1k25 Citations

Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations.

J Biol Chem 276 45106-12 (2001)
Cited: 70 times
EuropePMC logo PMID: 11553637

Abstract

Penicillin-binding proteins (PBPs) are the main targets for beta-lactam antibiotics, such as penicillins and cephalosporins, in a wide range of bacterial species. In some Gram-positive strains, the surge of resistance to treatment with beta-lactams is primarily the result of the proliferation of mosaic PBP-encoding genes, which encode novel proteins by recombination. PBP2x is a primary resistance determinant in Streptococcus pneumoniae, and its modification is an essential step in the development of high level beta-lactam resistance. To understand such a resistance mechanism at an atomic level, we have solved the x-ray crystal structure of PBP2x from a highly penicillin-resistant clinical isolate of S. pneumoniae, Sp328, which harbors 83 mutations in the soluble region. In the proximity of the Sp328 PBP2x* active site, the Thr(338) --> Ala mutation weakens the local hydrogen bonding network, thus abrogating the stabilization of a crucial buried water molecule. In addition, the Ser(389) --> Leu and Asn(514) --> His mutations produce a destabilizing effect that generates an "open" active site. It has been suggested that peptidoglycan substrates for beta-lactam-resistant PBPs contain a large amount of abnormal, branched peptides, whereas sensitive strains tend to catalyze cross-linking of linear forms. Thus, in vivo, an "open" active site could facilitate the recognition of distinct, branched physiological substrates.

Articles - 1k25 mentioned but not cited (5)



Reviews citing this publication (17)

  1. Penicillin-binding proteins and beta-lactam resistance. Zapun A, Contreras-Martel C, Vernet T. FEMS Microbiol Rev 32 361-385 (2008)
  2. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. FEMS Microbiol Rev 30 673-691 (2006)
  3. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Pereira SF, Goss L, Dworkin J. Microbiol Mol Biol Rev 75 192-212 (2011)
  4. Structural perspective of peptidoglycan biosynthesis and assembly. Lovering AL, Safadi SS, Strynadka NC. Annu Rev Biochem 81 451-478 (2012)
  5. The PASTA domain: a beta-lactam-binding domain. Yeats C, Finn RD, Bateman A. Trends Biochem Sci 27 438 (2002)
  6. Beta-lactam antibiotic resistance: a current structural perspective. Wilke MS, Lovering AL, Strynadka NC. Curr Opin Microbiol 8 525-533 (2005)
  7. Cell-division inhibitors: new insights for future antibiotics. Lock RL, Harry EJ. Nat Rev Drug Discov 7 324-338 (2008)
  8. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Hakenbeck R, Brückner R, Denapaite D, Maurer P. Future Microbiol 7 395-410 (2012)
  9. The bacterial cell wall as a source of antibacterial targets. Green DW. Expert Opin Ther Targets 6 1-19 (2002)
  10. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Rohrer S, Berger-Bächi B. Antimicrob Agents Chemother 47 837-846 (2003)
  11. Development of new drugs for an old target: the penicillin binding proteins. Zervosen A, Sauvage E, Frère JM, Charlier P, Luxen A. Molecules 17 12478-12505 (2012)
  12. Messenger functions of the bacterial cell wall-derived muropeptides. Boudreau MA, Fisher JF, Mobashery S. Biochemistry 51 2974-2990 (2012)
  13. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Fisher JF, Mobashery S. Cold Spring Harb Perspect Med 6 a025221 (2016)
  14. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Janczarek M, Vinardell JM, Lipa P, Karaś M. Int J Mol Sci 19 E2872 (2018)
  15. New approaches towards the identification of antibiotic and vaccine targets in Streptococcus pneumoniae. Di Guilmi AM, Dessen A. EMBO Rep 3 728-734 (2002)
  16. Molecular genetic methods in diagnosis and direct characterization of acute bacterial central nervous system infections. Taha MK, Olcén P. APMIS 112 753-770 (2004)
  17. Mechanisms and impact of antimicrobial resistance in Clostridioides difficile. Dureja C, Olaitan AO, Hurdle JG. Curr Opin Microbiol 66 63-72 (2022)

Articles citing this publication (48)

  1. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. Proc Natl Acad Sci U S A 110 16808-16813 (2013)
  2. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, Hanage WP, Goldblatt D, Nosten FH, Turner C, Turner P, Bentley SD, Parkhill J. PLoS Genet 10 e1004547 (2014)
  3. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. Mir M, Asong J, Li X, Cardot J, Boons GJ, Husson RN. PLoS Pathog 7 e1002182 (2011)
  4. Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae, S. mitis and S. oralis. Chi F, Nolte O, Bergmann C, Ip M, Hakenbeck R. Int J Med Microbiol 297 503-512 (2007)
  5. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi AM, Grangeasse C. Mol Microbiol 83 746-758 (2012)
  6. Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. Chawla Y, Upadhyay S, Khan S, Nagarajan SN, Forti F, Nandicoori VK. J Biol Chem 289 13858-13875 (2014)
  7. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Crisóstomo MI, Vollmer W, Kharat AS, Inhülsen S, Gehre F, Buckenmaier S, Tomasz A. Mol Microbiol 61 1497-1509 (2006)
  8. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. Jones G, Dyson P. J Bacteriol 188 7470-7476 (2006)
  9. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. J Biol Chem 284 1202-1212 (2009)
  10. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone. Osaka K, Takakura T, Narukawa K, Takahata M, Endo K, Kiyota H, Onodera S. J Infect Chemother 14 195-203 (2008)
  11. PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. Contreras-Martel C, Dahout-Gonzalez C, Martins Ados S, Kotnik M, Dessen A. J Mol Biol 387 899-909 (2009)
  12. Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. Contreras-Martel C, Job V, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. J Mol Biol 355 684-696 (2006)
  13. Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. Sainsbury S, Bird L, Rao V, Shepherd SM, Stuart DI, Hunter WN, Owens RJ, Ren J. J Mol Biol 405 173-184 (2011)
  14. X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus. Ruggiero A, Squeglia F, Marasco D, Marchetti R, Molinaro A, Berisio R. Biochem J 435 33-41 (2011)
  15. The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. Chesnel L, Pernot L, Lemaire D, Champelovier D, Croizé J, Dideberg O, Vernet T, Zapun A. J Biol Chem 278 44448-44456 (2003)
  16. Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. Di Guilmi AM, Dessen A, Dideberg O, Vernet T. J Bacteriol 185 1650-1658 (2003)
  17. Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA). Contreras-Martel C, Amoroso A, Woon EC, Zervosen A, Inglis S, Martins A, Verlaine O, Rydzik AM, Job V, Luxen A, Joris B, Schofield CJ, Dessen A. ACS Chem Biol 6 943-951 (2011)
  18. The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization. Osaki M, Arcondéguy T, Bastide A, Touriol C, Prats H, Trombe MC. J Bacteriol 191 4943-4950 (2009)
  19. Interactions between late-acting proteins required for peptidoglycan synthesis during sporulation. Fay A, Meyer P, Dworkin J. J Mol Biol 399 547-561 (2010)
  20. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. El Ghachi M, Matteï PJ, Ecobichon C, Martins A, Hoos S, Schmitt C, Colland F, Ebel C, Prévost MC, Gabel F, England P, Dessen A, Boneca IG. Mol Microbiol 82 68-86 (2011)
  21. Identical penicillin-binding domains in penicillin-binding proteins of Streptococcus pneumoniae clinical isolates with different levels of beta-lactam resistance. Chesnel L, Carapito R, Croizé J, Dideberg O, Vernet T, Zapun A. Antimicrob Agents Chemother 49 2895-2902 (2005)
  22. Penicillin-binding protein 2x of Streptococcus pneumoniae: three new mutational pathways for remodelling an essential enzyme into a resistance determinant. Maurer P, Koch B, Zerfass I, Krauss J, van der Linden M, Frère JM, Contreras-Martel C, Hakenbeck R. J Mol Biol 376 1403-1416 (2008)
  23. Emergence of meningococci with reduced susceptibility to third-generation cephalosporins. Deghmane AE, Hong E, Taha MK. J Antimicrob Chemother 72 95-98 (2017)
  24. Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. Alexander JAN, Chatterjee SS, Hamilton SM, Eltis LD, Chambers HF, Strynadka NCJ. J Biol Chem 293 19854-19865 (2018)
  25. The highly conserved serine threonine kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility independently from genes encoding penicillin-binding proteins. Dias R, Félix D, Caniça M, Trombe MC. BMC Microbiol 9 121 (2009)
  26. Positive selection in penicillin-binding proteins 1a, 2b, and 2x from Streptococcus pneumoniae and its correlation with amoxicillin resistance development. Stanhope MJ, Lefébure T, Walsh SL, Becker JA, Lang P, Pavinski Bitar PD, Miller LA, Italia MJ, Amrine-Madsen H. Infect Genet Evol 8 331-339 (2008)
  27. Immunogenicity of meningococcal PBP2 during natural infection and protective activity of anti-PBP2 antibodies against meningococcal bacteraemia in mice. Zarantonelli ML, Antignac A, Lancellotti M, Guiyoule A, Alonso JM, Taha MK. J Antimicrob Chemother 57 924-930 (2006)
  28. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Oliva M, Dideberg O, Field MJ. Proteins 53 88-100 (2003)
  29. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis. Fedarovich A, Nicholas RA, Davies C. J Mol Biol 398 54-65 (2010)
  30. Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein from Mycobacterium tuberculosis. Calvanese L, Falcigno L, Maglione C, Marasco D, Ruggiero A, Squeglia F, Berisio R, D'Auria G. Biopolymers 101 712-719 (2014)
  31. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. Singh A, Turner JM, Tomberg J, Fedarovich A, Unemo M, Nicholas RA, Davies C. J Biol Chem 295 7529-7543 (2020)
  32. Penicillin-binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores. Liu Y, Carlsson Möller M, Petersen L, Söderberg CA, Hederstedt L. Mol Microbiol 75 46-60 (2010)
  33. Insight into the Diversity of Penicillin-Binding Protein 2x Alleles and Mutations in Viridans Streptococci. van der Linden M, Otten J, Bergmann C, Latorre C, Liñares J, Hakenbeck R. Antimicrob Agents Chemother 61 e02646-16 (2017)
  34. The divisomal protein DivIB contains multiple epitopes that mediate its recruitment to incipient division sites. Wadsworth KD, Rowland SL, Harry EJ, King GF. Mol Microbiol 67 1143-1155 (2008)
  35. The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. Fedarovich A, Nicholas RA, Davies C. J Mol Biol 418 316-330 (2012)
  36. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. Biochemistry 51 2775-2784 (2012)
  37. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli. Nicola G, Fedarovich A, Nicholas RA, Davies C. Biochem J 392 55-63 (2005)
  38. Evidence from artificial septal targeting and site-directed mutagenesis that residues in the extracytoplasmic β domain of DivIB mediate its interaction with the divisomal transpeptidase PBP 2B. Rowland SL, Wadsworth KD, Robson SA, Robichon C, Beckwith J, King GF. J Bacteriol 192 6116-6125 (2010)
  39. Structure of PBP-A from Thermosynechococcus elongatus, a penicillin-binding protein closely related to class A beta-lactamases. Urbach C, Evrard C, Pudzaitis V, Fastrez J, Soumillion P, Declercq JP. J Mol Biol 386 109-120 (2009)
  40. Analysis of mutations in the pbp genes of penicillin-non-susceptible pneumococci from Turkey. Biçmen M, Gülay Z, Ramaswamy SV, Musher DM, Gür D. Clin Microbiol Infect 12 150-155 (2006)
  41. Penicillin-binding protein 2x of Streptococcus pneumoniae: the mutation Ala707Asp within the C-terminal PASTA2 domain leads to destabilization. Schweizer I, Peters K, Stahlmann C, Hakenbeck R, Denapaite D. Microb Drug Resist 20 250-257 (2014)
  42. Important Mutations Contributing to High-Level Penicillin Resistance in Taiwan19F-14, Taiwan23F-15, and Spain23F-1 of Streptococcus pneumoniae Isolated from Taiwan. Liu EY, Chang JC, Lin JC, Chang FY, Fung CP. Microb Drug Resist 22 646-654 (2016)
  43. A new mechanism to render clinical isolates of Escherichia coli non-susceptible to imipenem: substitutions in the PBP2 penicillin-binding domain. Aissa N, Mayer N, Bert F, Labia R, Lozniewski A, Nicolas-Chanoine MH. J Antimicrob Chemother 71 76-79 (2016)
  44. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics. Ramalingam J, Vennila J, Subbiah P. Chem Biol Drug Des 82 275-289 (2013)
  45. Linear Regression Equations To Predict β-Lactam, Macrolide, Lincosamide, and Fluoroquinolone MICs from Molecular Antimicrobial Resistance Determinants in Streptococcus pneumoniae. Demczuk W, Martin I, Griffith A, Lefebvre B, McGeer A, Tyrrell GJ, Zhanel GG, Kus JV, Hoang L, Minion J, Van Caeseele P, Gad RR, Haldane D, Zahariadis G, Mead K, Steven L, Strudwick L, Mulvey MR. Antimicrob Agents Chemother 66 e0137021 (2022)
  46. Molecular surveillance of the subtle septum: discovering a new mode of peptidoglycan synthesis in streptococci. Cadby IT, Lovering AL. Mol Microbiol 94 1-4 (2014)
  47. Comparison of contemporary invasive and non-invasive Streptococcus pneumoniae isolates reveals new insights into circulating anti-microbial resistance determinants. Higgs C, Kumar LS, Stevens K, Strachan J, Korman T, Horan K, Daniel D, Russell M, McDevitt CA, Sherry NL, Stinear TP, Howden BP, Gorrie CL. Antimicrob Agents Chemother 67 e0078523 (2023)
  48. Molecular basis of β-lactam antibiotic resistance of ESKAPE bacterium E. faecium Penicillin Binding Protein PBP5. Hunashal Y, Kumar GS, Choy MS, D'Andréa ÉD, Da Silva Santiago A, Schoenle MV, Desbonnet C, Arthur M, Rice LB, Page R, Peti W. Nat Commun 14 4268 (2023)