1k30 Citations

Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase.

Abstract

Background

Glycerol-3-phosphate (1)-acyltransferase(G3PAT) catalyzes the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acyl-CoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol-3-phosphate. G3PATs can either be selective, preferentially using the unsaturated fatty acid, oleate (C18:1), as the acyl donor, or nonselective, using either oleate or the saturated fatty acid, palmitate (C16:0), at comparable rates. The differential substrate specificity for saturated versus unsaturated fatty acids seen within this enzyme family has been implicated in the sensitivity of plants to chilling temperatures.

Results

The three-dimensional structure of recombinant G3PAT from squash chloroplast has been determined to 1.9 A resolution by X-ray crystallography using the technique of multiple isomorphous replacement and provides the first representative structure of an enzyme of this class.

Conclusion

The tertiary structure of G3PAT comprises two domains, the larger of which, domain II, features an extensive cleft lined by hydrophobic residues and contains at one end a cluster of positively charged residues flanked by a H(X)(4)D motif, which is conserved amongst many glycerolipid acyltransferases. We predict that these hydrophobic and positively charged residues represent the binding sites for the fatty acyl substrate and the phosphate moiety of the glycerol 3-phosphate, respectively, and that the H(X)(4)D motif is a critical component of the enzyme's catalytic machinery.

Reviews - 1k30 mentioned but not cited (2)

  1. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Beld J, Lee DJ, Burkart MD. Mol Biosyst 11 38-59 (2015)
  2. Monotopic Membrane Proteins Join the Fold. Allen KN, Entova S, Ray LC, Imperiali B. Trends Biochem Sci 44 7-20 (2019)

Articles - 1k30 mentioned but not cited (9)

  1. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J. Proc Natl Acad Sci U S A 107 12040-12045 (2010)
  2. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. Amiar S, MacRae JI, Callahan DL, Dubois D, van Dooren GG, Shears MJ, Cesbron-Delauw MF, Maréchal E, McConville MJ, McFadden GI, Yamaryo-Botté Y, Botté CY. PLoS Pathog 12 e1005765 (2016)
  3. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA. Albesa-Jové D, Svetlíková Z, Tersa M, Sancho-Vaello E, Carreras-González A, Bonnet P, Arrasate P, Eguskiza A, Angala SK, Cifuente JO, Korduláková J, Jackson M, Mikušová K, Guerin ME. Nat Commun 7 10906 (2016)
  4. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain. Hijikata A, Yura K, Ohara O, Go M. Meta Gene 4 92-106 (2015)
  5. Design, synthesis, and biological evaluation of conformationally constrained glycerol 3-phosphate acyltransferase inhibitors. Wydysh EA, Vadlamudi A, Medghalchi SM, Townsend CA. Bioorg Med Chem 18 6470-6479 (2010)
  6. A molecular model for diacylglycerol acyltransferase from Mortierella ramanniana var. angulispora. Mishra S, Dwivedi SP, Dwivedi N, Kumar A, Rawat A, Kamisaka Y. Bioinformation 3 394-398 (2009)
  7. Site-Directed Mutagenesis from Arg195 to His of a Microalgal Putatively Chloroplastidial Glycerol-3-Phosphate Acyltransferase Causes an Increase in Phospholipid Levels in Yeast. Ouyang LL, Li H, Yan XJ, Xu JL, Zhou ZG. Front Plant Sci 7 286 (2016)
  8. A dedicated C-6 β-hydroxyacyltransferase required for biosynthesis of the glycolipid anchor for Vi antigen capsule in typhoidal Salmonella. Liston SD, Ovchinnikova OG, Kimber MS, Whitfield C. J Biol Chem 298 102520 (2022)
  9. Acylation of glycerolipids in mycobacteria. Angala SK, Carreras-Gonzalez A, Huc-Claustre E, Anso I, Kaur D, Jones V, Palčeková Z, Belardinelli JM, de Sousa-d'Auria C, Shi L, Slama N, Houssin C, Quémard A, McNeil M, Guerin ME, Jackson M. Nat Commun 14 6694 (2023)


Reviews citing this publication (15)

  1. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Takeuchi K, Reue K. Am J Physiol Endocrinol Metab 296 E1195-209 (2009)
  2. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Coleman RA, Mashek DG. Chem Rev 111 6359-6386 (2011)
  3. Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Yamashita A, Hayashi Y, Nemoto-Sasaki Y, Ito M, Oka S, Tanikawa T, Waku K, Sugiura T. Prog Lipid Res 53 18-81 (2014)
  4. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Prog Lipid Res 49 128-158 (2010)
  5. Phosphatidic acid synthesis in bacteria. Yao J, Rock CO. Biochim Biophys Acta 1831 495-502 (2013)
  6. Acyltransferases in bacteria. Röttig A, Steinbüchel A. Microbiol Mol Biol Rev 77 277-321 (2013)
  7. Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. Zhang YM, Rock CO. J Lipid Res 49 1867-1874 (2008)
  8. Glycerophosphate/Acylglycerophosphate acyltransferases. Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T. Biology (Basel) 3 801-830 (2014)
  9. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Wang H, Airola MV, Reue K. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1131-1145 (2017)
  10. Bacterial fatty acid metabolism in modern antibiotic discovery. Yao J, Rock CO. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1300-1309 (2017)
  11. Genetic basis of congenital generalized lipodystrophy. Agarwal AK, Barnes RI, Garg A. Int J Obes Relat Metab Disord 28 336-339 (2004)
  12. Recent insights into the structure and function of comparative gene identification-58. Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. Curr Opin Lipidol 22 149-158 (2011)
  13. Lysophosphatidic acid acyltransferase-beta: a novel target for induction of tumour cell apoptosis. Bonham L, Leung DW, White T, Hollenback D, Klein P, Tulinsky J, Coon M, de Vries P, Singer JW. Expert Opin Ther Targets 7 643-661 (2003)
  14. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Lipids 53 663-688 (2018)
  15. Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Yao J, Rock CO. Front Microbiol 9 2291 (2018)

Articles citing this publication (32)

  1. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK. Mol Cell 10 857-869 (2002)
  2. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM. Proc Natl Acad Sci U S A 103 11724-11729 (2006)
  3. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J Mol Biol 372 817-845 (2007)
  4. Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Agarwal AK, Barnes RI, Garg A. Arch Biochem Biophys 449 64-76 (2006)
  5. Crystal structure of human mitochondrial trifunctional protein, a fatty acid β-oxidation metabolon. Xia C, Fu Z, Battaile KP, Kim JP. Proc Natl Acad Sci U S A 116 6069-6074 (2019)
  6. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis. Yao J, Cherian PT, Frank MW, Rock CO. J Biol Chem 290 18874-18888 (2015)
  7. A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, White SW. Nat Struct Mol Biol 24 666-671 (2017)
  8. Design and synthesis of small molecule glycerol 3-phosphate acyltransferase inhibitors. Wydysh EA, Medghalchi SM, Vadlamudi A, Townsend CA. J Med Chem 52 3317-3327 (2009)
  9. Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB. Robertson KP, Smith CJ, Gough AM, Rocha ER. Infect Immun 74 2304-2316 (2006)
  10. Modes of Fatty Acid desaturation in cyanobacteria: an update. Los DA, Mironov KS. Life (Basel) 5 554-567 (2015)
  11. Bovine lipid metabolism related gene GPAM: Molecular characterization, function identification, and association analysis with fat deposition traits. Yu H, Zhao Z, Yu X, Li J, Lu C, Yang R. Gene 609 9-18 (2017)
  12. Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity. Kuhajda FP, Aja S, Tu Y, Han WF, Medghalchi SM, El Meskini R, Landree LE, Peterson JM, Daniels K, Wong K, Wydysh EA, Townsend CA, Ronnett GV. Am J Physiol Regul Integr Comp Physiol 301 R116-30 (2011)
  13. Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism. Dovala D, Rath CM, Hu Q, Sawyer WS, Shia S, Elling RA, Knapp MS, Metzger LE. Proc Natl Acad Sci U S A 113 E6064-E6071 (2016)
  14. Membrane topology of human AGPAT3 (LPAAT3). Schmidt JA, Yvone GM, Brown WJ. Biochem Biophys Res Commun 397 661-667 (2010)
  15. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds. Kim HJ, Silva JE, Iskandarov U, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. Plant J 84 1021-1033 (2015)
  16. Identification of a broad family of lipid A late acyltransferases with non-canonical substrate specificity. Rubin EJ, O'Brien JP, Ivanov PL, Brodbelt JS, Trent MS. Mol Microbiol 91 887-899 (2014)
  17. Squash glycerol-3-phosphate (1)-acyltransferase. Alteration of substrate selectivity and identification of arginine and lysine residues important in catalytic activity. Slabas AR, Kroon JT, Scheirer TP, Gilroy JS, Hayman M, Rice DW, Turnbull AP, Rafferty JB, Fawcett T, Simon WJ. J Biol Chem 277 43918-43923 (2002)
  18. Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene. Brown AP, Carnaby S, Brough C, Brazier M, Slabas AR. Biochem J 364 795-805 (2002)
  19. Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold. Gao J, Wallis JG, Browse J. Plant Physiol 169 442-452 (2015)
  20. Characterization of the Plasmodium falciparum and P. berghei glycerol 3-phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast. Shears MJ, MacRae JI, Mollard V, Goodman CD, Sturm A, Orchard LM, Llinás M, McConville MJ, Botté CY, McFadden GI. Cell Microbiol 19 (2017)
  21. Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing. Ulrich DL, Kojetin D, Bassler BL, Cavanagh J, Loria JP. J Mol Biol 347 297-307 (2005)
  22. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus. Payá-Milans M, Venegas-Calerón M, Salas JJ, Garcés R, Martínez-Force E. Phytochemistry 111 27-36 (2015)
  23. Substrate selectivity of glycerol-3-phosphate acyl transferase in rice. Zhu SQ, Zhao H, Zhou R, Ji BH, Dan XY. J Integr Plant Biol 51 1040-1049 (2009)
  24. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein. Misra N, Panda PK. OMICS 17 173-186 (2013)
  25. Characterization of glycerol-3-phosphate acyltransferase 9 (AhGPAT9) genes, their allelic polymorphism and association with oil content in peanut (Arachis hypogaea L.). Lv Y, Zhang X, Luo L, Yang H, Li P, Zhang K, Liu F, Wan Y. Sci Rep 10 14648 (2020)
  26. Effects of polymorphism of the GPAM gene on milk quality traits and its relation to triglyceride metabolism in bovine mammary epithelial cells of dairy cattle. Yu H, Zhao Y, Iqbal A, Xia L, Bai Z, Sun H, Fang X, Yang R, Zhao Z. Arch Anim Breed 64 35-44 (2021)
  27. Kinetic mechanism and order of substrate binding for sn-glycerol-3-phosphate acyltransferase from squash (Cucurbita moschata). Hayman MW, Fawcett T, Slabas AR. FEBS Lett 514 281-284 (2002)
  28. Rickettsia Lipid A Biosynthesis Utilizes the Late Acyltransferase LpxJ for Secondary Fatty Acid Addition. Guillotte ML, Gillespie JJ, Chandler CE, Rahman MS, Ernst RK, Azad AF. J Bacteriol 200 e00334-18 (2018)
  29. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. Jeppson S, Mattisson H, Demski K, Lager I. J Biol Chem 295 15398-15406 (2020)
  30. Design, Synthesis, and Evaluation of 4- and 5-Substituted o-(Octanesulfonamido)benzoic Acids as Inhibitors of Glycerol-3-Phosphate Acyltransferase. Outlaw VK, Wydysh EA, Vadlamudi A, Medghalchi SM, Townsend CA. Medchemcomm 5 826-830 (2014)
  31. Possible allostery and oligomerization of recombinant plastidial sn-glycerol-3-phosphate acyltransferase. Chen X, Miles R, Snyder C, Truksa M, Zhang J, Shah S, Weselake RJ. Arch Biochem Biophys 554 55-64 (2014)
  32. Expression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica. Südfeld C, Kiyani A, Wefelmeier K, Wijffels RH, Barbosa MJ, D'Adamo S. Microb Cell Fact 22 12 (2023)


Related citations provided by authors (1)

  1. Crystallization and preliminary X-ray analysis of the glycerol-3-phosphate 1-acyltransferase from squash (Cucurbita moschata).. Turnbull AP, Rafferty JB, Sedelnikova SE, Slabas AR, Schierer TP, Kroon JT, Nishida I, Murata N, Simon JW, Rice DW Acta Crystallogr. D Biol. Crystallogr. 57 451-453 (2001)