1l9j Citations

X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides.

J Mol Biol 319 501-15 (2002)
Cited: 84 times
EuropePMC logo PMID: 12051924

Abstract

In the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.9 micros, which is the same time as measured in solution. This provides strong evidence that the structure of the complex in the region of electron transfer is the same in the crystal and in solution. X-ray diffraction data were collected from co-crystals to a maximum resolution of 2.40 A and refined to an R-factor of 22% (R(free)=26%). The structure shows the cyt c2 to be positioned at the center of the periplasmic surface of the RC, with the heme edge located above the bacteriochlorophyll dimer. The distance between the closest atoms of the two cofactors is 8.4 A. The side-chain of Tyr L162 makes van der Waals contacts with both cofactors along the shortest intermolecular electron transfer pathway. The binding interface can be divided into two domains: (i) A short-range interaction domain that includes Tyr L162, and groups exhibiting non-polar interactions, hydrogen bonding, and a cation-pi interaction. This domain contributes to the strength and specificity of cyt c2 binding. (ii) A long-range, electrostatic interaction domain that contains solvated complementary charges on the RC and cyt c2. This domain, in addition to contributing to the binding, may help steer the unbound proteins toward the right conformation.

Reviews - 1l9j mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1l9j mentioned but not cited (5)

  1. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone formula by 1H and 2H ENDOR spectroscopy. Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G. Biophys J 92 671-682 (2007)
  2. Cryo-EM structure of the photosynthetic RC-LH1-PufX supercomplex at 2.8-Å resolution. Bracun L, Yamagata A, Christianson BM, Terada T, Canniffe DP, Shirouzu M, Liu LN. Sci Adv 7 eabf8864 (2021)
  3. Interactions between cytochrome c2 and the photosynthetic reaction center from Rhodobacter sphaeroides: the cation-pi interaction. Paddock ML, Weber KH, Chang C, Okamura MY. Biochemistry 44 9619-9625 (2005)
  4. Current limits of structural biology: The transient interaction between cytochrome c 6 and photosystem I. Kölsch A, Radon C, Golub M, Baumert A, Bürger J, Mielke T, Lisdat F, Feoktystov A, Pieper J, Zouni A, Wendler P. Curr Res Struct Biol 2 171-179 (2020)
  5. Interaction between cytochrome c2 and the photosynthetic reaction center from Rhodobacter sphaeroides: role of interprotein hydrogen bonds in binding and electron transfer. Abresch EC, Paddock ML, Villalobos M, Chang C, Okamura MY. Biochemistry 47 13318-13325 (2008)


Reviews citing this publication (12)

  1. Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. Fromme P, Melkozernov A, Jordan P, Krauss N. FEBS Lett 555 40-44 (2003)
  2. Lipids in photosynthetic reaction centres: structural roles and functional holes. Jones MR. Prog Lipid Res 46 56-87 (2007)
  3. Guidelines for tunneling in enzymes. Moser CC, Anderson JL, Dutton PL. Biochim Biophys Acta 1797 1573-1586 (2010)
  4. The structure and function of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. Axelrod HL, Okamura MY. Photosynth Res 85 101-114 (2005)
  5. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur Biophys J 39 723-755 (2010)
  6. Self-assembly of photosynthetic membranes. Hsin J, Chandler DE, Gumbart J, Harrison CB, Sener M, Strumpfer J, Schulten K. Chemphyschem 11 1154-1159 (2010)
  7. Protein-lipid interactions in the purple bacterial reaction centre. Jones MR, Fyfe PK, Roszak AW, Isaacs NW, Cogdell RJ. Biochim Biophys Acta 1565 206-214 (2002)
  8. Structure-function investigations of bacterial photosynthetic reaction centers. Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Biochemistry (Mosc) 76 1465-1483 (2011)
  9. The three-dimensional structures of bacterial reaction centers. Olson TL, Williams JC, Allen JP. Photosynth Res 120 87-98 (2014)
  10. Structures of proteins and cofactors: X-ray crystallography. Allen JP, Seng C, Larson C. Photosynth Res 102 231-240 (2009)
  11. Structural and functional studies on the tetraheme cytochrome subunit and its electron donor proteins: the possible docking mechanisms during the electron transfer reaction. Nogi T, Hirano Y, Miki K. Photosynth Res 85 87-99 (2005)
  12. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Fufina TY, Vasilieva LG. Biophys Rev 15 921-937 (2023)

Articles citing this publication (66)

  1. Long-range electron tunneling. Winkler JR, Gray HB. J Am Chem Soc 136 2930-2939 (2014)
  2. Classical force field parameters for the heme prosthetic group of cytochrome c. Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z. J Comput Chem 25 1613-1622 (2004)
  3. Interprotein electron transfer from cytochrome c2 to photosynthetic reaction center: tunneling across an aqueous interface. Miyashita O, Okamura MY, Onuchic JN. Proc Natl Acad Sci U S A 102 3558-3563 (2005)
  4. Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution. Katona G, Andréasson U, Landau EM, Andréasson LE, Neutze R. J Mol Biol 331 681-692 (2003)
  5. Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D. Nat Struct Biol 10 928-934 (2003)
  6. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Senge MO, MacGowan SA, O'Brien JM. Chem Commun (Camb) 51 17031-17063 (2015)
  7. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, Tsukihara T. EMBO J 36 291-300 (2017)
  8. The architecture of the binding site in redox protein complexes: implications for fast dissociation. Crowley PB, Carrondo MA. Proteins 55 603-612 (2004)
  9. Structural basis of inter-protein electron transfer for nitrite reduction in denitrification. Nojiri M, Koteishi H, Nakagami T, Kobayashi K, Inoue T, Yamaguchi K, Suzuki S. Nature 462 117-120 (2009)
  10. Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. König C, Neugebauer J. Chemphyschem 13 386-425 (2012)
  11. Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. Trammell SA, Wang L, Zullo JM, Shashidhar R, Lebedev N. Biosens Bioelectron 19 1649-1655 (2004)
  12. Transition state and encounter complex for fast association of cytochrome c2 with bacterial reaction center. Miyashita O, Onuchic JN, Okamura MY. Proc Natl Acad Sci U S A 101 16174-16179 (2004)
  13. The Cytochrome bc (1) Complex and its Homologue the b (6) f Complex: Similarities and Differences. Darrouzet E, Cooley JW, Daldal F. Photosynth Res 79 25-44 (2004)
  14. A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the Cytochrome bc1 complex. Geyer T, Helms V. Biophys J 91 921-926 (2006)
  15. NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase. Sakamoto K, Kamiya M, Imai M, Shinzawa-Itoh K, Uchida T, Kawano K, Yoshikawa S, Ishimori K. Proc Natl Acad Sci U S A 108 12271-12276 (2011)
  16. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides. Geyer T, Helms V. Biophys J 91 927-937 (2006)
  17. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Bonanni PS, Massazza D, Busalmen JP. Phys Chem Chem Phys 15 10300-10306 (2013)
  18. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: effect of hydrogen bonding on the electronic and geometric structure of the primary quinone. A density functional theory study. Sinnecker S, Flores M, Lubitz W. Phys Chem Chem Phys 8 5659-5670 (2006)
  19. Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. Meyer TE, Cusanovich MA. Photosynth Res 76 111-126 (2003)
  20. Engineering of an alternative electron transfer path in photosystem II. Larom S, Salama F, Schuster G, Adir N. Proc Natl Acad Sci U S A 107 9650-9655 (2010)
  21. Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers. Tamura H, Saito K, Ishikita H. Proc Natl Acad Sci U S A 117 16373-16382 (2020)
  22. A structural model for the adduct between cytochrome c and cytochrome c oxidase. Bertini I, Cavallaro G, Rosato A. J Biol Inorg Chem 10 613-624 (2005)
  23. Energetic insights into two electron transfer pathways in light-driven energy-converting enzymes. Kawashima K, Ishikita H. Chem Sci 9 4083-4092 (2018)
  24. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, Hunter CN. Sci Adv 7 eabe2631 (2021)
  25. Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers. Sugo Y, Saito K, Ishikita H. Proc Natl Acad Sci U S A 118 e2103203118 (2021)
  26. Recent advances in the structural diversity of reaction centers. Gisriel CJ, Azai C, Cardona T. Photosynth Res 149 329-343 (2021)
  27. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced Rhodobacter capsulatus cytochrome c2 to the cytochrome bc1 complex mediated by the conformation of the Rieske iron-sulfur protein. Devanathan S, Salamon Z, Tollin G, Fitch JC, Meyer TE, Berry EA, Cusanovich MA. Biochemistry 46 7138-7145 (2007)
  28. Crystal structure of the Leishmania major peroxidase-cytochrome c complex. Jasion VS, Doukov T, Pineda SH, Li H, Poulos TL. Proc Natl Acad Sci U S A 109 18390-18394 (2012)
  29. Crystal structure of the electron carrier domain of the reaction center cytochrome c(z) subunit from green photosynthetic bacterium Chlorobium tepidum. Hirano Y, Higuchi M, Azai C, Oh-Oka H, Miki K, Wang ZY. J Mol Biol 397 1175-1187 (2010)
  30. Kinetics of Electron Transfer within Cytochrome bc (1) and Between Cytochrome bc (1) and Cytochrome c. Millett F, Durham B. Photosynth Res 82 1-16 (2004)
  31. Binding Site Recognition and Docking Dynamics of a Single Electron Transport Protein: Cytochrome c2. Singharoy A, Barragan AM, Thangapandian S, Tajkhorshid E, Schulten K. J Am Chem Soc 138 12077-12089 (2016)
  32. Electron transfer in crystals of the binary and ternary complexes of methylamine dehydrogenase with amicyanin and cytochrome c551i as detected by EPR spectroscopy. Ferrari D, Di Valentin M, Carbonera D, Merli A, Chen ZW, Mathews FS, Davidson VL, Rossi GL. J Biol Inorg Chem 9 231-237 (2004)
  33. Evolving the [myoglobin, cytochrome b(5)] complex from dynamic toward simple docking: charging the electron transfer reactive patch. Trana EN, Nocek JM, Knutson AK, Hoffman BM. Biochemistry 51 8542-8553 (2012)
  34. How does nitrous oxide reductase interact with its electron donors?--A docking study. Mattila K, Haltia T. Proteins 59 708-722 (2005)
  35. Electron transfer from cytochrome c(2) to the reaction center: a transition state model for ionic strength effects due to neutral mutations. Abresch EC, Gong XM, Paddock ML, Okamura MY. Biochemistry 48 11390-11398 (2009)
  36. Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus. Kölsch A, Hejazi M, Stieger KR, Feifel SC, Kern JF, Müh F, Lisdat F, Lokstein H, Zouni A. J Biol Chem 293 9090-9100 (2018)
  37. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Biol Direct 10 29 (2015)
  38. Structural basis of interprotein electron transfer in bacterial sulfite oxidation. McGrath AP, Laming EL, Casas Garcia GP, Kvansakul M, Guss JM, Trewhella J, Calmes B, Bernhardt PV, Hanson GR, Kappler U, Maher MJ. Elife 4 e09066 (2015)
  39. The Photosystem II D1-K238E mutation enhances electrical current production using cyanobacterial thylakoid membranes in a bio-photoelectrochemical cell. Larom S, Kallmann D, Saper G, Pinhassi R, Rothschild A, Dotan H, Ankonina G, Schuster G, Adir N. Photosynth Res 126 161-169 (2015)
  40. A Brownian dynamics study: the effect of a membrane environment on an electron transfer system. Flöck D, Helms V. Biophys J 87 65-74 (2004)
  41. Design and engineering of a man-made diffusive electron-transport protein. Fry BA, Solomon LA, Leslie Dutton P, Moser CC. Biochim Biophys Acta 1857 513-521 (2016)
  42. Principles and patterns in the interaction between mono-heme cytochrome c and its partners in electron transfer processes. Bertini I, Cavallaro G, Rosato A. Metallomics 3 354-362 (2011)
  43. Soluble variants of Rhodobacter capsulatus membrane-anchored cytochrome cy are efficient photosynthetic electron carriers. Oztürk Y, Lee DW, Mandaci S, Osyczka A, Prince RC, Daldal F. J Biol Chem 283 13964-13972 (2008)
  44. Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP. Kawakami T, Yu LJ, Liang T, Okazaki K, Madigan MT, Kimura Y, Wang-Otomo ZY. Nat Commun 12 1104 (2021)
  45. In vivo assembly of a truncated H subunit mutant of the Rhodobacter sphaeroides photosynthetic reaction centre and direct electron transfer from the QA quinone to an electrode. Jun D, Dhupar HS, Mahmoudzadeh A, Duong F, Madden JDW, Beatty JT. Photosynth Res 137 227-239 (2018)
  46. Probing the Paracoccus denitrificans cytochrome c(1)-cytochrome c(552) interaction by mutagenesis and fast kinetics. Janzon J, Yuan Q, Malatesta F, Hellwig P, Ludwig B, Durham B, Millett F. Biochemistry 47 12974-12984 (2008)
  47. Characterization of the interaction of Rhodobacter capsulatus cytochrome c peroxidase with charge reversal mutants of cytochrome c(2). Koh M, Meyer TE, De Smet L, Van Beeumen JJ, Cusanovich MA. Arch Biochem Biophys 410 230-237 (2003)
  48. Comparative analyses of three-dimensional models of bacterial reaction centers. Camara-Artigas A, Allen JP. Photosynth Res 81 227-237 (2004)
  49. Different scenarios for inter-protein electron tunneling: the effect of water-mediated pathways. Miyashita O, Axelrod HL, Onuchic JN. J Biol Phys 28 383-394 (2002)
  50. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center. Ponomarenko NS, Li L, Marino AR, Tereshko V, Ostafin A, Popova JA, Bylina EJ, Ismagilov RF, Norris JR. Biochim Biophys Acta 1788 1822-1831 (2009)
  51. [Role of individual lysine residues of horse cytochrome c in the formation of reactive complexes with components of the respiratory chain]. Pepelina TIu, Chertkova RV, Dolgikh DA, Kirpichnikov MP. Bioorg Khim 36 98-104 (2010)
  52. Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Vasilev C, Mayneord GE, Brindley AA, Johnson MP, Hunter CN. Biochem J 476 2173-2190 (2019)
  53. A general exit strategy of monoheme cytochromes c and c2 in electron transfer complexes? De March M, Brancatelli G, Demitri N, De Zorzi R, Hickey N, Geremia S. IUBMB Life 67 694-700 (2015)
  54. Anionic Lipids Confine Cytochrome c2 to the Surface of Bioenergetic Membranes without Compromising Its Interaction with Redox Partners. Chan CK, Singharoy A, Tajkhorshid E. Biochemistry 61 385-397 (2022)
  55. Electron Transfer Route between Quinones in Type-II Reaction Centers. Sugo Y, Tamura H, Ishikita H. J Phys Chem B 126 9549-9558 (2022)
  56. George Feher: a pioneer in reaction center research. Okamura M. Photosynth Res 120 29-42 (2014)
  57. Product-controlled steady-state kinetics between cytochrome aa(3) from Rhodobacter sphaeroides and equine ferrocytochrome c analyzed by a novel spectrophotometric approach. Lin MT, Gennis RB. Biochim Biophys Acta 1817 1894-1900 (2012)
  58. A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. Allen JP, Chamberlain KD, Olson TL, Williams JC. Photochem Photobiol Sci 21 91-99 (2022)
  59. Accelerated Evolution of Cytochrome c in Higher Primates, and Regulation of the Reaction between Cytochrome c and Cytochrome Oxidase by Phosphorylation. Brand SE, Scharlau M, Geren L, Hendrix M, Parson C, Elmendorf T, Neel E, Pianalto K, Silva-Nash J, Durham B, Millett F. Cells 11 4014 (2022)
  60. Capacity and kinetics of light-induced cytochrome oxidation in intact cells of photosynthetic bacteria. Kis M, Smart JL, Maróti P. Sci Rep 12 14298 (2022)
  61. Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium Chlorobaculum tepidum. Xie H, Lyratzakis A, Khera R, Koutantou M, Welsch S, Michel H, Tsiotis G. Proc Natl Acad Sci U S A 120 e2216734120 (2023)
  62. Historical Article Remembering George Feher (1924-2017). Okamura MY, Lubitz W, Allen JP. Photosynth Res 137 361-375 (2018)
  63. Supramolecular Biohybrid Construct for Photoconversion Based on a Bacterial Reaction Center Covalently Bound to Cytochrome c by an Organic Light Harvesting Bridge. Buscemi G, Trotta M, Vona D, Farinola GM, Milano F, Ragni R. Bioconjug Chem (2023)
  64. The Role of Electrostatic Binding Interfaces in the Performance of Bacterial Reaction Center Biophotoelectrodes. van Moort MR, Jones MR, Frese RN, Friebe VM. ACS Sustain Chem Eng 11 3044-3051 (2023)
  65. The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria. Swainsbury DJK, Qian P, Hitchcock A, Hunter CN. Biosci Rep 43 BSR20220089 (2023)
  66. The structure of the complex between the arsenite oxidase from Pseudorhizobium banfieldiae sp. strain NT-26 and its native electron acceptor cytochrome c552. Poddar N, Santini JM, Maher MJ. Acta Crystallogr D Struct Biol 79 345-352 (2023)