1j7l Citations

Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase.

Biochemistry 40 8756-64 (2001)
Related entries: 1j7i, 1j7u

Cited: 64 times
EuropePMC logo PMID: 11467935

Abstract

3',5"-Aminoglycoside phosphotransferase type IIIa [APH(3')-IIIa] is a bacterial enzyme that confers resistance to a range of aminoglycoside antibiotics while exhibiting striking homology to eukaryotic protein kinases (ePK). The structures of APH(3')-IIIa in its apoenzyme form and in complex with the nonhydrolyzable ATP analogue AMPPNP were determined to 3.2 and 2.4 A resolution, respectively. Furthermore, refinement of the previously determined ADP complex was completed. The structure of the apoenzyme revealed alternate positioning of a flexible loop (analogous to the P-loop of ePK's), occupying part of the nucleotide-binding pocket of the enzyme. Despite structural similarity to protein kinases, there was no evidence of domain movement associated with nucleotide binding. This rigidity is due to the presence of more extensive interlobe interactions in the APH(3')-IIIa structure than in the ePK's. Differences between the ADP and AMPPNP complexes are confined to the area of the nucleotide-binding pocket. The position of conserved active site residues and magnesium ions remains unchanged, but there are differences in metal coordination between the two nucleotide complexes. Comparison of the di/triphosphate binding site of APH(3')-IIIa with that of ePK's suggests that the reaction mechanism of APH(3")-IIIa and related aminoglycoside kinases will closely resemble that of eukaryotic protein kinases. However, the orientation of the adenine ring in the binding pocket differs between APH(3')-IIIa and the ePK's by a rotation of approximately 40 degrees. This alternate binding mode is likely a conserved feature among aminoglycoside kinases and could be exploited for the structure-based drug design of compounds to combat antibiotic resistance.

Reviews - 1j7l mentioned but not cited (3)

  1. Aminoglycoside modifying enzymes. Ramirez MS, Tolmasky ME. Drug Resist. Updat. 13 151-171 (2010)
  2. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Labby KJ, Garneau-Tsodikova S. Future Med Chem 5 1285-1309 (2013)
  3. Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases. Kannan N, Neuwald AF, Taylor SS. Biochim. Biophys. Acta 1784 27-32 (2008)

Articles - 1j7l mentioned but not cited (3)

  1. Structural and functional diversity of the microbial kinome. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. PLoS Biol. 5 e17 (2007)
  2. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci 18 1745-1765 (2009)
  3. Crystal structures of two aminoglycoside kinases bound with a eukaryotic protein kinase inhibitor. Fong DH, Xiong B, Hwang J, Berghuis AM. PLoS ONE 6 e19589 (2011)


Reviews citing this publication (9)

  1. Molecular understanding of aminoglycoside action and resistance. Jana S, Deb JK. Appl. Microbiol. Biotechnol. 70 140-150 (2006)
  2. Aminoglycosides versus bacteria--a description of the action, resistance mechanism, and nosocomial battleground. Shakil S, Khan R, Zarrilli R, Khan AU. J. Biomed. Sci. 15 5-14 (2008)
  3. Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Hainrichson M, Nudelman I, Baasov T. Org. Biomol. Chem. 6 227-239 (2008)
  4. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Shi K, Caldwell SJ, Fong DH, Berghuis AM. Front Cell Infect Microbiol 3 22 (2013)
  5. Design principles underpinning the regulatory diversity of protein kinases. Oruganty K, Kannan N. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2529-2539 (2012)
  6. Protein kinase inhibitors and antibiotic resistance. Burk DL, Berghuis AM. Pharmacol. Ther. 93 283-292 (2002)
  7. Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK. Zheng J, Yates SP, Jia Z. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2656-2668 (2012)
  8. Phosphoconjugation and dephosphorylation reactions of steroid hormone in insects. Sonobe H, Ito Y. Mol. Cell. Endocrinol. 307 25-35 (2009)
  9. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Zárate SG, De la Cruz Claure ML, Benito-Arenas R, Revuelta J, Santana AG, Bastida A. Molecules 23 (2018)

Articles citing this publication (49)

  1. A helix scaffold for the assembly of active protein kinases. Kornev AP, Taylor SS, Ten Eyck LF. Proc. Natl. Acad. Sci. U.S.A. 105 14377-14382 (2008)
  2. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF. Plant J. 44 693-705 (2005)
  3. Structural evolution of the protein kinase-like superfamily. Scheeff ED, Bourne PE. PLoS Comput. Biol. 1 e49 (2005)
  4. Sequence and structure classification of kinases. Cheek S, Zhang H, Grishin NV. J. Mol. Biol. 320 855-881 (2002)
  5. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. Fong DH, Berghuis AM. EMBO J. 21 2323-2331 (2002)
  6. The crystal structure of aminoglycoside-3'-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. Nurizzo D, Shewry SC, Perlin MH, Brown SA, Dholakia JN, Fuchs RL, Deva T, Baker EN, Smith CA. J. Mol. Biol. 327 491-506 (2003)
  7. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. Mao L, Wang Y, Liu Y, Hu X. J. Mol. Biol. 336 787-807 (2004)
  8. Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein. Kohl A, Amstutz P, Parizek P, Binz HK, Briand C, Capitani G, Forrer P, Plückthun A, Grütter MG. Structure 13 1131-1141 (2005)
  9. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold. Peisach D, Gee P, Kent C, Xu Z. Structure 11 703-713 (2003)
  10. The crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] provide insights into substrate selectivity in the APH(2'') subfamily. Young PG, Walanj R, Lakshmi V, Byrnes LJ, Metcalf P, Baker EN, Vakulenko SB, Smith CA. J. Bacteriol. 191 4133-4143 (2009)
  11. Effects of altering aminoglycoside structures on bacterial resistance enzyme activities. Green KD, Chen W, Garneau-Tsodikova S. Antimicrob. Agents Chemother. 55 3207-3213 (2011)
  12. Analysis of the pi-pi stacking interactions between the aminoglycoside antibiotic kinase APH(3')-IIIa and its nucleotide ligands. Boehr DD, Farley AR, Wright GD, Cox JR. Chem. Biol. 9 1209-1217 (2002)
  13. Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Welch KT, Virga KG, Whittemore NA, Ozen C, Wright E, Brown CL, Lee RE, Serpersu EH. Bioorg. Med. Chem. 13 6252-6263 (2005)
  14. Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila. Fong DH, Lemke CT, Hwang J, Xiong B, Berghuis AM. J. Biol. Chem. 285 9545-9555 (2010)
  15. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Fraga J, Maranha A, Mendes V, Pereira PJ, Empadinhas N, Macedo-Ribeiro S. Sci Rep 5 8026 (2015)
  16. Branched aminoglycosides: biochemical studies and antibacterial activity of neomycin B derivatives. Hainrichson M, Pokrovskaya V, Shallom-Shezifi D, Fridman M, Belakhov V, Shachar D, Yaron S, Baasov T. Bioorg. Med. Chem. 13 5797-5807 (2005)
  17. Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6') acetyltransferase-ie/aminoglycoside (2'') phosphotransferase-ia reveals a rigid solution structure. Caldwell SJ, Berghuis AM. Antimicrob. Agents Chemother. 56 1899-1906 (2012)
  18. Aminoglycoside 2''-phosphotransferase IIIa (APH(2'')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2'' kinases. Smith CA, Toth M, Frase H, Byrnes LJ, Vakulenko SB. J. Biol. Chem. 287 12893-12903 (2012)
  19. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans. Yuan C, Kent C. J. Biol. Chem. 279 17801-17809 (2004)
  20. Inhibition of aminoglycoside-deactivating enzymes APH(3')-IIIa and AAC(6')-Ii by amphiphilic paromomycin O2''-ether analogues. Szychowski J, Kondo J, Zahr O, Auclair K, Westhof E, Hanessian S, Keillor JW. ChemMedChem 6 1961-1966 (2011)
  21. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Proteins 56 539-555 (2004)
  22. New enzymes from environmental cassette arrays: functional attributes of a phosphotransferase and an RNA-methyltransferase. Nield BS, Willows RD, Torda AE, Gillings MR, Holmes AJ, Nevalainen KM, Stokes HW, Mabbutt BC. Protein Sci. 13 1651-1659 (2004)
  23. Structural basis of APH(3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics. Fong DH, Berghuis AM. Antimicrob. Agents Chemother. 53 3049-3055 (2009)
  24. Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding. Ku SY, Yip P, Cornell KA, Riscoe MK, Behr JB, Guillerm G, Howell PL. J Biol Chem 282 22195-22206 (2007)
  25. Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases. Shi K, Berghuis AM. J. Biol. Chem. 287 13094-13102 (2012)
  26. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, Capretta A, Wright GD, Savchenko A. Biochem. J. 454 191-200 (2013)
  27. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS. Appl. Environ. Microbiol. 72 7111-7122 (2006)
  28. Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme. Stogios PJ, Shakya T, Evdokimova E, Savchenko A, Wright GD. J. Biol. Chem. 286 1966-1975 (2011)
  29. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Romanowska J, Reuter N, Trylska J. Proteins 81 63-80 (2013)
  30. Insight into the inhibition of human choline kinase: homology modeling and molecular dynamics simulations. Milanese L, Espinosa A, Campos JM, Gallo MA, Entrena A. ChemMedChem 1 1216-1228 (2006)
  31. ATP binding enables broad antibiotic selectivity of aminoglycoside phosphotransferase(3')-IIIa: an elastic network analysis. Wieninger SA, Serpersu EH, Ullmann GM. J. Mol. Biol. 409 450-465 (2011)
  32. Crystal structure of Mycobacterium tuberculosis Rv3168: a putative aminoglycoside antibiotics resistance enzyme. Kim S, Nguyen CM, Kim EJ, Kim KJ. Proteins 79 2983-2987 (2011)
  33. Crystal structures of the ternary complex of APH(4)-Ia/Hph with hygromycin B and an ATP analog using a thermostable mutant. Iino D, Takakura Y, Fukano K, Sasaki Y, Hoshino T, Ohsawa K, Nakamura A, Yajima S. J. Struct. Biol. 183 76-85 (2013)
  34. Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia. Caldwell SJ, Huang Y, Berghuis AM. Structure 24 935-945 (2016)
  35. Identification and classification of small molecule kinases: insights into substrate recognition and specificity. Oruganty K, Talevich EE, Neuwald AF, Kannan N. BMC Evol. Biol. 16 7 (2016)
  36. Kinetic and mechanistic characterisation of Choline Kinase-α. Hudson CS, Knegtel RM, Brown K, Charlton PA, Pollard JR. Biochim. Biophys. Acta 1834 1107-1116 (2013)
  37. Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog. Ku SY, Cornell KA, Howell PL. BMC Struct. Biol. 7 70 (2007)
  38. Deciphering interactions of the aminoglycoside phosphotransferase(3')-IIIa with its ligands. Wu L, Serpersu EH. Biopolymers 91 801-809 (2009)
  39. Homotypic dimerization of a maltose kinase for molecular scaffolding. Li J, Guan X, Shaw N, Chen W, Dong Y, Xu X, Li X, Rao Z. Sci Rep 4 6418 (2014)
  40. Molecular modeling studies to explore the binding affinity of virtually screened inhibitor toward different aminoglycoside kinases from diverse MDR strains. Parulekar RS, Sonawane KD. J. Cell. Biochem. 119 2679-2695 (2018)
  41. Insights into the binding specificity and catalytic mechanism of N-acetylhexosamine 1-phosphate kinases through multiple reaction complexes. Wang KC, Lyu SY, Liu YC, Chang CY, Wu CJ, Li TL. Acta Crystallogr. D Biol. Crystallogr. 70 1401-1410 (2014)
  42. Conjugal transfer of aac(6')Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR. Jaimee G, Halami PM. Microb. Pathog. 110 546-553 (2017)
  43. Directed evolution for thermostabilization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus. Sugimoto N, Takakura Y, Shiraki K, Honda S, Takaya N, Hoshino T, Nakamura A. Biosci. Biotechnol. Biochem. 77 2234-2241 (2013)
  44. Alpha-Naphthoflavone as a Novel Scaffold for the Design of Potential Inhibitors of the APH(3')-IIIa Nucleotide-Binding Site of Enterococcus faecalis. Amorim JC, Carpio JM. Microorganisms 11 2351 (2023)
  45. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli. Iino D, Takakura Y, Kuroiwa M, Kawakami R, Sasaki Y, Hoshino T, Ohsawa K, Nakamura A, Yajima S. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 685-688 (2007)
  46. Discovery and characterization of genes conferring natural resistance to the antituberculosis antibiotic capreomycin. Toh SI, Elaine Keisha J, Wang YL, Pan YC, Jhu YH, Hsiao PY, Liao WT, Chen PY, Ko TM, Chang CY. Commun Biol 6 1282 (2023)
  47. Insight into the mechanism of chemical modification of antibacterial agents by antibiotic resistance enzyme O-phosphotransferase-IIIA. Power BH, Smith N, Downer B, Alisaraie L. Chem Biol Drug Des 89 84-97 (2017)
  48. Structural basis for the substrate recognition of aminoglycoside 7''-phosphotransferase-Ia from Streptomyces hygroscopicus. Takenoya M, Shimamura T, Yamanaka R, Adachi Y, Ito S, Sasaki Y, Nakamura A, Yajima S. Acta Crystallogr F Struct Biol Commun 75 599-607 (2019)
  49. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation. Boyko KM, Gorbacheva MA, Korzhenevskiy DA, Alekseeva MG, Mavletova DA, Zakharevich NV, Elizarov SM, Rudakova NN, Danilenko VN, Popov VO. Biochem. Biophys. Res. Commun. 477 595-601 (2016)


Related citations provided by authors (1)

  1. Structure of an Enzyme Required for Antibiotic Resistance Reveals Homology to Eukaryotic Protein Kinases. Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DSC, Wright GD, Berghuis AM Cell 89 887-895 (1997)