1lqk Citations

Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 A resolution by MAD phasing off the L-III edge of Tl(+).

J Am Chem Soc 124 11001-3 (2002)
Related entries: 1lqo, 1lqp

Cited: 39 times
EuropePMC logo PMID: 12224946

Abstract

The fosfomycin resistance protein (FosA) catalyzes the Mn(II)- and K+-dependent addition of glutathione to the oxirane of the antibiotic fosfomycin. The crystal structure of FosA from Pseudomonas aeruginosa was solved at a resolution of 1.19 A by multiwavelength anomalous diffraction at the L-III edge of a Tl+ derivative. The structure solution took advantage of the ability of Tl+ to substitute for K+. The existence of multiple Tl sites in the asymmetric unit suggests that this may be a generally useful technique for phasing protein crystal structures. A 1.35 A resolution structure with phosphate bound in the active site shows that the Mn(II) center has a rare four-coordinate geometry. The structure of the fosfomycin complex at 1.19 A resolution indicates that the Mn(II) center is close to five-coordinate with trigonal bipyramidal geometry and a ligand set consisting of two histidines (H7 and H64) and one phosphonate oxygen occupying the equatorial sites and the carboxylate of E110 at one of the apical sites. The oxirane oxygen of the substrate is located at the other apical site but is 0.2 A beyond the average Mn-O distance for five-coordinate Mn(II). The Mn(II) center is proposed to stabilize the alkoxide in the transition state, while the nearby hydroxyl group of T9 acts as a proton donor in the reaction. The K+ ion located 6.5 A from the Mn(II) appears to help orient the substrate for nucleophilic attack.

Articles - 1lqk mentioned but not cited (2)

  1. Structure of fosfomycin resistance protein FosA from transposon Tn2921. Pakhomova S, Rife CL, Armstrong RN, Newcomer ME. Protein Sci 13 1260-1265 (2004)
  2. 1.6 A crystal structure of a PA2721 protein from pseudomonas aeruginosa--a potential drug-resistance protein. Nocek B, Cuff M, Evdokimova E, Edwards A, Joachimiak A, Savchenko A. Proteins 63 1102-1105 (2006)


Reviews citing this publication (10)

  1. Glutathione transferases in bacteria. Allocati N, Federici L, Masulli M, Di Ilio C. FEBS J 276 58-75 (2009)
  2. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Antibiotics (Basel) 2 217-236 (2013)
  3. Resistance to antibiotics targeted to the bacterial cell wall. Nikolaidis I, Favini-Stabile S, Dessen A. Protein Sci 23 243-259 (2014)
  4. The genomic enzymology of antibiotic resistance. Morar M, Wright GD. Annu Rev Genet 44 25-51 (2010)
  5. Tetracycline-Inactivating Enzymes. Markley JL, Wencewicz TA. Front Microbiol 9 1058 (2018)
  6. Structure and mechanism of enzymes involved in biosynthesis and breakdown of the phosphonates fosfomycin, dehydrophos, and phosphinothricin. Nair SK, van der Donk WA. Arch Biochem Biophys 505 13-21 (2011)
  7. Computational Understanding of the Selectivities in Metalloenzymes. Wei WJ, Qian HX, Wang WJ, Liao RZ. Front Chem 6 638 (2018)
  8. Structural biological study of self-resistance determinants in antibiotic-producing actinomycetes. Sugiyama M. J Antibiot (Tokyo) 68 543-550 (2015)
  9. Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and Enterobacterales. Zheng D, Bergen PJ, Landersdorfer CB, Hirsch EB. Antimicrob Agents Chemother 66 e0144621 (2022)
  10. Mechanism of drug resistance in bacteria: efflux pump modulation for designing of new antibiotic enhancers. Mohanty H, Pachpute S, Yadav RP. Folia Microbiol (Praha) 66 727-739 (2021)

Articles citing this publication (27)

  1. Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Wachino J, Yamane K, Suzuki S, Kimura K, Arakawa Y. Antimicrob Agents Chemother 54 3061-3064 (2010)
  2. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. Ito R, Mustapha MM, Tomich AD, Callaghan JD, McElheny CL, Mettus RT, Shanks RMQ, Sluis-Cremer N, Doi Y. mBio 8 e00749-17 (2017)
  3. Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Roberts AA, Sharma SV, Strankman AW, Duran SR, Rawat M, Hamilton CJ. Biochem J 451 69-79 (2013)
  4. A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). Eschenburg S, Priestman MA, Abdul-Latif FA, Delachaume C, Fassy F, Schönbrunn E. J Biol Chem 280 14070-14075 (2005)
  5. Blocking peptidoglycan recycling in Pseudomonas aeruginosa attenuates intrinsic resistance to fosfomycin. Borisova M, Gisin J, Mayer C. Microb Drug Resist 20 231-237 (2014)
  6. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Thompson MK, Keithly ME, Goodman MC, Hammer ND, Cook PD, Jagessar KL, Harp J, Skaar EP, Armstrong RN. Biochemistry 53 755-765 (2014)
  7. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes. Sukdeo N, Clugston SL, Daub E, Honek JF. Biochem J 384 111-117 (2004)
  8. Structural and chemical aspects of resistance to the antibiotic fosfomycin conferred by FosB from Bacillus cereus. Thompson MK, Keithly ME, Harp J, Cook PD, Jagessar KL, Sulikowski GA, Armstrong RN. Biochemistry 52 7350-7362 (2013)
  9. Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Xu H, Miao V, Kwong W, Xia R, Davies J. Lett Appl Microbiol 52 427-429 (2011)
  10. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. Beharry Z, Palzkill T. J Biol Chem 280 17786-17791 (2005)
  11. Structure and Dynamics of FosA-Mediated Fosfomycin Resistance in Klebsiella pneumoniae and Escherichia coli. Klontz EH, Tomich AD, Günther S, Lemkul JA, Deredge D, Silverstein Z, Shaw JF, McElheny C, Doi Y, Wintrode PL, MacKerell AD, Sluis-Cremer N, Sundberg EJ. Antimicrob Agents Chemother 61 e01572-17 (2017)
  12. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. Shisler KA, Hutcheson RU, Horitani M, Duschene KS, Crain AV, Byer AS, Shepard EM, Rasmussen A, Yang J, Broderick WE, Vey JL, Drennan CL, Hoffman BM, Broderick JB. J Am Chem Soc 139 11803-11813 (2017)
  13. Expression of Xhdsi-1VOC, a novel member of the vicinal oxygen chelate (VOC) metalloenzyme superfamily, is up-regulated in leaves and roots during desiccation in the resurrection plant Xerophyta humilis (Bak) Dur and Schinz. Mulako I, Farrant JM, Collett H, Illing N. J Exp Bot 59 3885-3901 (2008)
  14. The mitomycin C (MMC)-binding protein from MMC-producing microorganisms protects from the lethal effect of bleomycin: crystallographic analysis to elucidate the binding mode of the antibiotic to the protein. Danshiitsoodol N, de Pinho CA, Matoba Y, Kumagai T, Sugiyama M. J Mol Biol 360 398-408 (2006)
  15. Toxoflavin lyase requires a novel 1-His-2-carboxylate facial triad. Fenwick MK, Philmus B, Begley TP, Ealick SE. Biochemistry 50 1091-1100 (2011)
  16. Evolution of the antibiotic resistance protein, FosA, is linked to a catalytically promiscuous progenitor. Brown DW, Schaab MR, Birmingham WR, Armstrong RN. Biochemistry 48 1847-1849 (2009)
  17. A model for glutathione binding and activation in the fosfomycin resistance protein, FosA. Rigsby RE, Brown DW, Dawson E, Lybrand TP, Armstrong RN. Arch Biochem Biophys 464 277-283 (2007)
  18. Letter Gene cassettes potentially encoding fosfomycin resistance determinants. Partridge SR, Hall RM. Antimicrob Agents Chemother 49 860-861 (2005)
  19. Synthesis of (2S)-2-amino-7,8-epoxyoctanoic acid and structure of its metal-bridging complex with human arginase I. Zakharian TY, Di Costanzo L, Christianson DW. Org Biomol Chem 6 3240-3243 (2008)
  20. Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. Travis S, Shay MR, Manabe S, Gilbert NC, Frantom PA, Thompson MK. Medchemcomm 10 1948-1957 (2019)
  21. Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin/mitomycin C resistance in other bacteria. Yu S, Vit A, Devenish S, Mahanty HK, Itzen A, Goody RS, Blankenfeldt W. BMC Struct Biol 11 33 (2011)
  22. Identification and analysis of small molecule inhibitors of FosB from Staphylococcus aureus. Travis S, Green KD, Thamban Chandrika N, Pang AH, Frantom PA, Tsodikov OV, Garneau-Tsodikova S, Thompson MK. RSC Med Chem 14 947-956 (2023)
  23. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions. Bodner T, Wirnsberger B, Albering J, Wiesbrock F. Dalton Trans 40 10885-10888 (2011)
  24. Electronic structure of the Mn-cofactor of modified bacterial reaction centers measured by electron paramagnetic resonance and electron spin echo envelope modulation spectroscopies. Tufts AA, Flores M, Olson TL, Williams JC, Allen JP. Photosynth Res 120 207-220 (2014)
  25. Small molecule inhibitors of the fosfomycin resistance enzyme FosM from Mycobacterium abscessus. Chiasson S, Smith T, Bello L, Chandrika NT, Green KD, Garneau-Tsodikova S, Thompson MK. Biochim Biophys Acta Gen Subj 1867 130444 (2023)
  26. Structural Studies of Klebsiella pneumoniae Fosfomycin-Resistance Protein and Its Application for the Development of an Optical Biosensor for Fosfomycin Determination. Varotsou C, Ataya F, Ataya F, Papageorgiou AC, Labrou NE. Int J Mol Sci 25 85 (2023)
  27. The Inactivation of the Putative Two-Component System Sensor PA14_27940 Increases the Susceptibility to Several Antibiotics and Reduces the Motility of Pseudomonas aeruginosa. Genova R, Gil-Gil T, Cuesta T, Martínez JL, Martínez JL, Sanz-García F. Int J Mol Sci 24 17355 (2023)