 (2023)
  83. Cyclophilin A Isomerisation of Septin 2 Mediates Abscission during Cytokinesis. Gorry RL, Brennan K, Lavin PTM, Mazurski T, Mary C, Matallanas D, Guichou JF, Mc Gee MM. Int J Mol Sci 24 11084 (2023)